## Before announcement

## Philippe Balbiani ${ }^{1}$, Hans van Ditmarsch ${ }^{2}$, Andreas Herzig ${ }^{1}$

${ }^{1}$ Institut de recherche en informatique de Toulouse CNRS - Université de Toulouse
${ }^{2}$ Laboratoire lorrain de recherche en informatique et ses applications
CNRS - Université de Lorraine - Inria

## Outline

Introduction

Logic with converse announcements

Maximal ignorance variant

## Introduction

Public Announcement Logic (PAL)


Other direction


## Introduction

Public Announcement Logic (PAL)

- $[\varphi]^{+} \psi$ : "After $\varphi$ 's announcement, $\psi$ is true"
- $\langle\varphi\rangle^{+} \psi::=\neg[\varphi]^{+} \neg \psi$


## Other direction

- $[\varphi]^{-} \psi$ : "Before $\varphi$ 's announcement, $\psi$ was true"
- $\langle\varphi\rangle^{-} \psi::=\neg[\varphi]^{-} \neg \psi$

Remarks

- $\models \psi \rightarrow[\varphi]^{+}\langle\varphi\rangle^{-} \psi$
- $\vDash \psi \rightarrow[\varphi]^{-}\langle\varphi\rangle^{+} \psi$
- $\vDash\langle\varphi\rangle^{+} \psi \rightarrow[\varphi]^{+} \psi$
- $\forall\langle\varphi\rangle^{-} \psi \rightarrow[\varphi]^{-} \psi$


## Introduction

History-based structures

- G. Aucher, A. Herzig (2007)
- B. Renne, J. Sack, A. Yap (2009)
- J. Sack (2008)

Storing the values of formulas

- H. van Ditmarsch, J. van Eijck, W. Wu (2010)
- H. van Ditmarsch, J. Ruan, R. Verbrugge (2007)

Subset Space Logic

- A. Dabrowski, L. Moss, L., R. Parikh (1996)
- B. Heinemann (2007)


## Introduction

Appealing semantics for converse announcement of $\varphi$

- Truth in all models of which the current model is the $\varphi$ restriction

Remark


- $\vDash \square p \rightarrow\langle p\rangle^{-} \neg \square p$

What we chose

- A setting similar to that of Subset Space Logic


## Logic with converse announcements

Syntax

- $\varphi, \psi::=p|\perp| \neg \varphi|(\varphi \vee \psi)| \square \varphi\left|[\varphi]^{+} \psi\right|[\varphi]^{-} \psi$
- $\Delta \varphi::=\neg \square \neg \varphi$
- $\langle\varphi\rangle^{+} \psi::=\neg[\varphi]^{+} \neg \psi$
- $\langle\varphi\rangle^{-} \psi::=\neg[\varphi]^{-} \neg \psi$

Readings

- $\square \varphi$ : "The agent knows that $\varphi$ "
- $[\varphi]^{+} \psi$ : "After $\varphi$ 's announcement, $\psi$ is true"
- $[\varphi]^{-} \psi$ : "Before $\varphi$ 's announcement, $\psi$ was true"


## Logic with converse announcements

Models
Structure of the form $\mathcal{M}=(W, X, V)$

- $W$ is a nonempty set (worlds $x, y$, etc)
- $X$ is a nonempty set of nonempty subsets of $W$ (steps $S$, $T$, etc)
- $V: p \mapsto V(p) \subseteq W$ (valuation)


## Tip

World-step pair $(x, S)$ such that $x \in S$

- $x$ is the real world
- $S$ is the current restriction of the model


## Logic with converse announcements

## Truth conditions

In model $\mathcal{M}=(W, X, V)$ with respect to tip $(x, S)$

- $\mathcal{M},(x, S) \models p$ iff $x \in V(p)$
- $\mathcal{M},(x, S) \notin \perp$
- $\mathcal{M},(x, S) \models \neg \varphi$ iff $\mathcal{M},(x, S) \not \models \varphi$
- $\mathcal{M},(x, S) \models \varphi \vee \psi$ iff $\mathcal{M},(x, S) \models \varphi$ or $\mathcal{M},(x, S) \models \psi$
- $\mathcal{M},(x, S) \vDash \square \varphi$ iff for all $y \in S, \mathcal{M},(y, S) \models \varphi$
- $\mathcal{M},(x, S) \models[\varphi]^{+} \psi$ iff for all $T \in X$, if $x \in T$ and $T=\{z \in S: \mathcal{M},(z, S) \models \varphi\}$ then $\mathcal{M},(x, T) \vDash \psi$
- $\mathcal{M},(x, S) \vDash[\varphi]^{-} \psi$ iff for all $T \in X$, if $x \in T$ and $S=\{z \in T: \mathcal{M},(z, T) \models \varphi\}$ then $\mathcal{M},(x, T) \models \psi$


## Logic with converse announcements

## Truth conditions

In model $\mathcal{M}=(W, X, V)$ with respect to tip $(x, S)$

- $\mathcal{M},(x, S) \mid=p$ iff $x \in V(p)$
- $\mathcal{M},(x, S) \not \vDash \perp$
- $\mathcal{M},(x, S) \models \neg \varphi$ iff $\mathcal{M},(x, S) \not \models \varphi$
- $\mathcal{M},(x, S) \models \varphi \vee \psi$ iff $\mathcal{M},(x, S) \models \varphi$ or $\mathcal{M},(x, S) \models \psi$
- $\mathcal{M},(x, S) \vDash \square \varphi$ iff for all $y \in S, \mathcal{M},(y, S) \models \varphi$
- $\mathcal{M},(x, S) \models[\varphi]^{+} \psi$ iff for all $T \in X$, if $x \in T$ and $T=\{z \in S: \mathcal{M},(z, S) \models \varphi\}$ then $\mathcal{M},(x, T) \vDash \psi$
- $\mathcal{M},(x, S) \vDash[\varphi]^{-} \psi$ iff for all $T \in X$, if $x \in T$ and $S=\{z \in T: \mathcal{M},(z, T) \models \varphi\}$ then $\mathcal{M},(x, T) \models \psi$


## Logic with converse announcements

## Truth conditions

In model $\mathcal{M}=(W, X, V)$ with respect to tip $(x, S)$

- $\mathcal{M},(x, S) \vDash p$ iff $x \in V(p)$
- $\mathcal{M},(x, S) \not \models \perp$
- $\mathcal{M},(x, S) \models \neg \varphi$ iff $\mathcal{M},(x, S) \not \models \varphi$
- $\mathcal{M},(x, S) \models \varphi \vee \psi$ iff $\mathcal{M},(x, S) \models \varphi$ or $\mathcal{M},(x, S) \models \psi$
- $\mathcal{M},(x, S) \vDash \square \varphi$ iff for all $y \in S, \mathcal{M},(y, S) \models \varphi$
- $\mathcal{M},(x, S) \models[\varphi]^{+} \psi$ iff for all $T \in X$, if $x \in T$ and $T=\{z \in S: \mathcal{M},(z, S) \models \varphi\}$ then $\mathcal{M},(x, T) \vDash \psi$
- $\mathcal{M},(x, S) \models[\varphi]^{-} \psi$ iff for all $T \in X$, if $x \in T$ and $S=\{z \in T: \mathcal{M},(z, T) \models \varphi\}$ then $\mathcal{M},(x, T) \models \psi$


## Logic with converse announcements

## Truth conditions

In model $\mathcal{M}=(W, X, V)$ with respect to tip $(x, S)$

- $\mathcal{M},(x, S) \models p$ iff $x \in V(p)$
- $\mathcal{M},(x, S) \not \models \perp$
- $\mathcal{M},(x, S) \models \neg \varphi$ iff $\mathcal{M},(x, S) \not \models \varphi$
- $\mathcal{M},(x, S) \models \varphi \vee \psi$ iff $\mathcal{M},(x, S) \models \varphi$ or $\mathcal{M},(x, S) \models \psi$
- $\mathcal{M},(x, S) \models \square \varphi$ iff for all $y \in S, \mathcal{M},(y, S) \models \varphi$
- $\mathcal{M},(x, S) \models[\varphi]^{+} \psi$ iff for all $T \in X$, if $x \in T$ and $T=\{z \in S: \mathcal{M},(z, S) \models \varphi\}$ then $\mathcal{M},(x, T) \vDash \psi$
- $\mathcal{M},(x, S) \models[\varphi]^{-} \psi$ iff for all $T \in X$, if $x \in T$ and $S=\{z \in T: \mathcal{M},(z, T) \models \varphi\}$ then $\mathcal{M},(x, T) \models \psi$


## Logic with converse announcements

## Truth conditions

In model $\mathcal{M}=(W, X, V)$ with respect to tip $(x, S)$

- $\mathcal{M},(x, S) \vDash p$ iff $x \in V(p)$
- $\mathcal{M},(x, S) \notin \perp$
- $\mathcal{M},(x, S) \models \neg \varphi$ iff $\mathcal{M},(x, S) \not \models \varphi$
- $\mathcal{M},(x, S) \models \varphi \vee \psi$ iff $\mathcal{M},(x, S) \models \varphi$ or $\mathcal{M},(x, S) \models \psi$
- $\mathcal{M},(x, S) \models \square \varphi$ iff for all $y \in S, \mathcal{M},(y, S) \models \varphi$
- $\mathcal{M},(x, S) \models[\varphi]^{+} \psi$ iff for all $T \in X$, if $x \in T$ and $T=\{z \in S: \mathcal{M},(z, S) \models \varphi\}$ then $\mathcal{M},(x, T) \vDash \psi$
- $\mathcal{M},(x, S) \vDash[\varphi]^{-} \psi$ iff for all $T \in X$, if $x \in T$ and $S=\{z \in T: \mathcal{M},(z, T) \models \varphi\}$ then $\mathcal{M},(x, T) \models \psi$


## Logic with converse announcements

Free models
Model which globally satisfies

- $\varphi \rightarrow\langle\varphi\rangle^{+} \top$

Remarks

- $\models[\varphi]^{+} p \leftrightarrow(\varphi \rightarrow p)$
- $\models[\varphi]^{+} \perp \leftrightarrow \neg \varphi$
- $\models[\varphi]^{+} \neg \psi \leftrightarrow\left(\varphi \rightarrow \neg[\varphi]^{+} \psi\right)$
- $\models[\varphi]^{+}(\psi \vee \chi) \leftrightarrow[\varphi]^{+} \psi \vee[\varphi]^{+} \chi$
- $\models[\varphi]^{+} \square \psi \leftrightarrow\left(\varphi \rightarrow \square[\varphi]^{+} \psi\right)$

If $\varphi$ is a $[\cdot]^{-}$-free formula then

- $\models \varphi$ iff $\varphi \in P A L$


## Logic with converse announcements

## Expressivity

Proposition: There is no $[\cdot]^{+}$-free formula $\varphi(p, q)$ such that

- $\vDash \varphi(p, q) \leftrightarrow\langle p\rangle^{+}\langle q\rangle^{-} \diamond(p \wedge \neg q)$

Proof:


M
$V(p)=\{y, z\}$
$V(q)=\{y\}$


獬
$V^{\prime}(p)=\{y, z\}$
$V^{\prime}(q)=\{y\}$

## Logic with converse announcements

Expressivity
Proposition: There is no [.] $]^{-}$-free formula $\varphi(p, q)$ such that

- $\models \varphi(p, q) \leftrightarrow\langle p\rangle^{-} \diamond q$


## Proof:


$V(p)=\{x\}$
$V(q)=\{y\}$

$V^{\prime}(p)=\{x\}$
$V^{\prime}(q)=\{y\}$

## Logic with converse announcements

Axiomatization
$\left(A_{1}\right)$ all instances of CPL
$\left(A_{2}\right) \square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi)$
$\left(A_{3}, A_{4}, A_{5}\right) \square \phi \rightarrow \phi \quad \diamond \phi \rightarrow \square \diamond \phi \quad \square \phi \rightarrow \square \square \phi$
$\left(A_{6}\right)[\phi]^{+}(\psi \rightarrow \chi) \rightarrow\left([\phi]^{+} \psi \rightarrow[\phi]^{+} \chi\right)$
$\left(A_{7}\right)[\phi]^{-}(\psi \rightarrow \chi) \rightarrow\left([\phi]^{-} \psi \rightarrow[\phi]^{-} \chi\right)$
$\left(A_{8}, A_{9}\right) \psi \rightarrow[\phi]^{+}\langle\phi\rangle^{-} \psi \quad \psi \rightarrow[\phi]^{-}\langle\phi\rangle^{+} \psi$
$\left(A_{10}\right)\langle\phi\rangle^{+} \psi \rightarrow[\phi]^{+} \psi$
$\left(A_{11}, A_{12}\right) \neg \phi \rightarrow[\phi]^{+} \perp \quad[\phi]^{+} \perp \rightarrow \neg \phi$

$$
\left(A_{13}\right)[T]^{+} \phi \rightarrow \phi
$$

$\left(A_{14}, A_{15}\right) p \rightarrow[\phi]^{+} p \quad \neg p \rightarrow[\phi]^{+} \neg p$

$$
\begin{aligned}
& \left(A_{16}\right)\langle\phi\rangle^{+} \square \psi \rightarrow \square[\phi]^{+} \psi \\
& \left(A_{17}\right) \square[\phi]^{+} \psi \rightarrow[\phi]^{+} \square \psi
\end{aligned}
$$

## Maximal ignorance variant

Model of maximal ignorance
Structure $\mathcal{M}_{0}=\left(W_{0}, X_{0}, V_{0}\right)$

- $W_{0}=2^{V A R}$
- $X_{0}=2^{2 V A R} \backslash\{\emptyset\}$
- $V_{0}: p \mapsto V_{0}(p) \subseteq W_{0}$ is such that $x \in V_{0}(p)$ iff $p \in x$


## Remarks

- $\mathcal{M}_{0}$ is free
- If $\varphi$ is a $\left\{[\cdot]^{+},[\cdot]^{-}\right\}$-free formula then $\mathcal{M}_{0} \models \varphi$ iff $\varphi \in S 5$
- $\mathcal{M}_{0} \vDash \square p \rightarrow\langle p\rangle^{-} \neg \square p$
- For all formulas $\varphi$, there exists a $\left\{[\cdot]^{+},[\cdot]^{-}\right\}$-free formula $\psi$ such that $\mathcal{M}_{0} \models \varphi \leftrightarrow \psi$


## Conclusion

Open questions

- Validity in $\mathcal{M}_{0}$ is decidable: complexity?
- Multi-agent variants?
- Extension with the effort modality of SSL? or with the converse effort modality of SSL?
- Characterization of the pairs $(\varphi, \psi)$ such that $\models[\varphi]^{+} \psi$ ? or such that $=[\varphi]^{-} \psi$ ?


## References

- Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139 (2004) 165-224.
- Dabrowski, A., Moss, L., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78 (1996) 73-110.
- Heinemann, B.: Including the past in topologic. In: Proceedings of LFCS 2007. Springer (2007) 269-283.
- Van der Hoek, W., Meyer, J.-J.: Epistemic Logic for AI and Computer Science. Cambridge University Press (1995).
- Hoshi, T., Yap, A.: Dynamic epistemic logic with branching temporal structures. Synthese (2009) 259-281.
- Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of Logic, Language and Information 12 (2003) 453-467.
- Plaza, J.: Logics of public communications. Synthese 158 (2007) 165-179.
- Renne, B., Sack, J., Yap, A.: Logics of temporal-epistemic actions. Synthese 193 813-849.

