Unification in modal logic Alt₁

Philippe Balbiani¹ and Tinko Tinchev²

¹Institut de recherche en informatique de Toulouse CNRS — Université de Toulouse
²Department of Mathematical Logic and Applications Sofia University

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Unification problem in a logical system L

- Given a formula $\psi(x_1, \ldots, x_n)$
- ► Determine whether there exists formulas φ₁, ..., φ_n such that ψ(φ₁,..., φ_n) is in L

Admissibility problem in a logical system L

- Given a rule of inference $\frac{\varphi_1(x_1,...,x_n),...,\varphi_m(x_1,...,x_n)}{\psi(x_1,...,x_n)}$
- Determine whether for all formulas χ_1, \ldots, χ_n , if $\varphi_1(\chi_1, \ldots, \chi_n), \ldots, \varphi_m(\chi_1, \ldots, \chi_n)$ are in *L* then $\psi(\chi_1, \ldots, \chi_n)$ is in *L*

Rybakov (1984)

The admissibility problem in IPL and S4 is decidable

Chagrov (1992)

 There exists a decidable normal modal logic with an undecidable admissibility problem

Ghilardi (1999, 2000)

IPL, K4, etc have a finitary unification type

Wolter and Zakharyaschev (2008)

The unification problem for any normal modal logic between K_U and K4_U is undecidable

(ロ) (同) (三) (三) (三) (○) (○)

Chagrov (1992)

 There exists a decidable normal modal logic with an undecidable admissibility problem

Proof: For all integers m, n, let $\mathcal{F}(m, n)$ be the frame

Chagrov (1992)

 There exists a decidable normal modal logic with an undecidable admissibility problem

Proof:

- For all integers m, n, let $\mathcal{F}(m, n)$ be the frame...
- For all sets S of pairs of integers, let L(S) = Log{F(m, n) : (m-1/2, n-1/2) ∉ S}
- ▶ If *S* is recursive then *L*(*S*)-membership is decidable

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

If Pr₂S is nonrecursive then L(S)-admissibility is undecidable

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A. Undecidable properties of extensions of the logic of provability. Algebra i Logika **29** (1990) 350–367.

ヘロト ヘポト ヘヨト ヘヨト

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A., Zakharyaschev, M. The undecidability of the disjunction property of propositional logics and other related problems. The Journal of Symbolic Logic **58** (1993) 967–1002.

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A., Chagrova, L. The truth about algorithmic problems in correspondence theory. In: Advances in Modal Logic. Vol. 6. College Publications (2006) 121–138.

Other frames $\mathcal{F}(\mathbf{P})$ associated to a Minsky program \mathbf{P}

Isard, S. A finitely axiomatizable undecidable extension of K. Theoria **43** (1977) 195–202.

Wolter and Zakharyaschev (2008)

The unification problem for any normal modal logic between K_U and K4_U is undecidable

Proof: Let **P** be a Minsky program, a = (s, m, n) be a configuration and $\mathcal{F}(\mathbf{P}, a)$ be the frame

Wolter and Zakharyaschev (2008)

The unification problem for any normal modal logic between K_U and K4_U is undecidable

Proof:

- Let P be a Minsky program, a = (s, m, n) be a configuration and 𝓕(P, a) be the frame...
- Let α, β, etc be formulas characterizing the points in *F*(**P**, a)
- With each configuration \mathfrak{b} , associate a modal formula $\psi(\mathfrak{b})$
- If $K_U \subseteq L \subseteq K4_U$ then **P** : $\mathfrak{a} \to \mathfrak{b}$ iff $\psi(\mathfrak{b})$ is unifiable in L

Unification problem in a logical system L

- Given a formula $\psi(x_1, \ldots, x_n)$
- ► Determine whether there exists formulas φ₁, ..., φ_n such that ψ(φ₁,..., φ_n) is in L

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- **Example:** $\Box x \lor \Box \neg x$ is unifiable in all normal logics
 - K (class of all frames)
 - KD (class of all serial frames)
 - K4 (class of all transitive frames)
 - S4 (class of all reflexive transitive frames)
 - S5 (class of all partitions)

Computability and type of unification in L

L	Computability	Туре
K	?	Nullary
KD	NP-complete	?
K4	Decidable	Finitary
KD4	NP-complete	Finitary
K45	NP-complete	Unitary
<i>KD</i> 45	NP-complete	Unitary
<i>S</i> 4	NP-complete	Finitary
<i>S</i> 5	NP-complete	Unitary
<i>S</i> 4.3	NP-complete	Unitary

Our results

► The unification problem in *Alt*₁ is decidable (*PSPACE*)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Alt₁ has a nullary unification type

Normal logics: syntax and semantics

Syntax

$$\blacktriangleright \varphi ::= \mathbf{X} \mid \bot \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$$

Semantics

 $\blacktriangleright \mathcal{M} = (W, R, V)$

where

- *W* ≠ Ø
- $R \subseteq W \times W$
- for all variables $x, V(x) \subseteq W$

Truth-conditions

- $\mathcal{M}, s \models x \text{ iff } s \in V(x)$
- $\mathcal{M}, \boldsymbol{s} \models \Box \varphi$ iff for all $t \in \boldsymbol{W}$, if \boldsymbol{sRt} then $\mathcal{M}, t \models \varphi$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Normal logics: unification in L

Substitutions

• σ : variable $x \mapsto$ formula $\sigma(x)$

Composition of substitutions

• $\sigma \circ \tau$: variable $x \mapsto$ formula $\tau(\sigma(x))$

Equivalence relation between substitutions

• $\sigma \simeq_L \tau$ iff for all variables $x, \sigma(x) \leftrightarrow \tau(x) \in L$

Partial order between substitutions

• $\sigma \preceq_L \tau$ iff there exists a substitution μ such that $\sigma \circ \mu \simeq_L \tau$

Normal logics: unification in L

Unifiers

• A substitution σ is a unifier of a formula φ iff $\sigma(\varphi) \in L$

Complete sets of unifiers

- A set Σ of unifiers of a formula φ is complete iff
 - For all unifiers τ of φ, there exists a unifier σ of φ in Σ such that σ ≤_L τ

(日) (日) (日) (日) (日) (日) (日)

Important questions

- Given a formula, has it a unifier?
- If so, has it a minimal complete set of unifiers?
- If so, how large is this set?

Why unification is *NP*-complete when $KD \subseteq L$

Computability and type of unification in L

L	Computability	Туре
K	?	Nullary
KD	NP-complete	?
K4	Decidable	Finitary
KD4	NP-complete	Finitary
K45	NP-complete	Unitary
KD45	NP-complete	Unitary
S4	NP-complete	Finitary
<i>S</i> 5	NP-complete	Unitary
<i>S</i> 4.3	NP-complete	Unitary

Why unification is *NP*-complete when $KD \subseteq L$

Proposition: If $KD \subseteq L$, unification in *L* is *NP*-complete **Proof:**

- A substitution σ is ground if it replaces each variable by a variable-free formula
- If a formula has a unifier then it has a ground unifier
- Since ◊⊤ ∈ L, therefore there are only two non-equivalent variable-free formulas: ⊥ and ⊤
- Thus, to decide whether a formula has a unifier, it suffices to check whether any of the ground substitutions makes it equivalent to ⊤ (which can be done in polynomial time)

Why unification is nullary in K

Computability and type of unification in L

L	Computability	Туре
K	?	Nullary
KD	NP-complete	?
K4	Decidable	Finitary
KD4	NP-complete	Finitary
K45	NP-complete	Unitary
<i>KD</i> 45	NP-complete	Unitary
<i>S</i> 4	NP-complete	Finitary
<i>S</i> 5	NP-complete	Unitary
<i>S</i> 4.3	NP-complete	Unitary

Why unification is nullary in K

Proposition: The formula $\varphi = x \rightarrow \Box x$ has no minimal complete set of unifiers **Proof:**

• The following substitutions are unifiers of φ

•
$$\sigma_{\top}(\mathbf{x}) = \top$$

• $\sigma_i(\mathbf{x}) = \Box^{.$

- If $i \leq j$ then $\sigma_j \preceq_K \sigma_i$
- If i < j then $\sigma_i \not\preceq_K \sigma_j$
- If τ is a unifier of φ then either σ_T ≤_K τ, or σ_i ≤_K τ when deg(τ(x)) ≤ i

Jeřábek, E. Blending margins: the modal logic *K* has nullary unification type. Journal of Logic and Computation **25** (2015) 1231–1240.

Why unification is decidable and finitary in K4

Computability and type of unification in L

L	Computability	Туре
K	?	Nullary
KD	NP-complete	?
K4	Decidable	Finitary
KD4	NP-complete	Finitary
K45	NP-complete	Unitary
KD45	NP-complete	Unitary
S4	NP-complete	Finitary
<i>S</i> 5	NP-complete	Unitary
<i>S</i> 4.3	NP-complete	Unitary

Why unification is decidable and finitary in K4

A formula φ is **projective** if it has a unifier σ such that

•
$$\varphi \land \Box \varphi \rightarrow (\sigma(x) \leftrightarrow x) \in K4$$

Remark

Such unifier is a most general unifier of φ

Proposition: The projectivity problem in *K*4 is decidable **Proposition** If the substitution σ is a unifier of the formula φ then there exists a projective formula ψ , $depth(\psi) \leq depth(\varphi)$, such that

- σ is a unifier of ψ
- $\blacktriangleright \ \psi \land \Box \psi \to \varphi \in \mathbf{K4}$

Ghilardi, S. Best solving modal equations. Annals of Pure and Applied Logic **102** (2000) 183–198.

Why unification is unitary in S5

Computability and type of unification in L

L	Computability	Туре
K	?	Nullary
KD	NP-complete	?
K4	Decidable	Finitary
KD4	NP-complete	Finitary
K45	NP-complete	Unitary
KD45	NP-complete	Unitary
S4	NP-complete	Finitary
<i>S</i> 5	NP-complete	Unitary
<i>S</i> 4.3	NP-complete	Unitary

Why unification is unitary in S5

Proposition: If a formula has a unifier then it has a most general unifier **Proof:**

- \blacktriangleright Let σ be a unifier of φ
- Let τ be the following "Löwenheim" substitution

•
$$\tau(\mathbf{x}) = (\Box \varphi \land \mathbf{x}) \lor (\Diamond \neg \varphi \land \sigma(\mathbf{x}))$$

•
$$\Box \varphi \rightarrow (\tau(\psi) \leftrightarrow \psi) \in S5$$

$$\blacktriangleright \Diamond \neg \varphi \rightarrow (\tau(\psi) \leftrightarrow \sigma(\psi)) \in S5$$

- τ is a unifier of φ
- If μ is a unifier of φ then $\tau \preceq_{S5} \mu$
- Thus, τ is a most general unifier of φ

Baader, F., Ghilardi, S. Unification in modal and description logics. Logic Journal of the IGPL **19** (2011) 705–730.

Normal logic Alt1: syntax and semantics

Syntax

 $\blacktriangleright \varphi ::= \mathbf{X} \mid \bot \mid \neg \varphi \mid (\varphi \lor \psi) \mid \Box \varphi$

Semantics

Class of all deterministic frames

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Axiomatization

• $K + \Diamond x \to \Box x$

Computability

► coNP-complete

Why unification is nullary in Alt₁

Proposition: The formula $\varphi = x \rightarrow \Box x$ has no minimal complete set of unifiers **Proof:** Following the line of reasoning suggested by

 Jeřábek, E. Blending margins: the modal logic K has nullary unification type. Journal of Logic and Computation 25 (2015) 1231–1240.

(ロ) (同) (三) (三) (三) (○) (○)

Let $\varphi(x)$ be a formula and k be an integer

Proposition: The following conditions are equivalent

- 1. $\varphi(x)$ has a unifier
- 2. There exists a variable-free formula ψ such that $\varphi(\psi) \in Alt_1$

(日) (日) (日) (日) (日) (日) (日)

3. There exists a variable-free formula ψ such that $\Box^{k} \bot \rightarrow \varphi(\psi) \in Alt_{1}$ and $\Diamond^{k} \top \rightarrow \varphi(\psi) \in Alt_{1}$

Let ψ be a variable-free formula

If *n* is an integer, define

 $\blacktriangleright \models_n \psi \text{ iff } (0, \ldots, n), 0 \models \psi$

If *i*, *k*, *n* are integers such that $i \le k \le n$, define the bit

• $V_k(\psi, n, i) =$ "if $\models_{n-k+i} \psi$ then 1 else 0"

If k, n are integers such that $k \le n$, define the (k + 1)-tuples

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$V_k(\psi, n) = (V_k(\psi, n, 0), \dots, V_k(\psi, n, k))$$

•
$$a_k(\psi, n) = V_k(\psi, n \cdot (k+1) + k)$$

If k is an integer, define the nonempty set of pairs

•
$$g_k(\psi) = \{(a_k(\psi, n), a_k(\psi, n+1)): n \ge 0\}$$

Let $\varphi(x)$ be a formula and k be an integer

Proposition: For all variable-free formulas ψ , χ such that $g_k(\psi) = g_k(\chi)$, the following conditions are equivalent

1.
$$\Diamond^k \top \to \varphi(\psi) \in Alt_1$$

2.
$$\Diamond^{k} \top \rightarrow \varphi(\chi) \in Alt_{1}$$

Define the equivalence relation \simeq_k between variable-free formulas

• $\psi \simeq_k \chi$ iff $g_k(\psi) = g_k(\chi)$

Proposition: The equivalence relation \simeq_k has finitely many equivalence classes

Let k be an integer

A nonempty set *B* of pairs of (k + 1)-tuples of bits is **modally** definable iff

► There exists a variable-free formula ψ such that $B = g_k(\psi)$ Define the **domino relation** \triangleright_B on a nonempty set *B* of pairs of (k + 1)-tuples of bits

• $(b'_1, b''_1) \triangleright_B (b'_2, b''_2)$ iff $b''_1 = b'_2$

A path in the directed graph (B, \triangleright_B) is weakly Hamiltonian iff

It visits each vertex at least once

Proposition: For all nonempty sets *B* of pairs of (k + 1)-tuples of bits, the following conditions are equivalent

- 1. B is modally definable
- 2. The directed graph (B, \triangleright_B) contains a weakly Hamiltonian path either ending with $(\vec{1}_{k+1}, \vec{1}_{k+1})$, or ending with $(\vec{0}_{k+1}, \vec{0}_{k+1})$

Unification in Alt1: a 1st sub-Boolean fragment

Syntax

$$\blacktriangleright \varphi ::= \mathbf{X} \mid \top \mid (\varphi \land \psi) \mid \Box \varphi$$

Unifiers

• A substitution σ is a unifier of a finite set $\{(\varphi_1, \psi_1), \dots, (\varphi_n, \psi_n)\}$ of pairs of formulas iff $\sigma(\varphi_i) \leftrightarrow \sigma(\psi_i) \in Alt_1, \dots, \sigma(\varphi_n) \leftrightarrow \sigma(\psi_n) \in Alt_1$

Proposition: The unification problem in *Alt*₁ is trivially decidable for this 1st fragment **Proof:**

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Very easy

Unification in Alt1: a 1st sub-Boolean fragment

Syntax

 $\blacktriangleright \varphi ::= \mathbf{X} \mid \top \mid (\varphi \land \psi) \mid \Box \varphi$

Unifiers

• A substitution σ is a unifier of a finite set $\{(\varphi_1, \psi_1), \dots, (\varphi_n, \psi_n)\}$ of pairs of formulas iff $\sigma(\varphi_i) \leftrightarrow \sigma(\psi_i) \in Alt_1, \dots, \sigma(\varphi_n) \leftrightarrow \sigma(\psi_n) \in Alt_1$

Proposition: $\{(\Box x \land \Box y, y \land \Box \Box z)\}$ has no minimal complete set of unifiers

Proof: Following the line of reasoning suggested by

 Baader, F. Unification in commutative theories. Journal of Symbolic Computation 8 (1989) 479–497. Unification in Alt1: a 2nd sub-Boolean fragment

Syntax

$$\blacktriangleright \varphi ::= \mathbf{X} \mid \top \mid (\varphi \land \psi) \mid \Diamond \varphi$$

Unifiers

• A substitution σ is a unifier of a finite set $\{(\varphi_1, \psi_1), \dots, (\varphi_n, \psi_n)\}$ of pairs of formulas iff $\sigma(\varphi_i) \leftrightarrow \sigma(\psi_i) \in Alt_1, \dots, \sigma(\varphi_n) \leftrightarrow \sigma(\psi_n) \in Alt_1$

Proposition: The unification problem in *Alt*₁ is decidable (*PSPACE*) for this 2nd fragment **Proof:**

By means of a normal form property

Open question: The unification type of *Alt*₁ for this 2nd fragment

Open problems

Admissibility problem in Alt1

Unification problem in Alt1 with parameters

- given a formula $\psi(p_1, \ldots, p_m, x_1, \ldots, x_n)$
- ► determine whether there exists formulas φ₁,..., φ_n such that ψ(p₁,..., p_m, φ₁,..., φ_n) is in Alt₁

Admissibility problem in *A*/*t*₁ with parameters

Case when the ordinary modal language is extended by the difference modality or the universal modality