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Introduction

Unification problem in a logical system L
I Given a formula ψ(x1, . . . , xn)

I Determine whether there exists formulas ϕ1, . . ., ϕn such
that ψ(ϕ1, . . . , ϕn) is in L

Admissibility problem in a logical system L
I Given a rule of inference ϕ1(x1,...,xn),...,ϕm(x1,...,xn)

ψ(x1,...,xn)

I Determine whether for all formulas χ1, . . ., χn, if
ϕ1(χ1, . . . , χn), . . ., ϕm(χ1, . . . , χn) are in L then
ψ(χ1, . . . , χn) is in L



Introduction

Rybakov (1984)
I The admissibility problem in IPL and S4 is decidable

Chagrov (1992)
I There exists a decidable normal modal logic with an

undecidable admissibility problem
Ghilardi (1999, 2000)
I IPL, K 4, etc have a finitary unification type

Wolter and Zakharyaschev (2008)
I The unification problem for any normal modal logic

between KU and K 4U is undecidable



Introduction

Chagrov (1992)
I There exists a decidable normal modal logic with an

undecidable admissibility problem
Proof: For all integers m,n, let F(m,n) be the frame



Introduction

Chagrov (1992)
I There exists a decidable normal modal logic with an

undecidable admissibility problem
Proof:
I For all integers m,n, let F(m,n) be the frame. . .
I For all sets S of pairs of integers, let

L(S) = Log{F(m,n) : (m−1
2 , n−1

2 ) 6∈ S}
I If S is recursive then L(S)-membership is decidable
I If Pr2S is nonrecursive then L(S)-admissibility is

undecidable



Introduction

Other frames F(P, a) associated to a Minsky program P and a
configuration a

Chagrov, A. Undecidable properties of extensions of the logic
of provability. Algebra i Logika 29 (1990) 350–367.



Introduction

Other frames F(P, a) associated to a Minsky program P and a
configuration a

Chagrov, A., Zakharyaschev, M. The undecidability of the
disjunction property of propositional logics and other related
problems. The Journal of Symbolic Logic 58 (1993) 967–1002.



Introduction

Other frames F(P, a) associated to a Minsky program P and a
configuration a

Chagrov, A., Chagrova, L. The truth about algorithmic
problems in correspondence theory. In: Advances in Modal
Logic. Vol. 6. College Publications (2006) 121–138.



Introduction

Other frames F(P) associated to a Minsky program P

Isard, S. A finitely axiomatizable undecidable extension of K .
Theoria 43 (1977) 195–202.



Introduction

Wolter and Zakharyaschev (2008)
I The unification problem for any normal modal logic

between KU and K 4U is undecidable
Proof: Let P be a Minsky program, a = (s,m,n) be a
configuration and F(P, a) be the frame



Introduction

Wolter and Zakharyaschev (2008)
I The unification problem for any normal modal logic

between KU and K 4U is undecidable
Proof:
I Let P be a Minsky program, a = (s,m,n) be a configuration

and F(P, a) be the frame. . .
I Let α, β, etc be formulas characterizing the points in
F(P, a)

I With each configuration b, associate a modal formula ψ(b)

I If KU ⊆ L ⊆ K 4U then P : a→ b iff ψ(b) is unifiable in L



Introduction

Unification problem in a logical system L
I Given a formula ψ(x1, . . . , xn)

I Determine whether there exists formulas ϕ1, . . ., ϕn such
that ψ(ϕ1, . . . , ϕn) is in L

Example: �x ∨�¬x is unifiable in all normal logics
I K (class of all frames)
I KD (class of all serial frames)
I K 4 (class of all transitive frames)
I S4 (class of all reflexive transitive frames)
I S5 (class of all partitions)



Introduction

Computability and type of unification in L

L Computability Type
K ? Nullary

KD NP-complete ?
K 4 Decidable Finitary

KD4 NP-complete Finitary
K 45 NP-complete Unitary

KD45 NP-complete Unitary
S4 NP-complete Finitary
S5 NP-complete Unitary

S4.3 NP-complete Unitary



Introduction

Our results
I The unification problem in Alt1 is decidable (PSPACE)
I Alt1 has a nullary unification type



Normal logics: syntax and semantics

Syntax
I ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ

Semantics
I M = (W ,R,V )

where
I W 6= ∅
I R ⊆W ×W
I for all variables x , V (x) ⊆W

Truth-conditions
I M, s |= x iff s ∈ V (x)

I M, s |= �ϕ iff for all t ∈W , if sRt thenM, t |= ϕ



Normal logics: unification in L

Substitutions
I σ: variable x 7→ formula σ(x)

Composition of substitutions
I σ ◦ τ : variable x 7→ formula τ(σ(x))

Equivalence relation between substitutions
I σ 'L τ iff for all variables x , σ(x)↔ τ(x) ∈ L

Partial order between substitutions
I σ �L τ iff there exists a substitution µ such that σ ◦ µ 'L τ



Normal logics: unification in L

Unifiers
I A substitution σ is a unifier of a formula ϕ iff σ(ϕ) ∈ L

Complete sets of unifiers
I A set Σ of unifiers of a formula ϕ is complete iff

I For all unifiers τ of ϕ, there exists a unifier σ of ϕ in Σ such
that σ �L τ

Important questions
I Given a formula, has it a unifier?
I If so, has it a minimal complete set of unifiers?
I If so, how large is this set?



Why unification is NP-complete when KD ⊆ L

Computability and type of unification in L

L Computability Type
K ? Nullary

KD NP-complete ?
K 4 Decidable Finitary

KD4 NP-complete Finitary
K 45 NP-complete Unitary

KD45 NP-complete Unitary
S4 NP-complete Finitary
S5 NP-complete Unitary

S4.3 NP-complete Unitary



Why unification is NP-complete when KD ⊆ L

Proposition: If KD ⊆ L, unification in L is NP-complete
Proof:
I A substitution σ is ground if it replaces each variable by a

variable-free formula
I If a formula has a unifier then it has a ground unifier
I Since ♦> ∈ L, therefore there are only two non-equivalent

variable-free formulas: ⊥ and >
I Thus, to decide whether a formula has a unifier, it suffices

to check whether any of the ground substitutions makes it
equivalent to > (which can be done in polynomial time)



Why unification is nullary in K

Computability and type of unification in L

L Computability Type
K ? Nullary

KD NP-complete ?
K 4 Decidable Finitary

KD4 NP-complete Finitary
K 45 NP-complete Unitary

KD45 NP-complete Unitary
S4 NP-complete Finitary
S5 NP-complete Unitary

S4.3 NP-complete Unitary



Why unification is nullary in K

Proposition: The formula ϕ = x → �x has no minimal
complete set of unifiers
Proof:
I The following substitutions are unifiers of ϕ

I σ>(x) = >
I σi (x) = �<ix ∧�i⊥

I If i ≤ j then σj �K σi

I If i < j then σi 6�K σj

I If τ is a unifier of ϕ then either σ> �K τ , or σi �K τ when
deg(τ(x)) ≤ i

Jer̆ábek, E. Blending margins: the modal logic K has nullary
unification type. Journal of Logic and Computation 25 (2015)
1231–1240.



Why unification is decidable and finitary in K 4

Computability and type of unification in L

L Computability Type
K ? Nullary

KD NP-complete ?
K 4 Decidable Finitary

KD4 NP-complete Finitary
K 45 NP-complete Unitary

KD45 NP-complete Unitary
S4 NP-complete Finitary
S5 NP-complete Unitary

S4.3 NP-complete Unitary



Why unification is decidable and finitary in K 4

A formula ϕ is projective if it has a unifier σ such that
I ϕ ∧�ϕ→ (σ(x)↔ x) ∈ K 4

Remark
I Such unifier is a most general unifier of ϕ

Proposition: The projectivity problem in K 4 is decidable
Proposition If the substitution σ is a unifier of the formula ϕ
then there exists a projective formula ψ, depth(ψ) ≤ depth(ϕ),
such that
I σ is a unifier of ψ
I ψ ∧�ψ → ϕ ∈ K 4

Ghilardi, S. Best solving modal equations. Annals of Pure and
Applied Logic 102 (2000) 183–198.



Why unification is unitary in S5

Computability and type of unification in L

L Computability Type
K ? Nullary

KD NP-complete ?
K 4 Decidable Finitary

KD4 NP-complete Finitary
K 45 NP-complete Unitary

KD45 NP-complete Unitary
S4 NP-complete Finitary
S5 NP-complete Unitary

S4.3 NP-complete Unitary



Why unification is unitary in S5

Proposition: If a formula has a unifier then it has a most
general unifier
Proof:
I Let σ be a unifier of ϕ
I Let τ be the following “Löwenheim” substitution

I τ(x) = (�ϕ ∧ x) ∨ (♦¬ϕ ∧ σ(x))

I �ϕ→ (τ(ψ)↔ ψ) ∈ S5
I ♦¬ϕ→ (τ(ψ)↔ σ(ψ)) ∈ S5
I τ is a unifier of ϕ
I If µ is a unifier of ϕ then τ �S5 µ

I Thus, τ is a most general unifier of ϕ
Baader, F., Ghilardi, S. Unification in modal and description
logics. Logic Journal of the IGPL 19 (2011) 705–730.



Normal logic Alt1: syntax and semantics

Syntax
I ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ

Semantics
I Class of all deterministic frames

Axiomatization
I K + ♦x → �x

Computability
I coNP-complete



Why unification is nullary in Alt1

Proposition: The formula ϕ = x → �x has no minimal
complete set of unifiers
Proof: Following the line of reasoning suggested by
I Jer̆ábek, E. Blending margins: the modal logic K has

nullary unification type. Journal of Logic and Computation
25 (2015) 1231–1240.



Why unification is decidable (PSPACE) in Alt1

Let ϕ(x) be a formula and k be an integer
Proposition: The following conditions are equivalent

1. ϕ(x) has a unifier
2. There exists a variable-free formula ψ such that ϕ(ψ) ∈ Alt1
3. There exists a variable-free formula ψ such that
�k⊥ → ϕ(ψ) ∈ Alt1 and ♦k> → ϕ(ψ) ∈ Alt1



Why unification is decidable (PSPACE) in Alt1

Let ψ be a variable-free formula
If n is an integer, define
I |=n ψ iff (0, . . . ,n),0 |= ψ

If i , k ,n are integers such that i ≤ k ≤ n, define the bit
I Vk (ψ,n, i) = “if |=n−k+i ψ then 1 else 0”

If k ,n are integers such that k ≤ n, define the (k + 1)-tuples
I Vk (ψ,n) = (Vk (ψ,n,0), . . . ,Vk (ψ,n, k))

I ak (ψ,n) = Vk (ψ,n · (k + 1) + k)

If k is an integer, define the nonempty set of pairs
I gk (ψ) = {(ak (ψ,n),ak (ψ,n + 1)) : n ≥ 0}



Why unification is decidable (PSPACE) in Alt1

Let ϕ(x) be a formula and k be an integer
Proposition: For all variable-free formulas ψ, χ such that
gk (ψ) = gk (χ), the following conditions are equivalent

1. ♦k> → ϕ(ψ) ∈ Alt1
2. ♦k> → ϕ(χ) ∈ Alt1

Define the equivalence relation 'k between variable-free
formulas
I ψ 'k χ iff gk (ψ) = gk (χ)

Proposition: The equivalence relation 'k has finitely many
equivalence classes



Why unification is decidable (PSPACE) in Alt1
Let k be an integer
A nonempty set B of pairs of (k + 1)-tuples of bits is modally
definable iff
I There exists a variable-free formula ψ such that B = gk (ψ)

Define the domino relation .B on a nonempty set B of pairs of
(k + 1)-tuples of bits
I (b′1,b

′′
1) .B (b′2,b

′′
2) iff b′′1 = b′2

A path in the directed graph (B, .B) is weakly Hamiltonian iff
I It visits each vertex at least once

Proposition: For all nonempty sets B of pairs of (k + 1)-tuples
of bits, the following conditions are equivalent

1. B is modally definable
2. The directed graph (B, .B) contains a weakly Hamiltonian

path either ending with (~1k+1, ~1k+1), or ending with
(~0k+1, ~0k+1)



Unification in Alt1: a 1st sub-Boolean fragment

Syntax
I ϕ ::= x | > | (ϕ ∧ ψ) | �ϕ

Unifiers
I A substitution σ is a unifier of a finite set
{(ϕ1, ψ1), . . . , (ϕn, ψn)} of pairs of formulas iff
σ(ϕi)↔ σ(ψi) ∈ Alt1, . . ., σ(ϕn)↔ σ(ψn) ∈ Alt1

Proposition: The unification problem in Alt1 is trivially
decidable for this 1st fragment
Proof:
I Very easy



Unification in Alt1: a 1st sub-Boolean fragment

Syntax
I ϕ ::= x | > | (ϕ ∧ ψ) | �ϕ

Unifiers
I A substitution σ is a unifier of a finite set
{(ϕ1, ψ1), . . . , (ϕn, ψn)} of pairs of formulas iff
σ(ϕi)↔ σ(ψi) ∈ Alt1, . . ., σ(ϕn)↔ σ(ψn) ∈ Alt1

Proposition: {(�x ∧�y , y ∧��z)} has no minimal complete
set of unifiers
Proof: Following the line of reasoning suggested by
I Baader, F. Unification in commutative theories. Journal of

Symbolic Computation 8 (1989) 479–497.



Unification in Alt1: a 2nd sub-Boolean fragment

Syntax
I ϕ ::= x | > | (ϕ ∧ ψ) | ♦ϕ

Unifiers
I A substitution σ is a unifier of a finite set
{(ϕ1, ψ1), . . . , (ϕn, ψn)} of pairs of formulas iff
σ(ϕi)↔ σ(ψi) ∈ Alt1, . . ., σ(ϕn)↔ σ(ψn) ∈ Alt1

Proposition: The unification problem in Alt1 is decidable
(PSPACE) for this 2nd fragment
Proof:
I By means of a normal form property

Open question: The unification type of Alt1 for this 2nd
fragment



Open problems

Admissibility problem in Alt1

Unification problem in Alt1 with parameters
I given a formula ψ(p1, . . . ,pm, x1, . . . , xn)

I determine whether there exists formulas ϕ1, . . ., ϕn such
that ψ(p1, . . . ,pm, ϕ1, . . . , ϕn) is in Alt1

Admissibility problem in Alt1 with parameters

Case when the ordinary modal language is extended by the
difference modality or the universal modality


