Unification in modal logic A / t_{1}

Philippe Balbiani ${ }^{1}$ and Tinko Tinchev ${ }^{2}$

${ }^{1}$ Institut de recherche en informatique de Toulouse
CNRS - Université de Toulouse
${ }^{2}$ Department of Mathematical Logic and Applications
Sofia University

Introduction

Unification problem in a logical system L

- Given a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$
- Determine whether there exists formulas $\varphi_{1}, \ldots, \varphi_{n}$ such that $\psi\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is in L

Admissibility problem in a logical system L

- Given a rule of inference $\frac{\varphi_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \varphi_{m}\left(x_{1}, \ldots, x_{n}\right)}{\psi\left(x_{1}, \ldots, x_{n}\right)}$
- Determine whether for all formulas $\chi_{1}, \ldots, \chi_{n}$, if $\varphi_{1}\left(\chi_{1}, \ldots, \chi_{n}\right), \ldots, \varphi_{m}\left(\chi_{1}, \ldots, \chi_{n}\right)$ are in L then $\psi\left(\chi_{1}, \ldots, \chi_{n}\right)$ is in L

Introduction

Rybakov (1984)

- The admissibility problem in IPL and S4 is decidable Chagrov (1992)
- There exists a decidable normal modal logic with an undecidable admissibility problem
Ghilardi $(1999,2000)$
- IPL, K4, etc have a finitary unification type

Wolter and Zakharyaschev (2008)

- The unification problem for any normal modal logic between K_{U} and $K 4_{U}$ is undecidable

Introduction

Chagrov (1992)

- There exists a decidable normal modal logic with an undecidable admissibility problem
Proof: For all integers m, n, let $\mathcal{F}(m, n)$ be the frame

Introduction

Chagrov (1992)

- There exists a decidable normal modal logic with an undecidable admissibility problem

Proof:

- For all integers m, n, let $\mathcal{F}(m, n)$ be the frame...
- For all sets S of pairs of integers, let $L(S)=\log \left\{\mathcal{F}(m, n):\left(\frac{m-1}{2}, \frac{n-1}{2}\right) \notin S\right\}$
- If S is recursive then $L(S)$-membership is decidable
- If $\mathrm{Pr}_{2} S$ is nonrecursive then $L(S)$-admissibility is undecidable

Introduction

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A. Undecidable properties of extensions of the logic of provability. Algebra i Logika 29 (1990) 350-367.

Introduction

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A., Zakharyaschev, M. The undecidability of the disjunction property of propositional logics and other related problems. The Journal of Symbolic Logic 58 (1993) 967-1002.

Introduction

Other frames $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ associated to a Minsky program \mathbf{P} and a configuration \mathfrak{a}

Chagrov, A., Chagrova, L. The truth about algorithmic problems in correspondence theory. In: Advances in Modal Logic. Vol. 6. College Publications (2006) 121-138.

Introduction

Other frames $\mathcal{F}(\mathbf{P})$ associated to a Minsky program \mathbf{P}

Isard, S. A finitely axiomatizable undecidable extension of K. Theoria 43 (1977) 195-202.

Introduction

Wolter and Zakharyaschev (2008)

- The unification problem for any normal modal logic between K_{U} and $K 4_{U}$ is undecidable
Proof: Let \mathbf{P} be a Minsky program, $\mathfrak{a}=(s, m, n)$ be a configuration and $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ be the frame

Introduction

Wolter and Zakharyaschev (2008)

- The unification problem for any normal modal logic between K_{U} and $K 4_{U}$ is undecidable
Proof:
- Let \mathbf{P} be a Minsky program, $\mathfrak{a}=(s, m, n)$ be a configuration and $\mathcal{F}(\mathbf{P}, \mathfrak{a})$ be the frame...
- Let α, β, etc be formulas characterizing the points in $\mathcal{F}(\mathbf{P}, \mathfrak{a})$
- With each configuration \mathfrak{b}, associate a modal formula $\psi(\mathfrak{b})$
- If $K_{U} \subseteq L \subseteq K 4_{U}$ then $\mathbf{P}: \mathfrak{a} \rightarrow \mathfrak{b}$ iff $\psi(\mathfrak{b})$ is unifiable in L

Introduction

Unification problem in a logical system L

- Given a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$
- Determine whether there exists formulas $\varphi_{1}, \ldots, \varphi_{n}$ such that $\psi\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is in L
Example: $\square x \vee \square \neg x$ is unifiable in all normal logics
- K (class of all frames)
- KD (class of all serial frames)
- K4 (class of all transitive frames)
- S4 (class of all reflexive transitive frames)
- S5 (class of all partitions)

Introduction

Computability and type of unification in L

\mathbf{L}	Computability	Type
K	$?$	Nullary
$K D$	$N P$-complete	$?$
$K 4$	Decidable	Finitary
$K D 4$	$N P$-complete	Finitary
$K 45$	$N P$-complete	Unitary
$K D 45$	$N P$-complete	Unitary
$S 4$	$N P$-complete	Finitary
$S 5$	$N P$-complete	Unitary
$S 4.3$	$N P$-complete	Unitary

Introduction

Our results

- The unification problem in A / t_{1} is decidable (PSPACE)
- Alt t_{1} has a nullary unification type

Normal logics: syntax and semantics

Syntax

$$
\text { - } \varphi::=x|\perp| \neg \varphi|(\varphi \vee \psi)| \square \varphi
$$

Semantics

- $\mathcal{M}=(W, R, V)$
where
- $W \neq \emptyset$
- $R \subseteq W \times W$
- for all variables $x, V(x) \subseteq W$

Truth-conditions

- $\mathcal{M}, s \vDash x$ iff $s \in V(x)$
- $\mathcal{M}, s \models \square \varphi$ iff for all $t \in W$, if $s R t$ then $\mathcal{M}, t \models \varphi$

Normal logics: unification in L

Substitutions

- σ : variable $x \mapsto$ formula $\sigma(x)$

Composition of substitutions

- $\sigma \circ \tau$: variable $x \mapsto$ formula $\tau(\sigma(x))$

Equivalence relation between substitutions

- $\sigma \simeq_{L} \tau$ iff for all variables $x, \sigma(x) \leftrightarrow \tau(x) \in L$

Partial order between substitutions

- $\sigma \preceq_{L} \tau$ iff there exists a substitution μ such that $\sigma \circ \mu \simeq_{L} \tau$

Normal logics: unification in L

Unifiers

- A substitution σ is a unifier of a formula φ iff $\sigma(\varphi) \in L$

Complete sets of unifiers

- A set Σ of unifiers of a formula φ is complete iff
- For all unifiers τ of φ, there exists a unifier σ of φ in Σ such that $\sigma \preceq\llcorner\tau$
Important questions
- Given a formula, has it a unifier?
- If so, has it a minimal complete set of unifiers?
- If so, how large is this set?

Why unification is $N P$-complete when $K D \subseteq L$

Computability and type of unification in L

\mathbf{L}	Computability	Type
K	$?$	Nullary
$K D$	$N P$-complete	$?$
$K 4$	Decidable	Finitary
$K D 4$	$N P$-complete	Finitary
$K 45$	$N P$-complete	Unitary
$K D 45$	$N P$-complete	Unitary
$S 4$	$N P$-complete	Finitary
$S 5$	$N P$-complete	Unitary
$S 4.3$	$N P$-complete	Unitary

Why unification is $N P$-complete when $K D \subseteq L$

Proposition: If $K D \subseteq L$, unification in L is $N P$-complete Proof:

- A substitution σ is ground if it replaces each variable by a variable-free formula
- If a formula has a unifier then it has a ground unifier
- Since $\diamond \top \in L$, therefore there are only two non-equivalent variable-free formulas: \perp and \top
- Thus, to decide whether a formula has a unifier, it suffices to check whether any of the ground substitutions makes it equivalent to \top (which can be done in polynomial time)

Why unification is nullary in K

Computability and type of unification in L

\mathbf{L}	Computability	Type
K	$?$	Nullary
$K D$	$N P$-complete	$?$
$K 4$	Decidable	Finitary
$K D 4$	$N P$-complete	Finitary
$K 45$	$N P$-complete	Unitary
$K D 45$	$N P$-complete	Unitary
$S 4$	$N P$-complete	Finitary
$S 5$	$N P$-complete	Unitary
$S 4.3$	$N P$-complete	Unitary

Why unification is nullary in K

Proposition: The formula $\varphi=x \rightarrow \square x$ has no minimal complete set of unifiers

Proof:

- The following substitutions are unifiers of φ
- $\sigma_{\top}(x)=\top$
- $\sigma_{i}(x)=\square^{<i} x \wedge \square^{i} \perp$
- If $i \leq j$ then $\sigma_{j} \preceq_{K} \sigma_{i}$
- If $i<j$ then $\sigma_{i} \not{ }_{k} \sigma_{j}$
- If τ is a unifier of φ then either $\sigma_{\top} \preceq_{K} \tau$, or $\sigma_{i} \preceq_{K} \tau$ when $\operatorname{deg}(\tau(x)) \leq i$
Jeřábek, E. Blending margins: the modal logic K has nullary unification type. Journal of Logic and Computation 25 (2015) 1231-1240.

Why unification is decidable and finitary in $K 4$

Computability and type of unification in L

\mathbf{L}	Computability	Type
K	$?$	Nullary
$K D$	$N P$-complete	$?$
$K 4$	Decidable	Finitary
$K D 4$	$N P$-complete	Finitary
$K 45$	$N P$-complete	Unitary
$K D 45$	$N P$-complete	Unitary
$S 4$	$N P$-complete	Finitary
$S 5$	$N P$-complete	Unitary
$S 4.3$	$N P$-complete	Unitary

Why unification is decidable and finitary in $K 4$

A formula φ is projective if it has a unifier σ such that

- $\varphi \wedge \square \varphi \rightarrow(\sigma(x) \leftrightarrow x) \in K 4$

Remark

- Such unifier is a most general unifier of φ

Proposition: The projectivity problem in K4 is decidable Proposition If the substitution σ is a unifier of the formula φ then there exists a projective formula ψ, $\operatorname{depth}(\psi) \leq \operatorname{depth}(\varphi)$, such that

- σ is a unifier of ψ
- $\psi \wedge \square \psi \rightarrow \varphi \in K 4$

Ghilardi, S. Best solving modal equations. Annals of Pure and Applied Logic 102 (2000) 183-198.

Why unification is unitary in S5

Computability and type of unification in L

\mathbf{L}	Computability	Type
K	$?$	Nullary
$K D$	$N P$-complete	$?$
$K 4$	Decidable	Finitary
$K D 4$	$N P$-complete	Finitary
$K 45$	$N P$-complete	Unitary
$K D 45$	$N P$-complete	Unitary
$S 4$	$N P$-complete	Finitary
$S 5$	$N P$-complete	Unitary
$S 4.3$	$N P$-complete	Unitary

Why unification is unitary in $S 5$

Proposition: If a formula has a unifier then it has a most general unifier
Proof:

- Let σ be a unifier of φ
- Let τ be the following "Löwenheim" substitution
- $\tau(x)=(\square \varphi \wedge x) \vee(\diamond \neg \varphi \wedge \sigma(x))$
- $\square \varphi \rightarrow(\tau(\psi) \leftrightarrow \psi) \in S 5$
- $\diamond \neg \varphi \rightarrow(\tau(\psi) \leftrightarrow \sigma(\psi)) \in$ S5
- τ is a unifier of φ
- If μ is a unifier of φ then $\tau \preceq \varsigma_{5} \mu$
- Thus, τ is a most general unifier of φ

Baader, F., Ghilardi, S. Unification in modal and description logics. Logic Journal of the IGPL 19 (2011) 705-730.

Normal logic A / t_{1} : syntax and semantics

Syntax

- $\varphi::=x|\perp| \neg \varphi|(\varphi \vee \psi)| \square \varphi$

Semantics

- Class of all deterministic frames

Axiomatization

- $K+\diamond x \rightarrow \square x$

Computability

- coNP-complete

Why unification is nullary in A / t_{1}

Proposition: The formula $\varphi=x \rightarrow \square x$ has no minimal complete set of unifiers
Proof: Following the line of reasoning suggested by

- Jeřábek, E. Blending margins: the modal logic K has nullary unification type. Journal of Logic and Computation 25 (2015) 1231-1240.

Why unification is decidable (PSPACE) in A / t_{1}

Let $\varphi(x)$ be a formula and k be an integer
Proposition: The following conditions are equivalent

1. $\varphi(x)$ has a unifier
2. There exists a variable-free formula ψ such that $\varphi(\psi) \in$ Alt ${ }_{1}$
3. There exists a variable-free formula ψ such that

$$
\square^{k} \perp \rightarrow \varphi(\psi) \in A l t_{1} \text { and } \diamond^{k} T \rightarrow \varphi(\psi) \in A l t_{1}
$$

Why unification is decidable (PSPACE) in A / t_{1}

Let ψ be a variable-free formula
If n is an integer, define

- $\models_{n} \psi$ iff $(0, \ldots, n), 0 \models \psi$

If i, k, n are integers such that $i \leq k \leq n$, define the bit

- $V_{k}(\psi, n, i)=$ "if $=_{n-k+i} \psi$ then 1 else 0"

If k, n are integers such that $k \leq n$, define the $(k+1)$-tuples

- $V_{k}(\psi, n)=\left(V_{k}(\psi, n, 0), \ldots, V_{k}(\psi, n, k)\right)$
- $a_{k}(\psi, n)=V_{k}(\psi, n \cdot(k+1)+k)$

If k is an integer, define the nonempty set of pairs

- $g_{k}(\psi)=\left\{\left(a_{k}(\psi, n), a_{k}(\psi, n+1)\right): n \geq 0\right\}$

Why unification is decidable (PSPACE) in A / t_{1}

Let $\varphi(x)$ be a formula and k be an integer
Proposition: For all variable-free formulas ψ, χ such that $g_{k}(\psi)=g_{k}(\chi)$, the following conditions are equivalent

1. $\diamond^{k} \top \rightarrow \varphi(\psi) \in A l t_{1}$
2. $\nabla^{k} T \rightarrow \varphi(\chi) \in A l t_{1}$

Define the equivalence relation \simeq_{k} between variable-free formulas

$$
\text { - } \psi \simeq_{k} \chi \text { iff } g_{k}(\psi)=g_{k}(\chi)
$$

Proposition: The equivalence relation \simeq_{k} has finitely many equivalence classes

Why unification is decidable (PSPACE) in A / t_{1}

Let k be an integer
A nonempty set B of pairs of ($k+1$)-tuples of bits is modally definable iff

- There exists a variable-free formula ψ such that $B=g_{k}(\psi)$ Define the domino relation \triangleright_{B} on a nonempty set B of pairs of ($k+1$)-tuples of bits
- $\left(b_{1}^{\prime}, b_{1}^{\prime \prime}\right) \triangleright_{B}\left(b_{2}^{\prime}, b_{2}^{\prime \prime}\right)$ iff $b_{1}^{\prime \prime}=b_{2}^{\prime}$

A path in the directed graph $\left(B, \triangleright_{B}\right)$ is weakly Hamiltonian iff

- It visits each vertex at least once

Proposition: For all nonempty sets B of pairs of ($k+1$)-tuples of bits, the following conditions are equivalent

1. B is modally definable
2. The directed graph (B, \triangleright_{B}) contains a weakly Hamiltonian path either ending with $\left(\hat{1}_{k+1}, \overrightarrow{1}_{k+1}\right)$, or ending with $\left(\overrightarrow{0}_{k+1}, \overrightarrow{0}_{k+1}\right)$

Unification in $A t_{1}$: a 1st sub-Boolean fragment

Syntax

- $\varphi::=x|\top|(\varphi \wedge \psi) \mid \square \varphi$

Unifiers

- A substitution σ is a unifier of a finite set $\left\{\left(\varphi_{1}, \psi_{1}\right), \ldots,\left(\varphi_{n}, \psi_{n}\right)\right\}$ of pairs of formulas iff $\sigma\left(\varphi_{i}\right) \leftrightarrow \sigma\left(\psi_{i}\right) \in A l t_{1}, \ldots, \sigma\left(\varphi_{n}\right) \leftrightarrow \sigma\left(\psi_{n}\right) \in A l t_{1}$

Proposition: The unification problem in $A l t_{1}$ is trivially decidable for this 1st fragment
Proof:

- Very easy

Unification in $A t_{1}$: a 1st sub-Boolean fragment

Syntax

- $\varphi::=x|\top|(\varphi \wedge \psi) \mid \square \varphi$

Unifiers

- A substitution σ is a unifier of a finite set $\left\{\left(\varphi_{1}, \psi_{1}\right), \ldots,\left(\varphi_{n}, \psi_{n}\right)\right\}$ of pairs of formulas iff $\sigma\left(\varphi_{i}\right) \leftrightarrow \sigma\left(\psi_{i}\right) \in A l t_{1}, \ldots, \sigma\left(\varphi_{n}\right) \leftrightarrow \sigma\left(\psi_{n}\right) \in A l t_{1}$

Proposition: $\{(\square x \wedge \square y, y \wedge \square \square z)\}$ has no minimal complete set of unifiers
Proof: Following the line of reasoning suggested by

- Baader, F. Unification in commutative theories. Journal of Symbolic Computation 8 (1989) 479-497.

Unification in A / t_{1} : a 2nd sub-Boolean fragment

Syntax

- $\varphi::=x|\top|(\varphi \wedge \psi) \mid \nabla \varphi$

Unifiers

- A substitution σ is a unifier of a finite set $\left\{\left(\varphi_{1}, \psi_{1}\right), \ldots,\left(\varphi_{n}, \psi_{n}\right)\right\}$ of pairs of formulas iff $\sigma\left(\varphi_{i}\right) \leftrightarrow \sigma\left(\psi_{i}\right) \in A l t_{1}, \ldots, \sigma\left(\varphi_{n}\right) \leftrightarrow \sigma\left(\psi_{n}\right) \in A l t_{1}$

Proposition: The unification problem in $A l t_{1}$ is decidable (PSPACE) for this 2nd fragment
Proof:

- By means of a normal form property

Open question: The unification type of $A l t_{1}$ for this $2 n d$ fragment

Open problems

Admissibility problem in $A t_{1}$

Unification problem in $A l t_{1}$ with parameters

- given a formula $\psi\left(p_{1}, \ldots, p_{m}, x_{1}, \ldots, x_{n}\right)$
- determine whether there exists formulas $\varphi_{1}, \ldots, \varphi_{n}$ such that $\psi\left(p_{1}, \ldots, p_{m}, \varphi_{1}, \ldots, \varphi_{n}\right)$ is in A / t_{1}

Admissibility problem in A / t_{1} with parameters

Case when the ordinary modal language is extended by the difference modality or the universal modality

