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Introduction

Unification problem in a logical system L
» Given a formula ¢¥(xq,. .., Xp)

» Determine whether there exists formulas ¢, ..., ¢, such
that ¥(p1,...,¢n)isin L

Admissibility problem in a logical system L

» Given a rule of inference £t Xn)om(Xt,:.:Xn)
’I,Z)(X1,...7Xn)
» Determine whether for all formulas x1, ..., xn, if

©1(X1y -3 Xn)s - ©m(X1,- -+, xn) @rein Lthen
¢(X1a---;Xn) iSinL



Introduction

Rybakov (1984)
» The admissibility problem in /PL and S4 is decidable
Chagrov (1992)

» There exists a decidable normal modal logic with an
undecidable admissibility problem

Ghilardi (1999, 2000)
» |IPL, K4, etc have a finitary unification type
Wolter and Zakharyaschev (2008)

» The unification problem for any normal modal logic
between K and K4 is undecidable



Introduction

Chagrov (1992)

» There exists a decidable normal modal logic with an
undecidable admissibility problem

Proof: For all integers m, n, let 7(m, n) be the frame
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Introduction

Chagrov (1992)

» There exists a decidable normal modal logic with an
undecidable admissibility problem

Proof:
» For all integers m, n, let 7(m, n) be the frame. ..
» For all sets S of pairs of integers, let
L(S) = Log{F(m,n): ("3, "5") & S}
» If Sis recursive then L(S)-membership is decidable

» If ProS is nonrecursive then L(S)-admissibility is
undecidable



Introduction

Other frames F(P, a) associated to a Minsky program P and a
configuration a

Chagrov, A. Undecidable properties of extensions of the logic
of provability. Algebra i Logika 29 (1990) 350-367.



Introduction

Other frames 7 (P, a) assomated to a Minsky program P and a
configuration a SN
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Chagrov, A., Zakharyaschev, M. The undecidability of the
disjunction property of propositional logics and other related
problems. The Journal of Symbolic Logic 58 (1993) 967—1002.



Introduction

Other frames 7 (P, a) associated to a Minsky program P and a
configuration a
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Chagrov, A., Chagrova, L. The truth about algorithmic
problems in correspondence theory. In: Advances in Modal
Logic. Vol. 6. College Publications (2006) 121-138.



Introduction

Other frames 7 (P) associated to a Minsky program P

Isard, S. A finitely axiomatizable undecidable extension of K.
Theoria 43 (1977) 195-202.



Introduction

Wolter and Zakharyaschev (2008)
» The unification problem for any normal modal logic
between K, and K4, is undecidable
Proof: Let P be a Minsky program, a = (s, m, n) be a
configuration and F(P, a) be the frame
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Introduction

Wolter and Zakharyaschev (2008)
» The unification problem for any normal modal logic
between K, and K4 is undecidable
Proof:

» Let P be a Minsky program, a = (s, m, n) be a configuration
and F(P, a) be the frame. ..

» Let a, 3, etc be formulas characterizing the points in
F(P,a)

» With each configuration b, associate a modal formula (b)

» If Ky CLC K4ythen P: a— biff ¢o(b) is unifiable in L



Introduction

Unification problem in a logical system L
» Given a formula ¢(xq,. .., Xn)
» Determine whether there exists formulas ¢, ..., ¢n such
that ¢¥(¢1,...,pn)isin L
Example: (x v O—x is unifiable in all normal logics
K (class of all frames)
KD (class of all serial frames)

v

v

v

K4 (class of all transitive frames)
S4 (class of all reflexive transitive frames)
S5 (class of all partitions)

v



Introduction

Computability and type of unification in L

L Computability | Type
K ? Nullary
KD NP-complete ?
K4 Decidable Finitary

KD4 | NP-complete | Finitary

K45 NP-complete | Unitary

KD45 | NP-complete | Unitary

S4 NP-complete | Finitary

S5 NP-complete | Unitary

S4.3 | NP-complete | Unitary




Introduction

Our results
» The unification problem in Alt; is decidable (PSPACE)
» Alty has a nullary unification type



Normal logics: syntax and semantics

Syntax
»ou=x[L]op|(eVy) |
Semantics
» M= (W,R, V)
where
» W £
» RCWx W

» for all variables x, V(x) C W
Truth-conditions
» M,s = xiff s e V(x)
» M,sEOgypiffforall t € W, if sRtthen M, t E ¢



Normal logics: unification in L

Substitutions
» o: variable x — formula o(x)
Composition of substitutions
» o o7:variable x — formula 7(o(x))
Equivalence relation between substitutions
» o ~ 7 iff for all variables x, o(x) <» 7(x) € L
Partial order between substitutions
» o =<, 7 iff there exists a substitution y suchthat ooy ~; 7



Normal logics: unification in L

Unifiers
» A substitution o is a unifier of a formula ¢ iff o(¢) € L

Complete sets of unifiers
» A set X of unifiers of a formula ¢ is complete iff

» For all unifiers 7 of ¢, there exists a unifier o of ¢ in  such
thato <, 7

Important questions
» Given a formula, has it a unifier?
» If s0, has it a minimal complete set of unifiers?
» If so, how large is this set?



Why unification is NP-complete when KD C L

Computability and type of unification in L

L Computability | Type
K ? Nullary
KD NP-complete ?
K4 Decidable Finitary

KD4 | NP-complete | Finitary
K45 NP-complete | Unitary
KD45 | NP-complete | Unitary
S4 NP-complete | Finitary
S5 NP-complete | Unitary
S54.3 | NP-complete | Unitary




Why unification is NP-complete when KD C L

Proposition: If KD C L, unification in L is NP-complete
Proof:
» A substitution o is ground if it replaces each variable by a
variable-free formula
» If a formula has a unifier then it has a ground unifier
» Since O T € L, therefore there are only two non-equivalent
variable-free formulas: 1. and T
» Thus, to decide whether a formula has a unifier, it suffices

to check whether any of the ground substitutions makes it
equivalent to T (which can be done in polynomial time)



Why unification is nullary in K

Computability and type of unification in L

L Computability | Type
K ? Nullary
KD NP-complete ?
K4 Decidable Finitary

KD4 | NP-complete | Finitary

K45 NP-complete | Unitary

KD45 | NP-complete | Unitary

S4 NP-complete | Finitary

S5 NP-complete | Unitary

S4.3 | NP-complete | Unitary




Why unification is nullary in K

Proposition: The formula ¢ = x — Cx has no minimal
complete set of unifiers
Proof:
» The following substitutions are unifiers of ¢
> O'T(X) =T
» oi(x) =0<x A0 L
> |fi§jthen0'ijO','
> |fi<jthen0','ﬁKO'j
» If 7 is a unifier of ¢ then either o1 <k 7, or o; <k 7 when
deg(7(x)) <i
Jerabek, E. Blending margins: the modal logic K has nullary
unification type. Journal of Logic and Computation 25 (2015)
1231-1240.



Why unification is decidable and finitary in K4

Computability and type of unification in L

L Computability | Type
K ? Nullary
KD NP-complete ?
K4 Decidable Finitary

KD4 | NP-complete | Finitary
K45 NP-complete | Unitary
KD45 | NP-complete | Unitary
S4 NP-complete | Finitary
S5 NP-complete | Unitary
S4.3 | NP-complete | Unitary




Why unification is decidable and finitary in K4

A formula ¢ is projective if it has a unifier o such that

» o Adp — (o(x) <> x) € K4
Remark

» Such unifier is a most general unifier of ¢
Proposition: The projectivity problem in K4 is decidable
Proposition If the substitution o is a unifier of the formula ¢
then there exists a projective formula «, depth(v) < depth(y),
such that

» o is a unifier of ¢

» Yy AN — ¢ € K4
Ghilardi, S. Best solving modal equations. Annals of Pure and
Applied Logic 102 (2000) 183—198.



Why unification is unitary in S5

Computability and type of unification in L

L Computability | Type
K ? Nullary
KD NP-complete ?
K4 Decidable Finitary

KD4 | NP-complete | Finitary

K45 NP-complete | Unitary

KD45 | NP-complete | Unitary

S4 NP-complete | Finitary

S5 NP-complete | Unitary

S4.3 | NP-complete | Unitary




Why unification is unitary in S5

Proposition: If a formula has a unifier then it has a most
general unifier
Proof:
» Let o be a unifier of ¢
Let 7 be the following “Léwenheim” substitution
> 7(x) = (e Ax) V (O Ao(x))
Op — (7(v) < ¥) € S5
O = (7(¥) ¢ o(¢)) € S5
7 is a unifier of ¢

v

v

v

v

v

If 11 is a unifier of p then 7 <g5 1
» Thus, 7 is a most general unifier of ¢

Baader, F., Ghilardi, S. Unification in modal and description
logics. Logic Journal of the IGPL 19 (2011) 705-730.



Normal logic Alt;: syntax and semantics

Syntax

> pu=x|L]-e| (V)| e
Semantics

» Class of all deterministic frames
Axiomatization

» K+ 0x — Ox
Computability

» coNP-complete



Why unification is nullary in Alt;

Proposition: The formula ¢ = x — Ox has no minimal
complete set of unifiers
Proof: Following the line of reasoning suggested by

» Jerabek, E. Blending margins: the modal logic K has

nullary unification type. Journal of Logic and Computation
25 (2015) 1231-1240.



Why unification is decidable (PSPACE) in Alt;

Let ¢(x) be a formula and k be an integer
Proposition: The following conditions are equivalent
1. ¢(x) has a unifier
2. There exists a variable-free formula v such that ¢(v) € Alty

3. There exists a variable-free formula v such that
Ok L — (i) € Alty and OKT — (1) € Al



Why unification is decidable (PSPACE) in Alt;

Let ¢ be a variable-free formula
If nis an integer, define
» =, 0iff (0,...,n),0 ¢
If i, k, n are integers such that i < k < n, define the bit
> Vi(v,n, i) ="“if Ep_kii ¢ then 1 else 0”
If k, n are integers such that k < n, define the (k + 1)-tuples
> Vi, n) = (Vi(w,n,0),..., Vi(, n, k)
> a(w,n) = Vi(,n- (k+1) + k)
If k is an integer, define the nonempty set of pairs

> 9k(¥) = {(ak(¥, n), ak(¥,n+1)): n=0}



Why unification is decidable (PSPACE) in Alt;

Let ¢(x) be a formula and k be an integer

Proposition: For all variable-free formulas 1, x such that
gk () = gk(x), the following conditions are equivalent

1. OKT — p(v) € Alty

2. OKT — o(x) € Alty
Define the equivalence relation ~, between variable-free
formulas

> e xff ge(¥) = gk(x)
Proposition: The equivalence relation ~ has finitely many
equivalence classes



Why unification is decidable (PSPACE) in Alt;

Let k be an integer

A nonempty set B of pairs of (k + 1)-tuples of bits is modally
definable iff

» There exists a variable-free formula ) such that B = gk (v)

Define the domino relation >3 on a nonempty set B of pairs of
(k + 1)-tuples of bits

> (6. b7) o5 (b, bg) iff b = b}
A path in the directed graph (B,>g) is weakly Hamiltonian iff
» |t visits each vertex at least once

Proposition: For all nonempty sets B of pairs of (k + 1)-tuples
of bits, the following conditions are equivalent

. Bis modally definable

2. The directed graph (B, >g) contains a weakly Hamiltonian
path either ending with (1k+1, 1k+1) or ending with

(Oks1,Ok1)



Unification in Alt;: a 1st sub-Boolean fragment

Syntax
> pu=x|T | (pAY)|Op
Unifiers
» A substitution o is a unifier of a finite set

{(¢1,91), ..., (n, ¥n)} of pairs of formulas iff
o(pi) < o(¥i) € Alty, ..., o(n) < o(vn) € Alty

Proposition: The unification problem in Alt; is trivially
decidable for this 1st fragment
Proof:

» Very easy



Unification in Alt;: a 1st sub-Boolean fragment

Syntax
»ou=x[T[(eAv)|Oe
Unifiers
» A substitution o is a unifier of a finite set

{(¢1,%1),...,(¢n,¥n)} of pairs of formulas iff
a(pi) <> o(i) € Alty, ..., o(n) <> o(¥n) € Alty

Proposition: {(Cx A Oy, y A0OOz)} has no minimal complete
set of unifiers
Proof: Following the line of reasoning suggested by

» Baader, F. Unification in commutative theories. Journal of
Symbolic Computation 8 (1989) 479—497.



Unification in Alt;: a 2nd sub-Boolean fragment

Syntax
> pu=x|T [ (pAY)]|Op
Unifiers

» A substitution o is a unifier of a finite set

{(¢1,91), ..., (n, ¥n)} of pairs of formulas iff
a(pi) < o(¥j) € Alty, ..., o(n) < o(vn) € Alty

Proposition: The unification problem in Alt; is decidable
(PSPACE) for this 2nd fragment
Proof:

» By means of a normal form property

Open question: The unification type of Alt; for this 2nd
fragment



Open problems

Admissibility problem in Alt

Unification problem in Alt; with parameters
» given a formula ¥(p1, ..., Pm, X1, ..., Xn)

» determine whether there exists formulas ¢4, . . ., ¢, such
that ¥ (p1,...,Pm, ¥1,-..,¢n) isin Alt

Admissibility problem in Alt; with parameters

Case when the ordinary modal language is extended by the
difference modality or the universal modality



