Towards a Herbrand's Theorem for Hybrid Logic

Diana Costa¹ Manuel A. Martins¹ João Marcos²

¹ CIDMA – Center for R&D in Mathematics and Applications Department of Mathematics, University of Aveiro

2 Department of Informatics and Applied Mathematics Federal University of Rio Grande do Norte

Advances in Modal Logic 2016, Budapest

A Herbrand's Theorem for Classical Logic

Theoretical basis for theorem proving. Constructive method. Reduction of first-order logic to propositional logic.

Theorem

 χ has a first-order proof if and only if some χ_i is a tautology, where χ_i comes from a sequence of quantifier-free formulas $\chi_1, \chi_2, \chi_3, \cdots$ associated with χ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What are Hybrid Logics?

Extension of propositional modal logic with the ability to refer to worlds by:

- considering a new class of atomic formulas, called nominals;
- using a new operator, @, called satisfaction operator.
- A nominal is true at exactly one state: the one it names.

Hybrid Structure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

- Let $\mathcal{L} = \langle \operatorname{Prop}, \operatorname{Nom} \rangle$ be a hybrid similarity type.
- A hybrid structure \mathcal{H} over \mathcal{L} is a tuple (W, R, N, V), where: $W \neq \emptyset$ – domain whose elements are called states or worlds, $R \subseteq W \times W$ – accessibility relation, $N : \text{Nom} \rightarrow W$ – hybrid nomination,
- $V : \operatorname{Prop} \to \operatorname{Pow}(W) hybrid valuation.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

For a hybrid similarity type $\mathcal{L} = \langle \operatorname{Prop}, \operatorname{Nom} \rangle$, we define

• Atoms over \mathcal{L} : At $(\mathcal{L}) = \{ @_i p, @_i j, @_i \diamond j \mid i, j \in \text{Nom}, p \in \text{Prop} \};$ • Literals over \mathcal{L} : Lit $(\mathcal{L}) = \{ @_i p, @_i \neg p, @_i j, @_i \neg j, @_i \diamond j, @_i \Box \neg j \mid i, j \in \text{Nom}, p \in \text{Prop} \}.$

Definition

For a hybrid similarity type $\mathcal{L} = \langle \operatorname{Prop}, \operatorname{Nom} \rangle$, we define

• Atoms over \mathcal{L} : At $(\mathcal{L}) = \{ @_i p, @_i j, @_i \diamond j \mid i, j \in \text{Nom}, p \in \text{Prop} \};$ • Literals over \mathcal{L} : Lit $(\mathcal{L}) = \{ @_i p, @_i \neg p, @_i j, @_i \neg j, @_i \diamond j, @_i \Box \neg j \mid i, j \in \text{Nom}, p \in \text{Prop} \}.$

Expansion of \mathcal{L} by adding new nominals for the elements of the domain W: $\mathcal{L}(W) = \langle \operatorname{Prop}, \operatorname{Nom} \cup W \rangle$.

Definition

For a hybrid similarity type $\mathcal{L} = \langle \operatorname{Prop}, \operatorname{Nom} \rangle$, we define

• Atoms over \mathcal{L} : At $(\mathcal{L}) = \{ @_i p, @_i j, @_i \diamond j \mid i, j \in \text{Nom}, p \in \text{Prop} \};$ • Literals over \mathcal{L} : Lit $(\mathcal{L}) = \{ @_i p, @_i \neg p, @_i j, @_i \neg j, @_i \diamond j, @_i \Box \neg j \mid i, j \in \text{Nom}, p \in \text{Prop} \}.$

Expansion of \mathcal{L} by adding new nominals for the elements of the domain W: $\mathcal{L}(W) = \langle \operatorname{Prop}, \operatorname{Nom} \cup W \rangle$.

The diagram of a hybrid structure \mathcal{H} over \mathcal{L} is the set of literals over $\mathcal{L}(W)$ that are valid in $\mathcal{H}(W)$. Given \mathcal{L} and W, the diagram of \mathcal{H} is unique.

Example

Let $\mathcal{L} = \langle \{p, q\}, \{\} \rangle$, and $W = \{u, v, w\}$

Figure: A hybrid structure.

Example

Let $\mathcal{L} = \langle \{p, q\}, \{\} \rangle$, and $W = \{u, v, w\}$

Figure: A hybrid structure.

$$diag(\mathcal{H}) = \{ @_u p, @_u \neg q, @_v \neg p, @_v q, @_w p, @_w q \\ @_u \neg v, @_u \neg w, @_v \neg u, @_v \neg w, @_w \neg u, @_w \neg v \\ @_u \diamond_v, @_u \Box \neg u, @_u \Box \neg w, @_v \diamond_w, @_v \Box \neg u \\ @_v \Box \neg w, @_w \Box \neg u, @_w \Box \neg v, @_w \Box \neg w \}$$

Definition

Let \mathcal{L} be a hybrid signature. We use $BCAt(\mathcal{L})$ to denote the set of all (finite) Boolean combinations of atoms over \mathcal{L} , i.e., $BCAt(\mathcal{L})$ is the smallest set containing $At(\mathcal{L})$ and closed under \wedge and \neg .

 $\mathcal{L}\text{-truth assignment: } f : \operatorname{At}(\mathcal{L}) \to \{T, F\}.$ Extension to $\overline{f} : \operatorname{BCAt}(\mathcal{L}) \to \{T, F\}.$

Definition

Let $\Phi \subseteq BCAt(\mathcal{L})$. We say that Φ is propositionally satisfiable if there is a truth assignment that simultaneously satisfies every member of Φ . We say that Φ is propositionally unsatisfiable if there is no such assignment.

A Herbrand's Theorem for Hybrid Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First part of a Herbrand's theorem for hybrid logic:

Theorem

Let $\Phi \subseteq BCAt(\mathcal{L})$. If Φ is propositionally unsatisfiable then Φ is unsatisfiable.

The converse of the previous theorem is not true in general; we have to consider equality axioms.

Hybrid formulas that express the equality axioms over nominals:

Reflexivity:
$$\mathbf{Q}_i i$$
, for $i \in \text{Nom}$;

Symmetry: $@_i j \rightarrow @_j i$, for $i, j \in Nom$;

- Transitivity: $(\mathbb{Q}_i j \wedge \mathbb{Q}_j k) \rightarrow \mathbb{Q}_i k$, for $i, j, k \in \text{Nom}$;
- Congruence: $(@_i j \land @_k n) \rightarrow (@_i \diamond k \leftrightarrow @_j \diamond n)$, for $i, j, k, n \in Nom$.

They will be denoted by $Eq(\mathcal{L})$.

A Herbrand's Theorem for Hybrid Logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Let $\Phi \subseteq BCAt(\mathcal{L})$ such that $Eq(\mathcal{L}) \subseteq \Phi$. If Φ is unsatisfiable then Φ is propositionally unsatisfiable.

Generalization for any Satisfaction Statement

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rules: $\underline{\mathfrak{Q}_i \neg \varphi}$ $\underline{\mathfrak{Q}_i (\varphi \land \psi)}$ $\underline{\mathfrak{Q}_i (\varphi \land \psi)}$ $\neg \overline{\mathfrak{Q}_i \varphi}$ $\underline{\mathfrak{Q}_i (\varphi \land \overline{\mathfrak{Q}_i \psi})}$ $\underline{\mathfrak{Q}_i \Diamond \varphi}$ (*) k is a fresh nominal $\underline{\mathfrak{Q}_i (\varphi \land \overline{\mathfrak{Q}_i \psi})}$ $\underline{\mathfrak{Q}_i (\varphi \land \overline{\mathfrak{Q}_i \psi})}$

Theorem

Let Φ be a set of satisfaction statements such that $Eq(\mathcal{L}) \subseteq \Phi$. Then Φ is propositionally unsatisfiable iff Φ is unsatisfiable.

First version of Herbrand's theorem in the context of Hybrid logic:

- with a restriction to satisfaction statements;
- where we transform each satisfaction statement into a boolean combination of atomic satisfaction statements;

• making use of the fact that each model can be described by its diagram [Bla00].

First version of Herbrand's theorem in the context of Hybrid logic:

- with a restriction to satisfaction statements;
- where we transform each satisfaction statement into a boolean combination of atomic satisfaction statements;

• making use of the fact that each model can be described by its diagram [Bla00].

A set of satisfaction statements is propositionally unsatisfiable if and only if it is unsatisfiable.

Next steps:

(1) Formulas with quantifiers constitute a challenge:

- To deal with quantifiers over world variables: add function symbols interpreted as functions on the set of worlds.
- Make use of translations between Priorean Hybrid Logic and First-Order Logic.
- Skolemization will occur in a standard way; a Herbrand's Theorem for PHL can be achieved.

Next steps:

(1) Formulas with quantifiers constitute a challenge:

- To deal with quantifiers over world variables: add function symbols interpreted as functions on the set of worlds.
- Make use of translations between Priorean Hybrid Logic and First-Order Logic.
- Skolemization will occur in a standard way; a Herbrand's Theorem for PHL can be achieved.

(2) Deal with First-Order Hybrid Logic.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Patrick Blackburn, Internalizing labelled deduction, J. Log. Comput. 10 (2000), no. 1, 137–168.
- Evangelos Tzanis, *Algebraizing hybrid logic*, Master's thesis, University of Amsterdam - Institute of Logic, Language and Computation, 2005.