Fully Arbitrary Public Announcements

Hans van Ditmarsch¹, Wiebe van der Hoek² and Louwe B. Kuijer^{1,2}

¹University of Liverpool, ²LORIA, CNRS

Table of Contents

2 F-APAL

Epistemic Logic

Start with: Epistemic Logic.

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{a}\varphi$

Interpretation: $K_a \varphi$ means: agent *a* know that φ is true. (Dual $\hat{K}_a \varphi$: agent *a* thinks φ might be true.)

Epistemic Logic

Start with: Epistemic Logic.

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{a}\varphi$$

Interpretation: $K_a \varphi$ means: agent *a* know that φ is true. (Dual $\hat{K}_a \varphi$: agent *a* thinks φ might be true.)

Epistemic Logic

Start with: Epistemic Logic.

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}} \varphi$$

Interpretation: $K_a \varphi$ means: agent *a* know that φ is true. (Dual $\hat{K}_a \varphi$: agent *a* thinks φ might be true.)

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi$

 $[\psi] arphi$ means: if ψ is truthfully and publicly announced, then arphi will be true.

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}} \varphi \mid [\varphi] \varphi$$

 $[\psi] arphi$ means: if ψ is truthfully and publicly announced, then arphi will be true.

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}}\varphi \mid [\varphi]\varphi$$

 $[\psi] \varphi$ means: if ψ is truthfully and publicly announced, then φ will be true.

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts. Notation: $a: 7 \spadesuit, b: K \clubsuit, c: A \heartsuit$.

I am an observer, see all cards.

I say out loud: Claire holds $7 \spadesuit$ or $A \heartsuit$.

Result: Alice knows that Claire holds $A\heartsuit$, Bob does not.

In formulas: $[(c:7\spadesuit) \lor (c:A\heartsuit)](K_a(c:A\heartsuit) \land \neg K_b(c:A\heartsuit))$

- Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
- Notation: $a: 7 \spadesuit, b: K \clubsuit, c: A \heartsuit$.
- I am an observer, see all cards.
- I say out loud: Claire holds $7 \spadesuit$ or $A \heartsuit$.
- Result: Alice knows that Claire holds $A\heartsuit$, Bob does not.
- In formulas: $[(c:7\spadesuit) \lor (c:A\heartsuit)](K_a(c:A\heartsuit) \land \neg K_b(c:A\heartsuit))$

- Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
- Notation: $a: 7 \spadesuit, b: K \clubsuit, c: A \heartsuit$.
- I am an observer, see all cards.
- I say out loud: Claire holds $7 \spadesuit$ or $A \heartsuit$.
- Result: Alice knows that Claire holds A, Bob does not.
- In formulas: $[(c:7\spadesuit) \lor (c:A\heartsuit)](K_a(c:A\heartsuit) \land \neg K_b(c:A\heartsuit))$

- Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
- Notation: $a: 7 \spadesuit, b: K \clubsuit, c: A \heartsuit$.
- I am an observer, see all cards.
- I say out loud: Claire holds $7 \spadesuit$ or $A \heartsuit$.
- Result: Alice knows that Claire holds $A\heartsuit$, Bob does not.
- In formulas: $[(c:7\spadesuit) \lor (c:A\heartsuit)](K_a(c:A\heartsuit) \land \neg K_b(c:A\heartsuit))$

- Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
- Notation: $a: 7 \spadesuit, b: K \clubsuit, c: A \heartsuit$.
- I am an observer, see all cards.
- I say out loud: Claire holds $7 \spadesuit$ or $A \heartsuit$.
- Result: Alice knows that Claire holds $A\heartsuit$, Bob does not.
- In formulas: $[(c:7\clubsuit) \lor (c:A\heartsuit)](K_a(c:A\heartsuit) \land \neg K_b(c:A\heartsuit))$

Add: arbitrary public announcement operator □. [Balbiani et al., 2007]

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box \varphi$

Add: arbitrary public announcement operator □. [Balbiani et al., 2007]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box \varphi$$

Add: arbitrary public announcement operator □. [Balbiani et al., 2007]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}} \varphi \mid [\varphi] \varphi \mid \Box \varphi$$

Add: arbitrary public announcement operator □. [Balbiani et al., 2007]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box \varphi$$

Add: arbitrary public announcement operator □. [Balbiani et al., 2007]

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box \varphi$$

Example: $\Diamond(K_c(a:7\spadesuit) \land K_aK_c(a:7\spadesuit) \land \neg K_bK_c(a:7\spadesuit))$

Interpretation: there is something I could say that would result in (i) Claire knowing that Alice holds 7, (ii) Alice knowing that Claire knows and (iii) Bob not knowing that Claire knows.

A little.

A little.

Intuitive, desired meaning of $\Box \varphi$:

for every ψ , we have $[\psi]\varphi$.

Technical meaning of $\Box \varphi$:

for every ψ that does not contain \Box , we have $[\psi]\varphi$.

Intuitive, desired meaning of $\Box \varphi$:

for every $\psi,$ we have $[\psi]\varphi.$

Technical meaning of $\Box \varphi$:

for every ψ that does not contain \Box , we have $[\psi]\varphi$.

Intuitive, desired meaning of $\Box \varphi$:

for every $\psi,$ we have $[\psi]\varphi.$

Technical meaning of $\Box \varphi$:

for every ψ that does not contain \Box , we have $[\psi]\varphi$.

```
Intuitive, desired meaning of \Box \varphi:
```

```
for every \psi, we have [\psi]\varphi.
```

```
Technical meaning of \Box \varphi:
```

for every ψ that does not contain \Box , we have $[\psi]\varphi$.

The 'intuitive' version for the semantics of $\Box \varphi$ more properly corresponds to its intended meaning ' φ is true after arbitrary announcements'. This version is not well-defined, as $\Box \varphi$ is itself one such announcement.

[Balbiani et al., 2007]

Consider this conversation:

Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.

Claire, thinking to herself: Oh, then Alice must have the 7 of spades. **Alice, thinking to herself:** Oh, then Claire must know that I have the 7 of spades.

Consider this conversation:

Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.

Claire, thinking to herself: Oh, then Alice must have the 7 of spades.

Alice, thinking to herself: Oh, then Claire must know that I have the 7 of spades.

Consider this conversation:

Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.

Claire, thinking to herself: Oh, then Alice must have the 7 of spades. **Alice, thinking to herself:** Oh, then Claire must know that I have the 7 of spades.

Consider this conversation:

Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.

Claire, thinking to herself: Oh, then Alice must have the 7 of spades. **Alice, thinking to herself:** Oh, then Claire must know that I have the 7 of spades.

Let $\chi = (K_c(a:7\spadesuit) \land K_aK_c(a:7\spadesuit) \land \neg K_bK_c(a:7\spadesuit)).$ Then: there is a true announcement ψ such that $[\psi]\chi$.

So, intuitively, we *should* have $\Diamond \chi$.

But: not guaranteed in APAL, since ψ contains \Diamond .

Let $\chi = (K_c(a:7\spadesuit) \land K_aK_c(a:7\spadesuit) \land \neg K_bK_c(a:7\spadesuit)).$ Then: there is a true announcement ψ such that $[\psi]\chi$.

So, intuitively, we *should* have $\Diamond \chi$.

But: not guaranteed in APAL, since ψ contains \Diamond .

Let $\chi = (K_c(a:7\spadesuit) \land K_aK_c(a:7\spadesuit) \land \neg K_bK_c(a:7\spadesuit)).$ Then: there is a true announcement ψ such that $[\psi]\chi$.

So, intuitively, we *should* have $\Diamond \chi$.

But: not guaranteed in APAL, since ψ contains \Diamond .

Table of Contents

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).

Goal: $\Box \varphi$ if and only if $[\psi] \varphi$ for every ψ .

Not lying this time. I mean *every* ψ ,¹ whether it contains \Box or not.

Van Ditmarsch, Van der Hoek, Kuijer Fully Arbitrary Public Announcements

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).

Goal: $\Box \varphi$ if and only if $[\psi] \varphi$ for every ψ .

Not lying this time. I mean every ψ , 1 whether it contains \Box or not.
F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).

Goal: $\Box \varphi$ if and only if $[\psi] \varphi$ for every ψ .

Not lying this time. I mean every ψ ,¹ whether it contains \Box or not.

¹More precise: every ψ in the relevant language (that of F-APAL)

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).

Goal: $\Box \varphi$ if and only if $[\psi] \varphi$ for every ψ .

Not lying this time. I mean every ψ ,¹ whether it contains \Box or not.

¹More precise: every ψ in the relevant language (that of F-APAL).

We can succeed in this goal. F-APAL satisfies

$\mathcal{M}, w \models \Box \varphi$ if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*)

We can succeed in this goal. F-APAL satisfies

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*

We can succeed in this goal. F-APAL satisfies

 $\mathcal{M}, w \models \Box \varphi$ if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*)

We can succeed in this goal. F-APAL satisfies

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*`

We can succeed in this goal. F-APAL satisfies

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*)

We can succeed in this goal. F-APAL satisfies

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

But: at a high cost.

F-APAL uses auxiliary operators \Box_{α} for every ordinal α .

So F-APAL has a proper class of operators. :-(

(*)

Is (*) worth the price of a proper class of operators?

If computational complexity is an issue: probably not.

From a purely theoretical point of view: I think so (but it is still a heavy price).

Is (*) worth the price of a proper class of operators?

If computational complexity is an issue: probably not.

From a purely theoretical point of view: I think so (but it is still a heavy price).

Is (*) worth the price of a proper class of operators?

If computational complexity is an issue: probably not.

From a purely theoretical point of view: I think so (but it is still a heavy price).

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language ${\cal L}$ of F-APAL:

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box_{\alpha} \varphi \mid \Box \varphi$

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language \mathcal{L} of F-APAL:

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{a}\varphi \mid [\varphi]\varphi \mid \Box_{\alpha}\varphi \mid \Box \varphi$

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language \mathcal{L} of F-APAL:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{a}\varphi \mid [\varphi]\varphi \mid \Box_{\alpha}\varphi \mid \Box \varphi$$

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (II)

For ordinal α , language \mathcal{L}_{α} :

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box_\beta \varphi$

Where: $\beta < \alpha$.

In other words: \mathcal{L}_{α} is the fragment of \mathcal{L} without \Box and without \Box_{γ} for $\gamma \geq \alpha$.

F-APAL: language (II)

For ordinal α , language \mathcal{L}_{α} :

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}}\varphi \mid [\varphi]\varphi \mid \Box_{\beta}\varphi$

Where: $\beta < \alpha$.

In other words: \mathcal{L}_{lpha} is the fragment of $\mathcal L$ without \Box and without \Box_{γ} for $\gamma \geq lpha$.

F-APAL: language (II)

For ordinal α , language \mathcal{L}_{α} :

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid [\varphi] \varphi \mid \Box_\beta \varphi$$

Where: $\beta < \alpha$.

In other words:

 \mathcal{L}_{α} is the fragment of \mathcal{L} without \Box and without \Box_{γ} for $\gamma \geq \alpha$.

Operator \Box_0 quantifies over all formula that do not contain \Box or \Box_{α} . So: $\mathcal{M}, w \models \Box_{\alpha \alpha} \Leftrightarrow \forall w \models C_{\alpha} : \mathcal{M}, w \models [w]_{\alpha}$

Operator \Box_1 additionally quantifies over formulas that contain \Box_0 .

So:

 $\mathcal{M}, w \models \Box_1 \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_1 : \mathcal{M}, w \models [\psi] \varphi.$

Operator \Box_0 quantifies over all formula that do not contain \Box or \Box_{α} . So:

$$\mathcal{M}, \mathbf{w} \models \Box_{\mathbf{0}} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\mathbf{0}} : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

Operator \Box_1 additionally quantifies over formulas that contain \Box_0 .

So:

 $\mathcal{M}, w \models \Box_1 \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_1 : \mathcal{M}, w \models [\psi] \varphi.$

Operator \Box_0 quantifies over all formula that do not contain \Box or \Box_{α} . So:

$$\mathcal{M}, \mathbf{w} \models \Box_0 \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_0 : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

Operator \Box_1 additionally quantifies over formulas that contain \Box_0 .

$\mathcal{M}, w \models \Box_1 \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_1 : \mathcal{M}, w \models [\psi] \varphi.$

Operator \Box_0 quantifies over all formula that do not contain \Box or \Box_{α} . So:

$$\mathcal{M}, \mathbf{w} \models \Box_{\mathbf{0}} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\mathbf{0}} : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

Operator \Box_1 additionally quantifies over formulas that contain \Box_0 .

So:

$$\mathcal{M}, \mathbf{w} \models \Box_1 \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_1 : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

In general:

$$\mathcal{M}, w \models \Box_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha} : \mathcal{M}, w \models [\psi] \varphi.$$

Operator \Box : conjunction of \Box_{α} for all α .

 $\mathcal{M}, w \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, w \models \Box_{\alpha} \varphi.$

In general:

$\mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha} : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$

Operator \Box : conjunction of \Box_{α} for all α .

 $\mathcal{M}, w \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, w \models \Box_{\alpha} \varphi.$

In general:

$$\mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha} : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

Operator \Box : conjunction of \Box_{α} for all α .

 $\mathcal{M}, w \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, w \models \Box_{\alpha} \varphi.$

In general:

$$\mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha} : \mathcal{M}, \mathbf{w} \models [\psi] \varphi.$$

Operator \Box : conjunction of \Box_{α} for all α .

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi.$$

Semantics of \Box : well-founded, therefore well-defined,

i. e. for every \mathcal{M}, w and every φ , exactly one of $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \not\models \varphi$ consistent with definition.²

Van Ditmarsch, Van der Hoek, Kuijer Fully Arbitrary Public Announcements

Semantics of \Box : well-founded, therefore well-defined, i. e. for every \mathcal{M}, w and every φ , exactly one of $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \not\models \varphi$ consistent with definition.²

²At least: if we fix a set-theoretic universe.

Semantics of \Box : well-founded, therefore well-defined, i. e. for every \mathcal{M}, w and every φ , exactly one of $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \not\models \varphi$ consistent with definition.²

²At least: if we fix a set-theoretic universe.

But! Remember (*):

$\mathcal{M}, w \models \Box \varphi$ if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ .

Compare with definition of \Box :

$$\mathcal{M}, w \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, w \models \Box_{\alpha} \varphi.$$

Not immediate from definition that \Box satisfies (*)!

(*)

But! Remember (*):

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ . (*)

Compare with definition of \Box :

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi.$$

Not immediate from definition that \Box satisfies (*)!

But! Remember (*):

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ . (*)

Compare with definition of \Box :

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \alpha \in \mathrm{Ord} : \mathcal{M}, \mathbf{w} \models \Box_{\alpha} \varphi.$$

Not immediate from definition that \Box satisfies (*)!

Not immediate but still true:

Theorem

 \Box in F-APAL is a fully arbitrary public announcement, i.e. it satisfies (*).

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^W|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^W|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^{W}|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{\mathcal{W}}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{\mathcal{W}}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^{W}|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .
Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^{W}|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^{W}|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^{W}|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Proof sketch.

Fix any model $\mathcal{M} = (W, R, V)$. Let $E_{\alpha} = \{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha} = E_{\alpha+1}$. Then \Box_{α} and $\Box_{\alpha+1}$ quantify over the same set. So $\Box_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2} = E_{\alpha+1} = E_{\alpha}$. By induction: $E_{\alpha} = E_{\beta}$ for all $\beta \ge \alpha$. Only $|2^{W}|$ different extensions on \mathcal{M} . So: $E_{\beta} = E_{\gamma}$ for all $\beta, \gamma > |2^{W}|$.

Therefore: for all φ , $M \models \Box \varphi \leftrightarrow \Box_{(|2^W|+1)} \varphi$. By construction, \Box quantifies over all \Box -free formulas. By the equivalence, every formula with \Box is equivalent (on \mathcal{M}) to one without. So: for every ψ , \Box quantifies over formula that is equivalent to ψ .

Summary

In summary: \Box in F-APAL is a fully arbitrary public announcement, satisfying

$$\mathcal{M}, w \models \Box \varphi$$
 if and only if $\mathcal{M}, w \models [\psi] \varphi$ for all ψ . (*

But at a price: F-APAL uses proper class of auxiliary operators \Box_{α} .

Table of Contents

2 F-APAL

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail. We consider two such alternatives: ignoring the problem and fixed points.

We consider two such alternatives: ignoring the problem and fixed points.

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail. We consider two such alternatives: ignoring the problem and fixed points.

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail. We consider two such alternatives: ignoring the problem and fixed points

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.

We consider two such alternatives: ignoring the problem and fixed points.

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.

We consider two such alternatives: ignoring the problem and fixed points.

How about we just define

$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \psi : \mathcal{M}, \mathbf{w} \models [\psi] \varphi$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious? No such luck. :-(This definition is viciously circular: it is underdetermined.

How about we just define

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \psi : \mathcal{M}, \mathbf{w} \models [\psi] \varphi$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious?

No such luck. :-(This definition is viciously circular: it is underdetermin

How about we just define

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \psi : \mathcal{M}, \mathbf{w} \models [\psi] \varphi$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious? No such luck. :-(This definition is viciously circular: it is underdetermined.

How about we just define

$$\mathcal{M}, \mathbf{w} \models \Box \varphi \Leftrightarrow \forall \psi : \mathcal{M}, \mathbf{w} \models [\psi] \varphi$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious? No such luck. :-(This definition is viciously circular: it is underdetermined.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point. Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point. Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point. Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point. Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point.

Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Construction of \Box as conjunction of all \Box_{α} resembles fixed point constructions. So maybe we can describe \Box as a least fixed point?

Yes, we can describe \Box as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \Box is a *least* fixed point. Also: auxiliary operators \Box_{α} still needed, so fixed point definition doesn't make things simpler.

Avoiding the cost (II)

All in all: no obvious way to avoid the cost.

But: we are still searching.

Avoiding the cost (II)

All in all: no obvious way to avoid the cost.

But: we are still searching.

References

- Plaza, J., Logics of public communication. In: Emrich, M., Phifer, M., Hadzikadic, M., Ras, Z. (eds.) Proceedings of the Fourth International Symposium on Methodologies for Intelligent Systems, Poster Session Program, pp. 201216. 1989.
- Baltag, A., Moss, L., Solecki, S., *The logic of public announcements, common knowledge, and private suspicions.* In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 4356. 1998.
- Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T. What can we achieve by arbitrary announcements? A dynamic take on Fitchs knowability. In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 4251. 2007.