Fully Arbitrary Public Announcements

Hans van Ditmarsch ${ }^{1}$, Wiebe van der Hoek ${ }^{2}$ and Louwe B. Kuijer ${ }^{1,2}$

${ }^{1}$ University of Liverpool, ${ }^{2}$ LORIA, CNRS

Table of Contents

(1) PAL \& APAL
(3) Simpler Solutions?

Epistemic Logic

Start with: Epistemic Logic.

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi \mid K_{a} \varphi
$$

Interpretation: $K_{a} \varphi$ means: agent a know that φ is true. (Dual $\hat{K}_{a} \varphi$: agent a thinks φ might be true.)

Epistemic Logic

Start with: Epistemic Logic.

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi \mid K_{a} \varphi
$$

Interpretation: $K_{a} \varphi$ means: agent a know that φ is true. (Dual $\hat{K}_{a} \varphi$: agent a thinks φ might be true.)

Epistemic Logic

Start with: Epistemic Logic.

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi \mid K_{a} \varphi
$$

Interpretation: $K_{a} \varphi$ means: agent a know that φ is true. (Dual $\hat{K}_{a} \varphi$: agent a thinks φ might be true.)

Public Announcement Logic (I)

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]
[ψ] φ means: if ψ is truthfully and publicly announced, then φ will be true.

Public Announcement Logic (I)

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi
$$

$[\psi] \varphi$ means: if ψ is truthfully and publicly announced, then φ will be true.

Public Announcement Logic (I)

Add: public announcement operator. [Plaza, 1989][Baltag et al., 1998]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi
$$

[ψ] φ means: if ψ is truthfully and publicly announced, then φ will be true.

Public Announcement Logic (II)

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts. Notation: $a: 7 \boldsymbol{A}, b: K \boldsymbol{\&}, c: A \circlearrowright$.

I am an observer, see all cards.
I say out loud: Claire holds $7 \mathbf{C}$ or $A \bigcirc$.
Result: Alice knows that Claire holds A^{\wedge}, Bob does not.
In formulas: $[(c: 7 円) \vee(c: A \varnothing)]\left(K_{a}(c: A \rho) \wedge \neg K_{b}(c: A \varnothing)\right)$

Public Announcement Logic (II)

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
Notation: $a: 7 \boldsymbol{A}, b: K \boldsymbol{\&}, c: A \circlearrowright$.
I am an observer, see all cards.
I say out loud: Claire holds 7¢ or AD.
Result: Alice knows that Claire holds $A \odot$, Bob does not.
In formulas: $[(c: 7 \boldsymbol{A}) \vee(c: \Delta M)]\left(K_{a}(c: \Delta c) \wedge \neg K_{b}(c: A c)\right)$

Public Announcement Logic (II)

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
Notation: $a: 7 \boldsymbol{A}, b: K \boldsymbol{\&}, c: A \circlearrowright$.
I am an observer, see all cards.
I say out loud: Claire holds $7 \boldsymbol{\uparrow}$ or $A \oslash$.
Result: Alice knows that Claire holds $A \bigcirc$, Bob does not.
In formulas: $[(c: 7 \boldsymbol{\wedge}) \vee(c: A \odot)]\left(K_{a}(c: A \odot) \wedge \neg K_{b}(c: A \circlearrowleft)\right)$

Public Announcement Logic (II)

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts.
Notation: $a: 7 \boldsymbol{A}, b: K \boldsymbol{\&}, c: A \circlearrowright$.
I am an observer, see all cards.
I say out loud: Claire holds $7 \boldsymbol{A}$ or $A \bigcirc$.
Result: Alice knows that Claire holds $A \odot$, Bob does not.
In formulas: $[(c: 7 ヵ) \vee(c: A P)]\left(K_{a}(c: A \rho) \wedge \neg K_{b}(c: A \varnothing)\right)$

Public Announcement Logic (II)

Example: card game. Alice holds 7 of spades, Bob holds king of clubs, Claire holds ace of hearts. Notation: $a: 7 \boldsymbol{A}, b: K \boldsymbol{\&}, c: A \circlearrowright$.

I am an observer, see all cards.
I say out loud: Claire holds $7 \boldsymbol{A}$ or $A \bigcirc$.
Result: Alice knows that Claire holds $A \odot$, Bob does not. In formulas: $[(c: 7 \boldsymbol{\uparrow}) \vee(c: A \odot)]\left(K_{a}(c: A \odot) \wedge \neg K_{b}(c: A \circlearrowleft)\right)$

Arbitrary Public Announcement Logic (I)

Add: arbitrary public announcement operator \square. [Balbiani et al., 2007]

Arbitrary Public Announcement Logic (I)

Add: arbitrary public announcement operator \square. [Balbiani et al., 2007]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square \varphi
$$

$\square \varphi$ means: for every ψ, we have $[\psi] \varphi$. Dual: $\Delta \varphi$ means: for some ψ, we have $[\psi] \varphi$ and ψ is true.

Arbitrary Public Announcement Logic (I)

Add: arbitrary public announcement operator \square. [Balbiani et al., 2007]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square \varphi
$$

$\square \varphi$ means: for every ψ, we have $[\psi] \varphi$. Dual: $\Delta \varphi$ means: for some ψ, we have $[\psi] \varphi$ and ψ is true.

Arbitrary Public Announcement Logic (I)

Add: arbitrary public announcement operator \square. [Balbiani et al., 2007]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square \varphi
$$

$\square \varphi$ means: for every ψ, we have $[\psi] \varphi$.
Dual: $\diamond \varphi$ means: for some ψ, we have $[\psi] \varphi$ and ψ is true.

Arbitrary Public Announcement Logic (I)

Add: arbitrary public announcement operator \square. [Balbiani et al., 2007]

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square \varphi
$$

$\square \varphi$ means: for every ψ, we have $[\psi] \varphi$.
Dual: $\diamond \varphi$ means: for some ψ, we have $[\psi] \varphi$ and ψ is true.

Arbitrary Public Announcement Logic (II)

Example: $\diamond\left(K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge K_{a} K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge \neg K_{b} K_{c}(a: 7 \boldsymbol{\uparrow})\right)$
Interpretation: there is something I could say that would result in (i) Claire knowing that Alice holds 7円, (ii) Alice knowing that Claire knows and (iii) Bob not knowing that Claire knows. LIED

A little.

A little.

APAL (the truth, this time)

Intuitive, desired meaning of $\square \varphi$:

Technical meaning of $\square \varphi$:
for every ψ that does not contain \square, we have $[\psi] \varphi$.

Reason: excluding ψ that contain \square avoids circularity. See [Balbiani et al., 2007] for details.

APAL (the truth, this time)

Intuitive, desired meaning of $\square \varphi$: for every ψ, we have $[\psi] \varphi$.

Technical meaning of $\square \varphi$:
for every ψ that does not contain \square, we have $[\psi] \varphi$.

Reason: excluding ψ that contain \square avoids circularity. See [Balbiani et al., 2007] for details.

APAL (the truth, this time)

Intuitive, desired meaning of $\square \varphi$: for every ψ, we have $[\psi] \varphi$.

Technical meaning of $\square \varphi$:
for every ψ that does not contain \square, we have $[\psi] \varphi$.

Reason: excluding ψ that contain \square avoids circularity. See [Balbiani et al., 2007] for details.

APAL (the truth, this time)

Intuitive, desired meaning of $\square \varphi$: for every ψ, we have $[\psi] \varphi$.

Technical meaning of $\square \varphi$:
for every ψ that does not contain \square, we have $[\psi] \varphi$.

Reason: excluding ψ that contain \square avoids circularity. See [Balbiani et al., 2007] for details.

The 'intuitive' version for the semantics of $\square \varphi$ more properly corresponds to its intended meaning ' φ is true after arbitrary announcements'. This version is not well-defined, as $\square \varphi$ is itself one such announcement.
[Balbiani et al., 2007]

APAL example (revisited, I)

Consider this conversation:
Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.

> Claire, thinking to herself: Oh, then Alice must have the 7 of spades. Alice, thinking to herself: Oh, then Claire must know that I have the 7 of spades.
> Bob, thinking to himself: That tells me nothing.

APAL example (revisited, I)

Consider this conversation:
Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.
Claire, thinking to herself: Oh, then Alice must have the 7 of spades.
Alice, thinking to herself: Oh, then Claire must know that I have the 7
of spades.
Bob, thinking to himself: That tells me nothing.

APAL example (revisited, I)

Consider this conversation:
Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.
Claire, thinking to herself: Oh, then Alice must have the 7 of spades. Alice, thinking to herself: Oh, then Claire must know that I have the 7 of spades.
Bob, thinking to himself: That tells me nothing.

APAL example (revisited, I)

Consider this conversation:
Me, speaking out loud: There is something I could say, that would result in Alice learning that Claire holds the 9 of spades or the ace of hearts, without Bob finding out.
Claire, thinking to herself: Oh, then Alice must have the 7 of spades. Alice, thinking to herself: Oh, then Claire must know that I have the 7
of spades.
Bob, thinking to himself: That tells me nothing.

APAL example (revisited, II)

Let $\chi=\left(K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge K_{a} K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge \neg K_{b} K_{c}(a: 7 \boldsymbol{\uparrow})\right)$.
Then: there is a true announcement ψ such that $[\psi] \chi$.
So, intuitively, we should have $\Delta \chi$.
But: not guaranteed in APAL, since ψ contains \diamond.

APAL example (revisited, II)

Let $\chi=\left(K_{c}(a: 7 \boldsymbol{\phi}) \wedge K_{a} K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge \neg K_{b} K_{c}(a: 7 \boldsymbol{\phi})\right)$.
Then: there is a true announcement ψ such that $[\psi] \chi$.
So, intuitively, we should have $\diamond \chi$.
But: not guaranteed in APAL, since ψ contains \diamond

APAL example (revisited, II)

Let $\chi=\left(K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge K_{a} K_{c}(a: 7 \boldsymbol{\uparrow}) \wedge \neg K_{b} K_{c}(a: 7 \boldsymbol{\uparrow})\right)$.
Then: there is a true announcement ψ such that $[\psi] \chi$.
So, intuitively, we should have $\diamond \chi$.
But: not guaranteed in APAL, since ψ contains \diamond.

Table of Contents

(1) PAL \& APAL

(2) F-APAL

(3) Simpler Solutions?

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).

Not lying this time. I mean every ψ, whether it contains \square or not.

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).
Goal: $\square \varphi$ if and only if $[\psi] \varphi$ for every ψ.
Not lying this time. I mean every ψ, whether it contains \square or not.

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).
Goal: $\square \varphi$ if and only if $[\psi] \varphi$ for every ψ.
Not lying this time. I mean every $\psi,{ }^{1}$ whether it contains \square or not.

F-APAL: goal

Introducing: Fully Arbitrary Public Announcement Logic (F-APAL).
Goal: $\square \varphi$ if and only if $[\psi] \varphi$ for every ψ.
Not lying this time. I mean every $\psi,{ }^{1}$ whether it contains \square or not.
${ }^{1}$ More precise: every ψ in the relevant language (that of F-APAL).

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{*}
\end{equation*}
$$

But: at a high cost.

F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators.

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi \text {. }
$$

But: at a high cost.
F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators.

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

But: at a high cost.
F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators.

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

But: at a high cost.
F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators.

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

But: at a high cost.
F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators.

F-APAL: the cost (I)

We can succeed in this goal. F-APAL satisfies

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

But: at a high cost.
F-APAL uses auxiliary operators \square_{α} for every ordinal α.
So F-APAL has a proper class of operators. :-(

F-APAL: the cost (II)

Is $\left(^{*}\right)$ worth the price of a proper class of operators?
If computational complexity is an issue: probably not.
From a purely theoretical point of view: I think so (but it is still a heavy price).

F-APAL: the cost (II)

Is $\left(^{*}\right)$ worth the price of a proper class of operators?
If computational complexity is an issue: probably not.
From a purely theoretical point of view: I think so (but it is still a heavy price).

F-APAL: the cost (II)

Is $\left(^{*}\right)$ worth the price of a proper class of operators?
If computational complexity is an issue: probably not.
From a purely theoretical point of view: I think so (but it is still a heavy price).

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language \mathcal{L} of $\operatorname{F-APAL}$:

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language \mathcal{L} of F-APAL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi\left|\square_{\alpha} \varphi\right| \square \varphi
$$

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (I)

Done with introductory remarks. Time for formal definitions! Language \mathcal{L} of F-APAL:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi\left|\square_{\alpha} \varphi\right| \square \varphi
$$

Where: p a propositional variable, a an agent, α an ordinal.

F-APAL: language (II)

For ordinal α, language \mathcal{L}_{α} :

In other words:
\mathcal{L}_{α} is the fragment of \mathcal{L} without \square and without $\square \gamma$ for $\gamma \geq \alpha$.

F-APAL: language (II)

For ordinal α, language \mathcal{L}_{α} :

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square_{\beta} \varphi
$$

Where: $\beta<\alpha$.

F-APAL: language (II)

For ordinal α, language \mathcal{L}_{α} :

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi\left|K_{a} \varphi\right|[\varphi] \varphi \mid \square_{\beta} \varphi
$$

Where: $\beta<\alpha$.

In other words:
\mathcal{L}_{α} is the fragment of \mathcal{L} without \square and without \square_{γ} for $\gamma \geq \alpha$.

F-APAL: semantics (I)

Operator \square_{0} quantifies over all formula that do not contain \square or \square_{α}.

$$
\mathcal{M}, w \models \square_{0} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{0}: \mathcal{M}, w \models[\psi] \varphi .
$$

Operator \square_{1} additionally quantifies over formulas that contain \square_{0}.

$$
\mathcal{M}, w \models \square_{1} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{1}: \mathcal{M}, w \models[\psi] \varphi .
$$

F-APAL: semantics (I)

Operator \square_{0} quantifies over all formula that do not contain \square or \square_{α}. So:

$$
\mathcal{M}, w \models \square_{0} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{0}: \mathcal{M}, w \models[\psi] \varphi .
$$

Operator \square_{1} additionally quantifies over formulas that contain \square_{0}.

$$
\mathcal{M}, w \models \square_{1} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{1}: \mathcal{M}, w \models[\psi] \varphi .
$$

F-APAL: semantics (I)

Operator \square_{0} quantifies over all formula that do not contain \square or \square_{α}. So:

$$
\mathcal{M}, w \models \square_{0} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{0}: \mathcal{M}, w \models[\psi] \varphi .
$$

Operator \square_{1} additionally quantifies over formulas that contain \square_{0}.

$$
\mathcal{M}, w \models \square_{1} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{1}: \mathcal{M}, w \models[\psi] \varphi .
$$

F-APAL: semantics (I)

Operator \square_{0} quantifies over all formula that do not contain \square or \square_{α}. So:

$$
\mathcal{M}, w \models \square_{0} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{0}: \mathcal{M}, w \models[\psi] \varphi .
$$

Operator \square_{1} additionally quantifies over formulas that contain \square_{0}.

So:

$$
\mathcal{M}, w \models \square_{1} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{1}: \mathcal{M}, w \models[\psi] \varphi .
$$

F-APAL: semantics (II)

In general:

Operator \square : conjunction of \square_{α} for all α.

$$
\mathcal{M}, w^{\prime}=\square \varphi \Leftrightarrow V \alpha \in \text { Ord: } \mathcal{M}, w \mid \square_{\alpha} \varphi .
$$

F-APAL: semantics (II)

In general:

$$
\mathcal{M}, w \models \square_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha}: \mathcal{M}, w \mid=[\psi] \varphi .
$$

Operator \square : conjunction of \square_{α} for all α.

F-APAL: semantics (II)

In general:

$$
\mathcal{M}, w \models \square_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha}: \mathcal{M}, w \vDash[\psi] \varphi .
$$

Operator \square : conjunction of \square_{α} for all α.

F-APAL: semantics (II)

In general:

$$
\mathcal{M}, w \models \square_{\alpha} \varphi \Leftrightarrow \forall \psi \in \mathcal{L}_{\alpha}: \mathcal{M}, w \equiv[\psi] \varphi .
$$

Operator \square : conjunction of \square_{α} for all α.

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \alpha \in \operatorname{Ord}: \mathcal{M}, w \models \square_{\alpha} \varphi .
$$

F-APAL: fully arbitrary? (I)

Semantics of \square : well-founded, therefore well-defined,
i. e. for every \mathcal{M}, w and every φ, exactly one of $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}, w \not \vDash \varphi$ consistent with definition.

F-APAL: fully arbitrary? (I)

Semantics of \square : well-founded, therefore well-defined, i. e. for every \mathcal{M}, w and every φ, exactly one of $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}, w \not \vDash \varphi$ consistent with definition.

F-APAL: fully arbitrary? (I)

Semantics of \square : well-founded, therefore well-defined, i. e. for every \mathcal{M}, w and every φ, exactly one of $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \not \vDash \varphi$ consistent with definition. ${ }^{2}$

[^0]
F-APAL: fully arbitrary? (II)

But! Remember (*):
$\mathcal{M}, w \models \square \varphi$ if and only if $\mathcal{M}, w \models[\psi] \varphi$ for all ψ.

Compare with definition of \square :

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \alpha \in \operatorname{Ord}: \mathcal{M}, w \models \square_{\alpha} \varphi .
$$

F-APAL: fully arbitrary? (II)

But! Remember (*):

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

Compare with definition of \square :

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \alpha \in \operatorname{Ord}: \mathcal{M}, w \vDash \square_{\alpha} \varphi
$$

Not immediate from definition that \square satisfies (*)!

F-APAL: fully arbitrary? (II)

But! Remember (*):

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{*}
\end{equation*}
$$

Compare with definition of \square :

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \alpha \in \operatorname{Ord}: \mathcal{M}, w \models \square_{\alpha} \varphi .
$$

Not immediate from definition that \square satisfies (*)!

F-APAL: fully arbitrary! (I)

Not immediate but still true:
Theorem
\square in F-APAL is a fully arbitrary public announcement, i.e. it satisfies (*).

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form
increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore:
$E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$.
Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$
Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\left|2^{w}\right|+1\right)} \varphi$. By construction, \square quantifies over all \square-free formulas. By the equivalence, every formula with \square is equivalent (on \mathcal{M}) to one without. So: for every ψ, \square quantifies over formula that is equivalent to ψ.

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and \square_{a+1} quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$. Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$

Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\left|2^{w}\right|+1\right)} \varphi$. By construction, \square quantifies over all \square-free formulas. By the equivalence, every formula with \square is equivalent (on \mathcal{M}) to one without. So: for every ψ, \square quantifies over formula that is equivalent to ψ.

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything.

Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\mid 2 w_{\mid+1)} \varphi \text {. By construction, } \square\right.}$ quantifies over all \square-free formulas. By the equivalence, every formula with \square is equivalent (on \mathcal{M}) to one without. So: for every ψ, \square quantifies over formula that is equivalent to ψ

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$.
\square

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$. Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$.
 \square is equivalent (on \mathcal{M}) to one without. So: for every ψ, \square quantifies over formula that is equivalent to ψ

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$. Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$.

Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\left|2^{w}\right|+1\right)} \varphi$.
\square

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$. Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$.

Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\left|2^{w}\right|_{\mid+1)} \varphi\right.}$. By construction, \square quantifies over all \square-free formulas. By the equivalence, every formula with \square is equivalent (on \mathcal{M}) to one without.

F-APAL: fully arbitrary! (II)

Proof sketch.
Fix any model $\mathcal{M}=(W, R, V)$. Let $E_{\alpha}=\left\{\llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L}_{\alpha}\right\}$. The E_{α} form increasing sequence. Suppose $E_{\alpha}=E_{\alpha+1}$. Then \square_{α} and $\square_{\alpha+1}$ quantify over the same set. So $\square_{\alpha+1}$ doesn't add anything. Therefore: $E_{\alpha+2}=E_{\alpha+1}=E_{\alpha}$. By induction: $E_{\alpha}=E_{\beta}$ for all $\beta \geq \alpha$. Only $\left|2^{W}\right|$ different extensions on \mathcal{M}. So: $E_{\beta}=E_{\gamma}$ for all $\beta, \gamma>\left|2^{W}\right|$.

Therefore: for all $\varphi, M \models \square \varphi \leftrightarrow \square_{\left(\left|2^{w}\right|+1\right)} \varphi$. By construction, \square quantifies over all \square-free formulas. By the equivalence, every formula with \square is equivalent (on \mathcal{M}) to one without. So: for every ψ, \square quantifies over formula that is equivalent to ψ.

Summary

In summary: \square in F-APAL is a fully arbitrary public announcement, satisfying

$$
\begin{equation*}
\mathcal{M}, w \models \square \varphi \text { if and only if } \mathcal{M}, w \models[\psi] \varphi \text { for all } \psi . \tag{}
\end{equation*}
$$

But at a price: F-APAL uses proper class of auxiliary operators \square_{α}.

Table of Contents

(2) F-APAL

(3) Simpler Solutions?

Avoiding the cost

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.
We consider two such alternatives: ignoring the problem and fixed points.

Avoiding the cost

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.
We consider two such alternatives: ignoring the problem and fixed points.

Avoiding the cost

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option.
But: salient easier alternatives fail.
We consider two such alternatives: ignoring the problem and fixed points.

Avoiding the cost

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.

Avoiding the cost

F-APAL uses proper class of operators, conceptually expensive. Can we avoid this cost, creating cheaper fully arbitrary public announcements?

Answer: we don't know, hard to prove non-existence of cheaper option. But: salient easier alternatives fail.
We consider two such alternatives: ignoring the problem and fixed points.

Attempted solution 1: ignoring the problem

How about we just define

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \psi: \mathcal{M}, w \models[\psi] \varphi
$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious?
No such luck.
This definition is viciously circular: it is underdetermined.

Attempted solution 1: ignoring the problem

How about we just define

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \psi: \mathcal{M}, w \models[\psi] \varphi
$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious?
No such luck. :-(
This definition is viciously circular: it is underdetermined.

Attempted solution 1: ignoring the problem

How about we just define

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \psi: \mathcal{M}, w \models[\psi] \varphi
$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious?
No such luck. :-(
This definition is viciously circular: it is underdetermined.

Attempted solution 1: ignoring the problem

How about we just define

$$
\mathcal{M}, w \models \square \varphi \Leftrightarrow \forall \psi: \mathcal{M}, w \models[\psi] \varphi
$$

Sure, that's circular. But maybe we are lucky and the circularity is non-vicious?
No such luck. :-(
This definition is viciously circular: it is underdetermined.

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \square is a least fixed point. Also: auxiliary operators \square_{α} still needed, so fixed point definition doesn't make things simpler

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a
non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \square is a least fixed point. Also: auxiliary operators \square_{α} still needed, so fixed point definition doesn't make things simpler

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a
non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \square is a least fixed point. Also: auxiliary operators \square_{α} still needed, so fixed point definition doesn't make things simpler.

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply.

Also: auxiliary operators \square_{α} still needed, so fixed point definition doesn't make things simpler.

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \square is a least fixed point.

Attempted solution 2: fixed points

Construction of \square as conjunction of all \square_{α} resembles fixed point constructions. So maybe we can describe \square as a least fixed point?

Yes, we can describe \square as a fixed point. But: it is a fixed point of a non-monotone operator. So standard fixed point theorems don't apply. In particular: not known whether \square is a least fixed point. Also: auxiliary operators \square_{α} still needed, so fixed point definition doesn't make things simpler.

Avoiding the cost (II)

All in all: no obvious way to avoid the cost.
But: we are still searching.

Avoiding the cost (II)

All in all: no obvious way to avoid the cost.
But: we are still searching.

References

- Plaza, J., Logics of public communication. In: Emrich, M., Phifer, M., Hadzikadic, M., Ras, Z. (eds.) Proceedings of the Fourth International Symposium on Methodologies for Intelligent Systems, Poster Session Program, pp. 201216. 1989.
- Baltag, A., Moss, L., Solecki, S., The logic of public announcements, common knowledge, and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 4356. 1998.
- Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T. What can we achieve by arbitrary announcements? A dynamic take on Fitchs knowability. In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 4251. 2007.

[^0]: ${ }^{2}$ At least: if we fix a set-theoretic universe.

