Post Completeness in Congruential Modal Logics

Peter Fritz

University of Oslo peter.fritz@ifikk.uio.no

AiML September 2, 2016

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Let L be a set (the formulas); let $C \subseteq \mathcal{P}(L)$ such that $L \in C$ (the logics).

Let L be a set (the formulas); let $C \subseteq \mathcal{P}(L)$ such that $L \in C$ (the logics).

 $\Lambda \in C \text{ is } Post \ complete \ in \ C \ \text{iff} \\ \Lambda \neq L \ \text{and there is no} \ \Lambda' \in C \ \text{such that} \ \Lambda \subset \Lambda' \subset L.$

Let L be a set (the formulas); let $C \subseteq \mathcal{P}(L)$ such that $L \in C$ (the logics).

 $\Lambda \in C$ is Post complete in C iff $\Lambda \neq L$ and there is no $\Lambda' \in C$ such that $\Lambda \subset \Lambda' \subset L$.

In short: being Post complete is being a co-atom.

Let L be a set (the formulas); let $C \subseteq \mathcal{P}(L)$ such that $L \in C$ (the logics).

 $\Lambda \in C$ is Post complete in C iff $\Lambda \neq L$ and there is no $\Lambda' \in C$ such that $\Lambda \subset \Lambda' \subset L$.

In short: being Post complete is being a co-atom.

Theorem (Makinson 1971):

There are two logics Post complete in normal modal logics,

 $\mathbf{Triv} = \mathbf{K} \Box p \leftrightarrow p \text{ and}$ $\mathbf{Ver} = \mathbf{K} \Box p$

Let L be a set (the formulas); let $C \subseteq \mathcal{P}(L)$ such that $L \in C$ (the logics).

 $\Lambda \in C$ is Post complete in C iff $\Lambda \neq L$ and there is no $\Lambda' \in C$ such that $\Lambda \subset \Lambda' \subset L$.

In short: being Post complete is being a co-atom.

Theorem (Makinson 1971): There are two logics Post complete in normal modal logics,

$$\mathbf{Triv} = \mathbf{K} \Box p \leftrightarrow p \text{ and}$$
$$\mathbf{Ver} = \mathbf{K} \Box p$$

What about other lattices of modal logics?

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

Modal logic:

 $\Lambda \subseteq \mathcal{L}$ containing all tautologies and closed under MP and US.

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

Modal logic: $\Lambda \subseteq \mathcal{L}$ containing all tautologies and closed under MP and US.

Congruential modal logic (CML): Modal logic Λ closed under $\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi$.

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

Modal logic: $\Lambda \subseteq \mathcal{L}$ containing all tautologies and closed under MP and US.

Congruential modal logic (CML): Modal logic Λ closed under $\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi$.

Modal algebra: $\mathfrak{A} = \langle A, 1, -, \sqcap, * \rangle$ such that $\langle A, 1, -, \sqcap \rangle$ is a Boolean algebra and $* : A \to A$.

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

Modal logic: $\Lambda \subseteq \mathcal{L}$ containing all tautologies and closed under MP and US.

Congruential modal logic (CML): Modal logic Λ closed under $\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi$.

Modal algebra: $\mathfrak{A} = \langle A, 1, -, \sqcap, * \rangle$ such that $\langle A, 1, -, \sqcap \rangle$ is a Boolean algebra and $* : A \to A$.

(日) (日) (日) (日) (日) (日) (日)

 $\Lambda(\mathfrak{A}), \text{ the logic of } \mathfrak{A}: \\ \{\varphi \in \mathcal{L} : \varphi \text{ mapped to 1 by all interpretations in } \mathfrak{A}\}$

 \mathcal{L} : propositional language with operators \top , \neg , \land and \Box .

Modal logic: $\Lambda \subseteq \mathcal{L}$ containing all tautologies and closed under MP and US.

Congruential modal logic (CML): Modal logic Λ closed under $\varphi \leftrightarrow \psi / \Box \varphi \leftrightarrow \Box \psi$.

Modal algebra: $\mathfrak{A} = \langle A, 1, -, \sqcap, * \rangle$ such that $\langle A, 1, -, \sqcap \rangle$ is a Boolean algebra and $* : A \to A$.

 $\Lambda(\mathfrak{A}), \text{ the logic of } \mathfrak{A}: \\ \{\varphi \in \mathcal{L} : \varphi \text{ mapped to 1 by all interpretations in } \mathfrak{A}\}$

Theorem (Hansson & Gärdenfors 1973): $\Lambda \subseteq \mathcal{L}$ is a CML iff Λ is the logic of some modal algebra.

C-Post complete: Post complete in (the lattice of) congruential modal logics.

C-Post complete: Post complete in (the lattice of) congruential modal logics.

Theorem:

The number of C-Post complete modal logics is \beth_1 .

C-Post complete: Post complete in (the lattice of) congruential modal logics.

Theorem:

The number of C-Post complete modal logics is \beth_1 .

Proof:

By Lindenbaum's Lemma, every consistent CML can be extended to a C-Post complete one.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

C-Post complete: Post complete in (the lattice of) congruential modal logics.

Theorem:

The number of C-Post complete modal logics is \beth_1 .

Proof:

By Lindenbaum's Lemma, every consistent CML can be extended to a C-Post complete one.

So it suffices to construct \beth_1 CMLs such that any two of them have an inconsistent join.

C-Post complete: Post complete in (the lattice of) congruential modal logics.

Theorem:

The number of C-Post complete modal logics is \beth_1 .

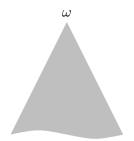
Proof:

By Lindenbaum's Lemma, every consistent CML can be extended to a C-Post complete one.

So it suffices to construct \beth_1 CMLs such that any two of them have an inconsistent join.

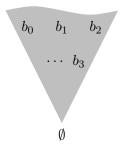
We construct one for every set of natural numbers $S \subseteq \omega$.

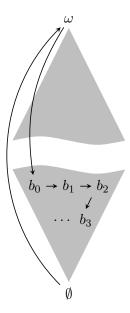
 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .



 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

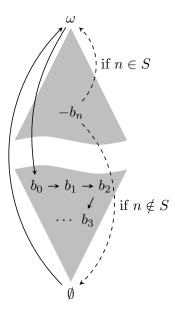
◆□▶ ◆圖▶ ★注▶ ◆注▶ ─注





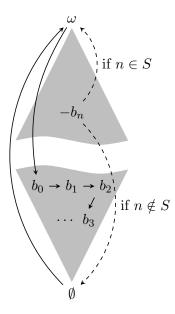
 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

в



 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

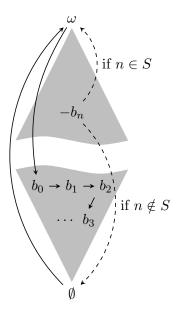
◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 日 ト



 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

Consider $\varphi_n = \Box \neg \Box^n \Box \top$

《日》 《圖》 《注》 《注》

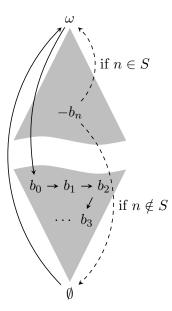


 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

Consider $\varphi_n = \Box \neg \Box^n \Box \top$

$$\varphi_n \in \Lambda(\mathfrak{A}_S) \text{ iff } n \in S \\ \neg \varphi_n \in \Lambda(\mathfrak{A}_S) \text{ iff } n \notin S$$

《日》 《圖》 《注》 《注》



 \mathfrak{A}_S based on algebra of finite/cofinite subsets of ω .

Consider $\varphi_n = \Box \neg \Box^n \Box \top$

$$\varphi_n \in \Lambda(\mathfrak{A}_S) \text{ iff } n \in S \\ \neg \varphi_n \in \Lambda(\mathfrak{A}_S) \text{ iff } n \notin S$$

Neighborhood frame: Pair $\langle W, N \rangle$ such that W is a set and $N : \mathcal{P}(W) \to \mathcal{P}(W)$.

Neighborhood frame: Pair $\langle W, N \rangle$ such that W is a set and $N : \mathcal{P}(W) \to \mathcal{P}(W)$.

 $\langle W, N, V \rangle, w \vDash \Box \varphi \text{ iff } w \in N(\{v \in W : \langle W, N, V \rangle, v \vDash \varphi\})$

Neighborhood frame: Pair $\langle W, N \rangle$ such that W is a set and $N : \mathcal{P}(W) \to \mathcal{P}(W)$.

 $\langle W, N, V \rangle, w \vDash \Box \varphi \text{ iff } w \in N(\{v \in W : \langle W, N, V \rangle, v \vDash \varphi\})$

Neighborhood frames are (effectively) modal algebras based on powerset algebras.

Neighborhood frame: Pair $\langle W, N \rangle$ such that W is a set and $N : \mathcal{P}(W) \to \mathcal{P}(W)$.

 $\langle W, N, V \rangle, w \vDash \Box \varphi \text{ iff } w \in N(\{v \in W : \langle W, N, V \rangle, v \vDash \varphi\})$

Neighborhood frames are (effectively) modal algebras based on powerset algebras.

Theorem:

There are at least \aleph_0 C-Post complete modal logics each of which is the logic of a class of neighborhood frames.

Neighborhood frame: Pair $\langle W, N \rangle$ such that W is a set and $N : \mathcal{P}(W) \to \mathcal{P}(W)$.

 $\langle W, N, V \rangle, w \vDash \Box \varphi \text{ iff } w \in N(\{v \in W : \langle W, N, V \rangle, v \vDash \varphi\})$

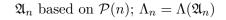
Neighborhood frames are (effectively) modal algebras based on powerset algebras.

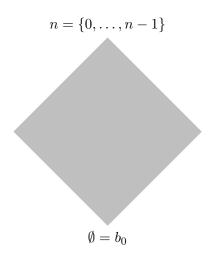
Theorem:

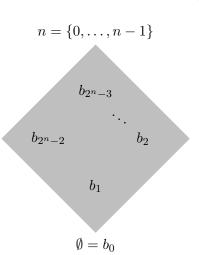
There are at least \aleph_0 C-Post complete modal logics each of which is the logic of a class of neighborhood frames.

(日) (日) (日) (日) (日) (日) (日)

Proof: We construct one as $\Lambda(\mathfrak{A}_n)$ for each $n < \omega$.

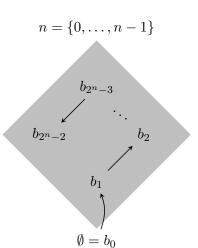






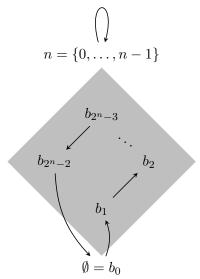
 \mathfrak{A}_n based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●



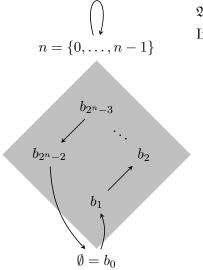
 \mathfrak{A}_n based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

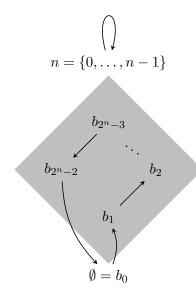


 \mathfrak{A}_n based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$

▲ロト ▲目ト ▲ミト ▲ミト 三三 - のへで



$$\mathfrak{A}_n$$
 based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$
If $n < n'$, then
 $\neg \Box^{2^n - 1} \bot \in \Lambda_n$
 $\neg \Box^{2^n - 1} \bot \notin \Lambda_{n'}$

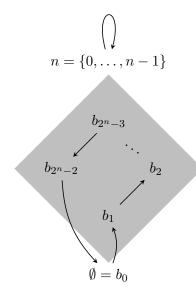


 \mathfrak{A}_n based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$ If n < n', then $\neg \Box^{2^n - 1} \bot \in \Lambda_n$ $\neg \Box^{2^n - 1} \bot \notin \Lambda_{n'}$

Let $\Lambda \supset \Lambda_n$ and $\varphi \in \Lambda \setminus \Lambda_n$. Mapped to non-top element by some interpretation; replace proposition letters by "definitions" accordingly: φ' .

《日》 《問》 《王》 《王》

3



 \mathfrak{A}_n based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$ If n < n', then $\neg \Box^{2^n - 1} \bot \in \Lambda_n$ $\neg \Box^{2^n - 1} \bot \notin \Lambda_{n'}$

Let $\Lambda \supset \Lambda_n$ and $\varphi \in \Lambda \setminus \Lambda_n$. Mapped to non-top element by some interpretation; replace proposition letters by "definitions" accordingly: φ' .

$$\neg \Box^{k} \varphi' \in \Lambda_{n} \text{ for some } k.$$

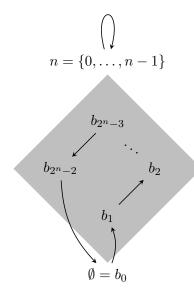
$$\Box^{k} \top \leftrightarrow \Box^{k} \varphi' \in \Lambda. \text{ But}$$

$$\Box^{k} \top \in \Lambda_{n} \subseteq \Lambda, \text{ so } \Box^{k} \varphi' \in \Lambda.$$

So $\Lambda = \mathcal{L}.$

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへで

Neighborhood Semantics



$$\mathfrak{A}_n$$
 based on $\mathcal{P}(n)$; $\Lambda_n = \Lambda(\mathfrak{A}_n)$
If $n < n'$, then
 $\neg \Box^{2^n - 1} \bot \in \Lambda_n$
 $\neg \Box^{2^n - 1} \bot \notin \Lambda_{n'}$

Let $\Lambda \supset \Lambda_n$ and $\varphi \in \Lambda \setminus \Lambda_n$. Mapped to non-top element by some interpretation; replace proposition letters by "definitions" accordingly: φ' .

$$\neg \Box^{k} \varphi' \in \Lambda_{n} \text{ for some } k.$$
$$\Box^{k} \top \leftrightarrow \Box^{k} \varphi' \in \Lambda. \text{ But}$$
$$\Box^{k} \top \in \Lambda_{n} \subseteq \Lambda, \text{ so } \Box^{k} \varphi' \in \Lambda.$$
So $\Lambda = \mathcal{L}.$

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへで

Neighborhood Semantics

Is every C-Post complete modal logic the logic of a class of neighborhood frames?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Neighborhood Semantics

Is every C-Post complete modal logic the logic of a class of neighborhood frames?

Left open in the paper. (In work in progress: *No* – some consistent CML is not valid on any neighborhood frame.)

Truth-functional: The logic of a two-element modal algebra.

Truth-functional: The logic of a two-element modal algebra.

 $\emptyset\text{-}Post\ complete:$ Post complete in (the lattice of) all modal logics.

Truth-functional: The logic of a two-element modal algebra.

 $\emptyset\mathchar`-Post\ complete:$ Post complete in (the lattice of) all modal logics.

Theorem (Makinson 1971/Segerberg 1972): The following are equivalent for an NML:

- ▶ Ø-Post completeness
- ► Truth-functionality
- ▶ Post completeness in normal/congruential modal logics

Truth-functional: The logic of a two-element modal algebra.

 \emptyset -Post complete:

Post complete in (the lattice of) all modal logics.

Theorem (Makinson 1971/Segerberg 1972): The following are equivalent for an NML:

- \blacktriangleright Ø-Post completeness
- ▶ Truth-functionality
- ▶ Post completeness in normal/congruential modal logics

- ロ ト - 4 目 ト - 4 目 ト - 4 目 ト - 9 へ ()

Theorem:

The following are equivalent for a CML:

- ▶ Ø-Post completeness
- ► Truth-functionality

Truth-functional: The logic of a two-element modal algebra.

 \emptyset -Post complete:

Post complete in (the lattice of) all modal logics.

Theorem (Makinson 1971/Segerberg 1972): The following are equivalent for an NML:

- ▶ Ø-Post completeness
- ► Truth-functionality
- ▶ Post completeness in normal/congruential modal logics

- ロ ト - 4 目 ト - 4 目 ト - 4 目 ト - 9 へ ()

Theorem:

The following are equivalent for a CML:

- \blacktriangleright Ø-Post completeness
- ▶ Truth-functionality

(The proof is a variant of the proof for NMLs.)

Characterizing intersections

Theorem (Humberstone 2016):

 $\bigcap \text{ NMLs } \emptyset \text{-Post complete} = \text{NML axiomatized by } p \to \Box p$ $\bigcap \text{ CMLs } \emptyset \text{-Post complete} = \text{CML ax. by } (p \leftrightarrow q) \to (\Box p \leftrightarrow \Box q)$

Characterizing intersections

Theorem (Humberstone 2016):

 $\bigcap \text{ NMLs } \emptyset \text{-Post complete} = \text{NML axiomatized by } p \to \Box p$ $\bigcap \text{ CMLs } \emptyset \text{-Post complete} = \text{CML ax. by } (p \leftrightarrow q) \to (\Box p \leftrightarrow \Box q)$

Question: Can we characterize $\bigcap \emptyset$ -Post complete modal logics closed under some rules using the corresponding conditionals?

Characterizing intersections

Theorem (Humberstone 2016):

 $\bigcap \text{ NMLs } \emptyset \text{-Post complete} = \text{ NML axiomatized by } p \to \Box p$ $\bigcap \text{ CMLs } \emptyset \text{-Post complete} = \text{ CML ax. by } (p \leftrightarrow q) \to (\Box p \leftrightarrow \Box q)$

Question: Can we characterize $\bigcap \emptyset$ -Post complete modal logics closed under some rules using the corresponding conditionals?

Theorem:

$$\bigcap(\emptyset\operatorname{-Post}\cap L(R)) = \varepsilon_0(\Lambda_{\emptyset}(\overrightarrow{R})).$$

(See paper for details and proof.)

Characterizing intersections (details)

$(Substitution-invariant)\ rule:$

Set of finite non-empty sequences of formulas closed under US.

 $\Gamma \subseteq \mathcal{L}$ closed under a rule R:

If $\langle \rho_0, \ldots, \rho_n \rangle \in R$ and $\rho_i \in \Gamma$ for all i < n, then $\rho_n \in \Gamma$.

- ▶ \emptyset -Post(Γ): set of \emptyset -Post complete modal logics extending Γ
- ▶ L(R): set of modal logics closed under R

$$\blacktriangleright \overrightarrow{R} = \{ \bigwedge_{i < n} \rho_i \to \rho_n : \langle \rho_0, \dots, \rho_n \rangle \in R \}$$

- $\Lambda_{\emptyset}(\Gamma)$: modal logic axiomatized by Γ
- ► $\varepsilon_0(\Gamma) = \{ \varphi \in \mathcal{L} : \text{all substitution instances of } \varphi \text{ without proposition letters are in } \Gamma \}$

Theorem: $\bigcap (\emptyset \operatorname{Post}(\Gamma) \cap L(R)) = \varepsilon_0(\Lambda_{\emptyset}(\Gamma \cup \overrightarrow{R})).$

Open Question: How can we characterize $\bigcap R$ -Post(Γ)?

A CML without neighborhood frames

The CML axiomatized by

$$\begin{array}{ll} (A1) & (\Box \top \land p) \leftrightarrow \Box (\Box \top \rightarrow (p \land \Box (\Box \top \land p))) \\ (A2) & (\Box \top \land p) \leftrightarrow \Box (\Box \top \rightarrow (p \land \neg \Box (\Box \top \land p))) \\ (A3) & \Box \Box \Box \top \\ (A4) & \neg \Box \bot \end{array}$$

is not valid on any modal algebra based on an atomic Boolean algebra.