Computability of definability in the class of all ${ m KD45}$ frames

Dimiter Georgiev dimitertg@yahoo.com

Sofia University "St. Kliment Ohridski" Faculty of Mathematics and Informatics Supported by the Science Fund of Sofia University, contract 55/2016, and the Bulgarian Science Fund, programme Rila 2014, contract DRILA01/2/2015.

Advances in Modal Logic, 2016

・ロト ・ 同ト ・ ヨト ・ ヨト

Table of Contents

- 1 Introduction
- 2 The Correspondence Problems
- 3 KD45-frames
- 4 First-Order Definability of $\mathrm{ML}(\Box)$ formulas
- 5 Modal definability of FOL formulas in ML(□)
- 6 Modal definability of FOL formulas in $ML(\Box, [U])$
- Conclusion and Future Work

4 日 2 4 周 2 4 月 2 4 月 2 4

Introduction

We consider a first-order language FOL with a single binary predicate symbol r, the basic modal language $\mathrm{ML}(\Box)$ and the basic modal language with the added universal modality $\mathrm{ML}(\Box, [U])$. A Kripke frame is an ordered pair of the kind $\langle W, R \rangle$, where W is a non-empty set and $R \subseteq W \times W$ is a binary relation over W. One one hand, Kripke frames are structures for $\mathrm{ML}(\Box)$ and $\mathrm{ML}(\Box, [U])$, but on the other hand, they are structures for FOL.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Introduction

We consider a first-order language FOL with a single binary predicate symbol r, the basic modal language $ML(\Box)$ and the basic modal language with the added universal modality $ML(\Box, [U])$. A Kripke frame is an ordered pair of the kind $\langle W, R \rangle$, where W is a non-empty set and $R \subseteq W \times W$ is a binary relation over W. One one hand, Kripke frames are structures for $ML(\Box)$ and $ML(\Box, [U])$, but on the other hand, they are structures for FOL.

・ロト ・同ト ・ヨト ・ヨト

Introduction

We consider a first-order language FOL with a single binary predicate symbol r, the basic modal language $ML(\Box)$ and the basic modal language with the added universal modality $ML(\Box, [U])$. A Kripke frame is an ordered pair of the kind $\langle W, R \rangle$, where W is a non-empty set and $R \subseteq W \times W$ is a binary relation over W. One one hand, Kripke frames are structures for $ML(\Box)$ and $ML(\Box, [U])$, but on the other hand, they are structures for FOL.

・ロト ・ 同ト ・ ヨト ・ ヨト …

The Correspondence Problems

First-Order Definability:

Given a modal formula A, decide if there is a first-order formula ψ such that for every Kripke frame $F \colon F \Vdash A$ iff $F \vDash \psi$.

Modal Definability:

Given first-order formula ψ , decide if there is a ML(\Box) formula A such that for every Kripke frame $F \colon F \vDash \psi$ iff $F \Vdash A$. These problems ware answered in Lidia Chagrova's theorem:

Theorem (L. A. Chagrova)

These two problems are not algorithmically solvable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Correspondence Problems

First-Order Definability:

Given a modal formula A, decide if there is a first-order formula ψ such that for every Kripke frame $F \colon F \Vdash A$ iff $F \vDash \psi$.

Modal Definability:

Given first-order formula ψ , decide if there is a ML(\Box) formula A such that for every Kripke frame F: F $\vDash \psi$ iff F $\Vdash A$. These problems ware answered in Lidia Chagrova's theorem:

Theorem (L. A. Chagrova)

These two problems are not algorithmically solvable.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Correspondence over $C_{ m S5}$

Let $C_{\rm S5}$ be the class of all S5-frames (all frames with an equivalence relation).

Theorem (P. Balbiani, T. Tinchev)

Every $ML(\Box)$ formula is first-order definable over C_{S5} .

Theorem (P. Balbiani, T. Tinchev)

Every $ML(\Box, [U])$ formula is first-order definable over C_{S5} .

Correspondence over $C_{\rm S5}$

Let $C_{\rm S5}$ be the class of all S5-frames (all frames with an equivalence relation).

Theorem (P. Balbiani, T. Tinchev)

Every $ML(\Box)$ formula is first-order definable over C_{S5} .

Theorem (P. Balbiani, T. Tinchev)

Every $ML(\Box, [U])$ formula is first-order definable over C_{S5} .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P. Balbiani, T. Tinchev)

Modal definability of FOL formulas in the language $ML(\Box)$ over C_{S5} is PSPACE-complete.

Theorem (P. Balbiani, T. Tinchev)

Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{S5} is PSPACE-complete.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (P. Balbiani, T. Tinchev)

Modal definability of FOL formulas in the language $ML(\Box)$ over C_{S5} is PSPACE-complete.

Theorem (P. Balbiani, T. Tinchev)

Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{S5} is PSPACE-complete.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Correspondence over C_{KD45}

Let C_{KD45} be the class of all KD45-frames (all frames whose relation is serial, transitive and Euclidean).

Are the correspondence problems over $C_{
m KD45}$ computable? We show that:

- Every $ML(\Box)$ formula is first-order definable over \mathcal{C}_{KD45}
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Correspondence over C_{KD45}

Let C_{KD45} be the class of all KD45-frames (all frames whose relation is serial, transitive and Euclidean).

Are the correspondence problems over $C_{
m KD45}$ computable?

We show that:

- Every $\mathrm{ML}(\Box)$ formula is first-order definable over $\mathcal{C}_{\mathrm{KD45}}$
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Correspondence over C_{KD45}

Let C_{KD45} be the class of all KD45-frames (all frames whose relation is serial, transitive and Euclidean).

Are the correspondence problems over C_{KD45} computable? We show that:

- Every $ML(\Box)$ formula is first-order definable over C_{KD45} .
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Correspondence over C_{KD45}

Let C_{KD45} be the class of all KD45-frames (all frames whose relation is serial, transitive and Euclidean).

Are the correspondence problems over C_{KD45} computable? We show that:

- Every $ML(\Box)$ formula is first-order definable over C_{KD45} .
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Correspondence over C_{KD45}

Let C_{KD45} be the class of all KD45-frames (all frames whose relation is serial, transitive and Euclidean).

Are the correspondence problems over C_{KD45} computable? We show that:

- Every $ML(\Box)$ formula is first-order definable over C_{KD45} .
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

We say that a frame $F = \langle W, R \rangle$ is a *daisy* iff $W = P(F) \cup S(F)$, where $P(F) \cap S(F) = \emptyset$, $S(F) \neq \emptyset$, P(F) is the set of *petals*, S(F)is the set of *stamens*, and the following hold:

(Daisy 1). $\forall x \in P(F) \neg \exists y \in W(\langle y, x \rangle \in R)$ (Daisy 2). $\forall x \in P(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ (Daisy 3). $\forall x \in S(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ Any KD45-frame F is a disjoint union of daisies.

We say that a frame $F = \langle W, R \rangle$ is a *daisy* iff $W = P(F) \cup S(F)$, where $P(F) \cap S(F) = \emptyset$, $S(F) \neq \emptyset$, P(F) is the set of *petals*, S(F)is the set of *stamens*, and the following hold: (Daisy 1). $\forall x \in P(F) \neg \exists y \in W(\langle y, x \rangle \in R)$ (Daisy 2). $\forall x \in P(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ (Daisy 3). $\forall x \in S(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ Any KD45-frame F is a disjoint union of daisies.

We say that a frame $F = \langle W, R \rangle$ is a *daisy* iff $W = P(F) \cup S(F)$, where $P(F) \cap S(F) = \emptyset$, $S(F) \neq \emptyset$, P(F) is the set of *petals*, S(F)is the set of *stamens*, and the following hold: (Daisy 1). $\forall x \in P(F) \neg \exists y \in W(\langle y, x \rangle \in R)$ (Daisy 2). $\forall x \in P(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ (Daisy 3). $\forall x \in S(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ Any KD45-frame F is a disjoint union of daisies.

We say that a frame $F = \langle W, R \rangle$ is a daisy iff $W = P(F) \cup S(F)$, where $P(F) \cap S(F) = \emptyset$, $S(F) \neq \emptyset$, P(F) is the set of *petals*, S(F)is the set of *stamens*, and the following hold: (Daisy 1). $\forall x \in P(F) \neg \exists y \in W(\langle y, x \rangle \in R)$ (Daisy 2). $\forall x \in P(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ (Daisy 3). $\forall x \in S(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ Any KD45-frame F is a disjoint union of daisies

4 日 2 4 周 2 4 月 1 4 月 1

We say that a frame $F = \langle W, R \rangle$ is a *daisy* iff $W = P(F) \cup S(F)$, where $P(F) \cap S(F) = \emptyset$, $S(F) \neq \emptyset$, P(F) is the set of *petals*, S(F)is the set of *stamens*, and the following hold: (Daisy 1). $\forall x \in P(F) \neg \exists y \in W(\langle y, x \rangle \in R)$ (Daisy 2). $\forall x \in P(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ (Daisy 3). $\forall x \in S(F) \forall y \in S(F)(\langle x, y \rangle \in R)$ Any KD45-frame F is a disjoint union of daisies.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal. Denote by D_i the finite daisy without petals and *i* stamens. Denote by D'_i the finite daisy with one petal and *i* stamens.

_emma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

・ロト ・同ト ・ヨト ・ヨト

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and *i* stamens. Denote by D'_i the finite daisy with one petal and *i* stamens.

_emma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and i stamens.

Denote by D'_i the finite daisy with one petal and *i* stamens.

_emma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and *i* stamens. Denote by D'_i the finite daisy with one petal and *i* stamens.

_emma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and *i* stamens. Denote by D'_i the finite daisy with one petal and *i* stamens.

Lemma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and i stamens.

Denote by D'_i the finite daisy with one petal and i stamens.

Lemma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$ or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Let C_0 be the class of finite daisies without petals (equivalence classes).

Let C_1 be the class of finite daisies with a single petal.

Denote by D_i the finite daisy without petals and i stamens.

Denote by D'_i the finite daisy with one petal and *i* stamens.

Lemma

Let A be a $ML(\Box)$ -formula.

Exactly one of the following three holds: either $C_{S5} \Vdash A$, $D_1 \nvDash A$, or there is a number n > 1, such that for all $i: D_i \Vdash A \Leftrightarrow i < n$. Exactly one of the following three holds: either $C_{KD45} \Vdash A$, $D'_1 \nvDash A$, or there is a number n' > 1, such that for all $i: D'_i \Vdash A \Leftrightarrow i < n'$.

Denote $\psi_n(x) =_{def} \forall y_1 \dots \forall y_n(\bigwedge\{(x r \ y_k) \mid 1 \le k \le n\}) \rightarrow \bigvee\{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x(((x r x) \land \psi_{C_0}) \lor (\neg (x r x) \land \psi_{C_1}))$

Denote
$$\psi_n(x) =_{def} \forall y_1 \dots \forall y_n (\bigwedge \{(x \ r \ y_k) \mid 1 \le k \le n\} \rightarrow \bigvee \{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x(((x r x) \land \psi_{C_0}) \lor (\neg (x r x) \land \psi_{C_1}))$

Denote
$$\psi_n(x) =_{def} \forall y_1 \dots \forall y_n (\bigwedge \{(x \ r \ y_k) \mid 1 \le k \le n\} \rightarrow \bigvee \{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x(((x r x) \land \psi_{C_0}) \lor (\neg(x r x) \land \psi_{C_1}))$

Denote
$$\psi_n(x) =_{def} \forall y_1 \dots \forall y_n (\bigwedge \{(x \ r \ y_k) \mid 1 \le k \le n\} \rightarrow \bigvee \{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x(((x r x) \land \psi_{C_0}) \lor (\neg(x r x) \land \psi_{C_1}))$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - ヨ -

Denote
$$\psi_n(x) =_{def} \forall y_1 \dots \forall y_n (\bigwedge \{(x \ r \ y_k) \mid 1 \le k \le n\} \rightarrow \bigvee \{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x (((x \land x) \land \psi_{C_0}) \lor (\neg(x \land x) \land \psi_{C_1}))$

Denote
$$\psi_n(x) =_{def} \forall y_1 \dots \forall y_n (\bigwedge \{(x \ r \ y_k) \mid 1 \le k \le n\} \rightarrow \bigvee \{(y_k = y_\ell) \mid 1 \le k < \ell \le n\}) \text{ for } n \ge 1.$$

Theorem

Let A be a $ML(\Box)$ -formula. Then there is a first-order formula ψ , such that A and ψ are globally correspondent over the class of frames C_{KD45} . Also, ψ can be effectively computed.

Sketch of proof. The definition of A over C_0 , ψ_{C_0} , is either \top $(C_{S5} \Vdash A)$, $\perp (D_1 \nvDash A)$, or $\psi_n(x)$ for some n > 1. The definition of A over C_1 , ψ_{C_1} , is either $\top (C_{KD45} \Vdash A)$, $\perp (D'_1 \nvDash A)$, or $\psi_{n'}(x)$ for some n' > 1. It can be shown that a definition of A over C_{KD45} is: $\psi =_{def} \forall x(((x r x) \land \psi_{C_0}) \lor (\neg (x r x) \land \psi_{C_1}))$

くロト く得ト くヨト くヨト 二日

Definitions

Let $F \in C_{KD45}$ and D be the unique set of daisies, up to isomorphism, such that F is the disjoint union of D, i.e. $F = \uplus D$. Let $s(F) =_{def} sup(\{Card(S(x)) \mid x \in D\})$. Let $s_0(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) = \emptyset\})$. Let $s_1(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) \neq \emptyset\})$. We denote the class of frames $F \in C_{KD45}$ such that $1 \le s(F) < \omega$ by C^b .

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Definitions

Let $F \in C_{KD45}$ and D be the unique set of daisies, up to isomorphism, such that F is the disjoint union of D, i.e. $F = \uplus D$. Let $s(F) =_{def} sup(\{Card(S(x)) \mid x \in D\})$. Let $s_0(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) = \emptyset\})$. Let $s_1(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) \neq \emptyset\})$. We denote the class of frames $F \in C_{KD45}$ such that $1 \le s(F) < \omega$ by C^b .

・ロト ・ 御 ト ・ ヨト ・ ヨト - -

Definitions

Let $F \in C_{KD45}$ and D be the unique set of daisies, up to isomorphism, such that F is the disjoint union of D, i.e. $F = \uplus D$. Let $s(F) =_{def} sup(\{Card(S(x)) \mid x \in D\})$. Let $s_0(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) = \emptyset\})$. Let $s_1(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) \neq \emptyset\})$. We denote the class of frames $F \in C_{KD45}$ such that $1 \le s(F) < \omega$ by C^b .

・ロト ・ 御 ト ・ ヨト ・ ヨト - -

Definitions

Let $F \in C_{KD45}$ and D be the unique set of daisies, up to isomorphism, such that F is the disjoint union of D, i.e. $F = \uplus D$. Let $s(F) =_{def} sup(\{Card(S(x)) \mid x \in D\})$. Let $s_0(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) = \emptyset\})$. Let $s_1(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) \neq \emptyset\})$. We denote the class of frames $F \in C_{KD45}$ such that $1 \leq s(F) < \omega$ by C^b .

・ロト ・ 同ト ・ ヨト ・ ヨト …

Definitions

Let $F \in C_{KD45}$ and D be the unique set of daisies, up to isomorphism, such that F is the disjoint union of D, i.e. $F = \uplus D$. Let $s(F) =_{def} sup(\{Card(S(x)) \mid x \in D\})$. Let $s_0(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) = \emptyset\})$. Let $s_1(F) =_{def} sup(\{Card(S(x)) \mid x \in D \& P(x) \neq \emptyset\})$. We denote the class of frames $F \in C_{KD45}$ such that $1 \leq s(F) < \omega$ by C^b .

・ロト ・ 御 ト ・ ヨト ・ ヨト - -

For
$$n \ge 1$$
, denote:
 $A_n =_{def} \bigwedge \{ \Diamond p_k \mid 1 \le k \le n \} \rightarrow \bigvee \{ \Diamond (p_i \land p_j) \mid 1 \le i < j \le n \}.$
Denote $A_0 =_{def} \bot$ and $A_{\omega} =_{def} \top$.

emma

For all $n \ge 1$, $\psi_n(x)$ is locally correspondent to A_n with respect to C_{KD45} .

_emma

For all $1 \leq i \leq j$, $\forall x(((x r x) \land \psi_j) \lor (\neg(x r x) \land \psi_i))$ is globally correspondent to $((q \rightarrow \Diamond q) \land A_j) \lor A_i$ with respect to C_{KD45} .

(日) (四) (日) (日)

For
$$n \ge 1$$
, denote:
 $A_n =_{def} \bigwedge \{ \Diamond p_k \mid 1 \le k \le n \} \rightarrow \bigvee \{ \Diamond (p_i \land p_j) \mid 1 \le i < j \le n \}.$
Denote $A_0 =_{def} \bot$ and $A_{\omega} =_{def} \top$.

Lemma

For all $n \ge 1$, $\psi_n(x)$ is locally correspondent to A_n with respect to C_{KD45} .

_emma

For all $1 \leq i \leq j$, $\forall x(((x r x) \land \psi_j) \lor (\neg(x r x) \land \psi_i))$ is globally correspondent to $((q \rightarrow \Diamond q) \land A_j) \lor A_i$ with respect to C_{KD45} .

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [□ >] [□ >)] [□ >] [□ >]] [□ >)] [□ >]] [□ =]] [□ >]] [□ =]] [] [□ =]] []] []] []] []] []

For
$$n \ge 1$$
, denote:
 $A_n =_{def} \bigwedge \{ \Diamond p_k \mid 1 \le k \le n \} \rightarrow \bigvee \{ \Diamond (p_i \land p_j) \mid 1 \le i < j \le n \}.$
Denote $A_0 =_{def} \bot$ and $A_{\omega} =_{def} \top$.

Lemma

For all $n \ge 1$, $\psi_n(x)$ is locally correspondent to A_n with respect to C_{KD45} .

Lemma

For all $1 \leq i \leq j$, $\forall x(((x r x) \land \psi_j) \lor (\neg(x r x) \land \psi_i))$ is globally correspondent to $((q \rightarrow \Diamond q) \land A_j) \lor A_i$ with respect to C_{KD45} .

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [□ >] [□ >)] [□ >] [□ >]] [□ >)] [□ >]] [□ =]] [□ >]] [□ =]] [] [□ =]] []] []] []] []] []

Lemma

Let ψ be a FOL sentence. Then ψ is modally definable iff there are ordinals σ_0, σ_1 such that $0 \le \sigma_1 \le \sigma_0 \le \omega$ and for every $F \in C^b$: $F \vDash \psi$ iff $s_0(F) \le \sigma_0$ and $s_1(F) \le \sigma_1$.

Sketch of proof. The right-to-left direction is easier, using the properties of generated subframes and p-morphisms (bounded morphisms). For the other direction, we show by examining nine cases (using the properties of Ehrenfeucht-Fraïssé games, generated subframes and p-morphic images) that the following $ML(\Box)$ formula is a definition of ψ :

 $A =_{def} ((q \to \Diamond q) \land A_{\alpha_0}) \lor A_{\alpha_1}, \text{ where for } i \in \{0, 1\}, \alpha_i \text{ is either} \\ \omega \text{ if } \sigma_i \text{ is } \omega, \text{ or } \sigma_i + 1, \text{ otherwise.} \qquad \square$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

Let ψ be a FOL sentence. Then ψ is modally definable iff there are ordinals σ_0, σ_1 such that $0 \le \sigma_1 \le \sigma_0 \le \omega$ and for every $F \in C^b$: $F \vDash \psi$ iff $s_0(F) \le \sigma_0$ and $s_1(F) \le \sigma_1$.

Sketch of proof. The right-to-left direction is easier, using the properties of generated subframes and p-morphisms (bounded morphisms). For the other direction, we show by examining nine cases (using the properties of Ehrenfeucht-Fraïssé games, generated subframes and p-morphic images) that the following ML(\Box) formula is a definition of ψ :

 $\begin{array}{l} A =_{def} ((q \rightarrow \Diamond q) \land A_{\alpha_0}) \lor A_{\alpha_1}, \text{ where for } i \in \{0, 1\}, \ \alpha_i \text{ is either} \\ \omega \text{ if } \sigma_i \text{ is } \omega, \text{ or } \sigma_i + 1, \text{ otherwise.} \end{array}$

イロト イポト イヨト イヨト

Lemma

Let ψ be a FOL sentence. Then ψ is modally definable iff there are ordinals σ_0, σ_1 such that $0 \le \sigma_1 \le \sigma_0 \le \omega$ and for every $F \in C^b$: $F \vDash \psi$ iff $s_0(F) \le \sigma_0$ and $s_1(F) \le \sigma_1$.

Sketch of proof. The right-to-left direction is easier, using the properties of generated subframes and p-morphisms (bounded morphisms). For the other direction, we show by examining nine cases (using the properties of Ehrenfeucht-Fraïssé games, generated subframes and p-morphic images) that the following $ML(\Box)$ formula is a definition of ψ :

 $A =_{def} ((q \rightarrow \Diamond q) \land A_{\alpha_0}) \lor A_{\alpha_1}$, where for $i \in \{0, 1\}$, α_i is either ω if σ_i is ω , or $\sigma_i + 1$, otherwise.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

Let ψ be a FOL sentence. Then ψ is modally definable iff there are ordinals σ_0, σ_1 such that $0 \le \sigma_1 \le \sigma_0 \le \omega$ and for every $F \in C^b$: $F \vDash \psi$ iff $s_0(F) \le \sigma_0$ and $s_1(F) \le \sigma_1$.

Sketch of proof. The right-to-left direction is easier, using the properties of generated subframes and p-morphisms (bounded morphisms). For the other direction, we show by examining nine cases (using the properties of Ehrenfeucht-Fraissé games, generated subframes and p-morphic images) that the following $ML(\Box)$ formula is a definition of ψ :

 $A =_{def} ((q \to \Diamond q) \land A_{\alpha_0}) \lor A_{\alpha_1}, \text{ where for } i \in \{0, 1\}, \alpha_i \text{ is either } \omega \text{ if } \sigma_i \text{ is } \omega, \text{ or } \sigma_i + 1, \text{ otherwise.}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Using the previous lemma, it is not hard to show that:

Theorem

The problem of modal definability of a FOL sentence ψ over the class $C_{\rm KD45}$ is in PSPACE.

Sketch of proof. Let $\psi_0 =_{def} \bot$, $\psi_\omega =_{def} \top$. Let *m* be the quantifier rank of ψ . Let $Q =_{def} \{\psi_0, \psi_1, \ldots, \psi_m, \psi_{m+1}, \psi_\omega\}$, which is a finite set. The proof works by showing that ψ is modally definable iff there are ordinals α_0, α_1 such that $\psi_{\alpha_0}, \psi_{\alpha_1} \in Q$, $0 \le \alpha_1 \le \alpha_0 \le \omega$ and $C_{\text{KD45}} \vDash \psi \leftrightarrow \forall x(((x r x) \land \psi_{\alpha_0}) \lor (\neg(x r x) \land \psi_{\alpha_1}))$. \Box

Using the previous lemma, it is not hard to show that:

Theorem

The problem of modal definability of a FOL sentence ψ over the class $C_{\rm KD45}$ is in PSPACE.

Sketch of proof. Let $\psi_0 =_{def} \bot$, $\psi_{\omega} =_{def} \top$. Let *m* be the quantifier rank of ψ . Let $Q =_{def} \{\psi_0, \psi_1, \ldots, \psi_m, \psi_{m+1}, \psi_{\omega}\}$, which is a finite set. The proof works by showing that ψ is modally definable iff there are ordinals α_0, α_1 such that $\psi_{\alpha_0}, \psi_{\alpha_1} \in Q$, $0 \le \alpha_1 \le \alpha_0 \le \omega$ and $C_{\mathrm{KD45}} \vDash \psi \leftrightarrow \forall x(((x r x) \land \psi_{\alpha_0}) \lor (\neg(x r x) \land \psi_{\alpha_1}))$.

Using the previous lemma, it is not hard to show that:

Theorem

The problem of modal definability of a FOL sentence ψ over the class $C_{\rm KD45}$ is in PSPACE.

Sketch of proof. Let $\psi_0 =_{def} \bot, \psi_\omega =_{def} \top$. Let *m* be the quantifier rank of ψ . Let $Q =_{def} \{\psi_0, \psi_1, \ldots, \psi_m, \psi_{m+1}, \psi_\omega\}$, which is a finite set. The proof works by showing that ψ is modally definable iff there are ordinals α_0, α_1 such that $\psi_{\alpha_0}, \psi_{\alpha_1} \in Q$, $0 \le \alpha_1 \le \alpha_0 \le \omega$ and $C_{\mathrm{KD45}} \vDash \psi \leftrightarrow \forall x(((x r x) \land \psi_{\alpha_0}) \lor (\neg(x r x) \land \psi_{\alpha_1}))$. \Box

イロト イポト イヨト イヨト 二日

Let C be a class of frames. We say that C is *stable* with respect to a modal language L iff there is a FOL formula $\psi_1(\bar{x}, x)$ and a FOL sentence ψ_2 , such that:

(a) for all frames F in C, for all lists \bar{w} of worlds in F, and for all frames F', if F' is the relativized reduct of F with respect to $\psi_1(\bar{x}, x)$ and \bar{w} , then F' is in C,

(b) for all frames F_0 in C, there are frames F, F' in C and there is a list \overline{w} of worlds in F, such that F_0 is the relativized reduct of Fwith respect to $\psi_1(\overline{x}, x)$ and \overline{w} , $F \vDash \psi_2$, $F' \nvDash \psi_2$, and for all modal *L*-formulas ϕ : if $F \Vdash \phi$, then $F' \Vdash \phi$.

イロト イポト イヨト イヨト

Let C be a class of frames. We say that C is *stable* with respect to a modal language L iff there is a FOL formula $\psi_1(\bar{x}, x)$ and a FOL sentence ψ_2 , such that:

(a) for all frames F in C, for all lists \bar{w} of worlds in F, and for all frames F', if F' is the relativized reduct of F with respect to $\psi_1(\bar{x}, x)$ and \bar{w} , then F' is in C,

(b) for all frames F_0 in C, there are frames F, F' in C and there is a list \bar{w} of worlds in F, such that F_0 is the relativized reduct of Fwith respect to $\psi_1(\bar{x}, x)$ and \bar{w} , $F \vDash \psi_2$, $F' \nvDash \psi_2$, and for all modal *L*-formulas ϕ : if $F \Vdash \phi$, then $F' \Vdash \phi$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let C be a class of frames. We say that C is *stable* with respect to a modal language L iff there is a FOL formula $\psi_1(\bar{x}, x)$ and a FOL sentence ψ_2 , such that:

(a) for all frames F in C, for all lists \bar{w} of worlds in F, and for all frames F', if F' is the relativized reduct of F with respect to $\psi_1(\bar{x}, x)$ and \bar{w} , then F' is in C, (b) for all frames F₀ in C, there are frames F, F' in C and there is a list \bar{w} of worlds in F, such that F₀ is the relativized reduct of F with respect to $\psi_1(\bar{x}, x)$ and \bar{w} , $F \vDash \psi_2$, $F' \nvDash \psi_2$, and for all modal *L*-formulas ϕ : if $F \Vdash \phi$, then $F' \Vdash \phi$.

イロト イポト イヨト イヨト 三日

Theorem (P. Balbiani, T. Tinchev)

If C is a stable class of frames with respect to the modal language L, then the problem of deciding the validity of FOL sentences in C is reducible to the problem of deciding the modal definability of FOL sentences in the language L with respect to C.

emma

 C_{KD45} is a stable class with respect to $\mathrm{ML}(\Box)$.

Theorem

The problem of modal definability of ${\rm FOL}$ formulas over ${\it C}_{{\rm KD45}}$ is PSPACE-hard.

(日) (同) (三) (三)

Theorem (P. Balbiani, T. Tinchev)

If C is a stable class of frames with respect to the modal language L, then the problem of deciding the validity of FOL sentences in C is reducible to the problem of deciding the modal definability of FOL sentences in the language L with respect to C.

Lemma

 C_{KD45} is a stable class with respect to $\text{ML}(\Box)$.

Theorem

The problem of modal definability of ${\rm FOL}$ formulas over ${\it C}_{{\rm KD45}}$ is PSPACE-hard.

イロト イポト イヨト イヨト

Theorem (P. Balbiani, T. Tinchev)

If C is a stable class of frames with respect to the modal language L, then the problem of deciding the validity of FOL sentences in C is reducible to the problem of deciding the modal definability of FOL sentences in the language L with respect to C.

Lemma

 C_{KD45} is a stable class with respect to $\text{ML}(\Box)$.

Theorem

The problem of modal definability of ${\rm FOL}$ formulas over $C_{{\rm KD45}}$ is PSPACE-hard.

(日) (同) (三) (三)

Definitions

Denote by C_b the class of all finite KD45-frames.

Let $G \in C_b$, *m* be the maximal number of petals in a daisy in G, and *n* be the maximal number of stamens in a daisy in G. The *pattern of* G is the matrix $[x_{ij}]_{\substack{0 \le i \le m, \\ 1 \le j \le n}}$, where x_{ij} is the number of daisies in G with *i* petals and *j* stamens. Let $G \in C_b$. We define a $ML(\Box, [U])$ formula A_G , the Jankov-Finaformula of G, with the following properties:

Lemma

Let $F \in C_{KD45}$, $G \in C_b$. Let A_G be the Jankov-Fine formula of G. Then $F \Vdash \neg A_G$ iff G is not a p-morphic image of F.

・ロト ・同ト ・ヨト ・ヨト

Introduction
The Correspondence Problems
KD45-frames
First-Order Definability of $\mathrm{ML}(\Box)$ formulas
Modal definability of FOL formulas in $ML(\Box)$
Modal definability of FOL formulas in $ML(\Box, [U])$
Conclusion and Future Work

Definitions

Denote by C_b the class of all finite KD45-frames. Let $G \in C_b$, m be the maximal number of petals in a daisy in G, and n be the maximal number of stamens in a daisy in G. The pattern of G is the matrix $[x_{ij}]_{0 \le i \le m}$, where x_{ij} is the number of daisies in G with i petals and j stamens.

Let $G \in C_b$. We define a $ML(\Box, [U])$ formula A_G , the Jankov-Fine formula of G, with the following properties:

Lemma

Let $F \in C_{KD45}$, $G \in C_b$. Let A_G be the Jankov-Fine formula of G. Then $F \Vdash \neg A_G$ iff G is not a p-morphic image of F.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Introduction
The Correspondence Problems
KD45-frames
First-Order Definability of $ML(\Box)$ formulas
Modal definability of FOL formulas in $ML(\Box)$
Modal definability of FOL formulas in $ML(\Box, [U])$
Conclusion and Future Work

Definitions

Denote by C_b the class of all finite KD45-frames. Let $G \in C_b$, m be the maximal number of petals in a daisy in G, and n be the maximal number of stamens in a daisy in G. The pattern of G is the matrix $[x_{ij}]_{0 \le i \le m}$, where x_{ij} is the number of daisies in G with i petals and j stamens. Let $G \in C_b$. We define a $ML(\Box, [U])$ formula A_G , the Jankov-Fine formula of G, with the following properties:

emma

Let $F \in C_{KD45}$, $G \in C_b$. Let A_G be the Jankov-Fine formula of G. Then $F \Vdash \neg A_G$ iff G is not a p-morphic image of F.

Introduction
The Correspondence Problems
KD45-frames
First-Order Definability of $\mathrm{ML}(\Box)$ formulas
Modal definability of FOL formulas in $ML(\Box)$
Modal definability of FOL formulas in $ML(\Box, [U])$
Conclusion and Future Work

Definitions

Denote by C_b the class of all finite KD45-frames. Let $G \in C_b$, m be the maximal number of petals in a daisy in G, and n be the maximal number of stamens in a daisy in G. The pattern of G is the matrix $[x_{ij}]_{0 \le i \le m}$, where x_{ij} is the number of daisies in G with i petals and j stamens. Let $G \in C_b$. We define a ML(\Box , [U]) formula A_G , the Jankov-Fine formula of G, with the following properties:

Lemma

Let $F \in C_{KD45}$, $G \in C_b$. Let A_G be the Jankov-Fine formula of G. Then $F \Vdash \neg A_G$ iff G is not a p-morphic image of F.

Definitions

Let k > 0. We denote by C_b^k the class of finite KD45-frames with at most k daisies, each of them with at most k petals and k stamens. When discussing patterns of frames from C_b^k , we only consider $(k + 1) \times k$ matrices.

Pattern Transformation 1

This is our first pattern transformation:

Lemma

Let ψ be a sentence with quantifier rank k and modally definable by an ML(\Box , [U]) formula A over C_{KD45} . If there is some $F \in C_b$ with pattern \mathcal{P}_1 , where some $x_{0j} = k$ and $F \models \psi$, then there is a frame $F' \in C_b$ with a pattern \mathcal{P}_2 , which is equal to \mathcal{P}_1 , except that all $x_{01} = \cdots = x_{0j} = k$, and $F' \models \psi$.

Sketch of proof. Using the properties of p-morphisms and Ehrenfeucht-Fraïssé games.

イロト イポト イヨト イヨト 三日

Pattern Transformation 2

This is our second pattern transformation:

Lemma

Let ψ be a sentence with quantifier rank k and modally definable by a formula A from ML(\Box , [U]) over C_{KD45} . If there is some $F \in C_b$ with pattern \mathcal{P}_1 , where there is some $x_{ij} = k$ with i > 0, and F is such that $F \vDash \psi$, then there is a frame $F' \in C_b$ with a pattern \mathcal{P}_2 such that $F' \vDash \psi$ and \mathcal{P}_2 is equal to \mathcal{P}_1 , except that $x_{01} = \cdots = x_{0j} = \cdots = x_{m0} = \cdots = x_{mj} = k$.

Sketch of proof. Using the properties of p-morphisms and Ehrenfeucht-Fraïssé games.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [□ >] [□ >)] [□ >] [□ >]] [□ >)] [□ >]] [□ =]] [□ >]] [□ =]] [] [□ =]] []] []] []] []] []

Let ψ be a sentence with quantifier rank k. Denote by $C_b^k(\psi)$ the class off all $F \in C_b^k$ such that $F \models \psi$.

Theorem

Let ψ be a sentence with quantifier rank k, let $C_{\text{KD45}} \nvDash \psi$ and $C_{\text{KD45}} \nvDash \neg \psi$. Then ψ is modally definable over C_{KD45} with a formula of $\text{ML}(\Box, [U])$ iff $C_b^k(\psi)$ satisfies the following conditions: (1) $\emptyset \neq C_b^k(\psi) \neq C_b^k$; and (2) $C_b^k(\psi)$ is closed under p-morphisms and the two pattern transformations.

This guarantees that the problem of modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is in PSPACE.

Lemma

Let ψ be a FOL sentence. The problem of deciding $C_{KD45} \vDash \psi$ is PSPACE-complete.

Lemma

Let ψ be a sentence with quantifier depth k. Let τ_k be a FOL sentence which says 'there are at least k^4 daisies, each with at least k + 1 petals and k + 1 stamens'. Then $\psi \lor \tau_k$ is modally definable in ML(\Box , [U]) over C_{KD45} iff $C_{\text{KD45}} \vDash \psi$.

Theorem

The problem of modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Lemma

Let ψ be a FOL sentence. The problem of deciding $C_{KD45} \vDash \psi$ is PSPACE-complete.

Lemma

Let ψ be a sentence with quantifier depth k. Let τ_k be a FOL sentence which says 'there are at least k^4 daisies, each with at least k + 1 petals and k + 1 stamens'. Then $\psi \lor \tau_k$ is modally definable in ML(\Box , [U]) over C_{KD45} iff $C_{\text{KD45}} \vDash \psi$.

Theorem

The problem of modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Lemma

Let ψ be a FOL sentence. The problem of deciding $C_{KD45} \vDash \psi$ is PSPACE-complete.

Lemma

Let ψ be a sentence with quantifier depth k. Let τ_k be a FOL sentence which says 'there are at least k^4 daisies, each with at least k + 1 petals and k + 1 stamens'. Then $\psi \lor \tau_k$ is modally definable in ML(\Box , [U]) over C_{KD45} iff $C_{\text{KD45}} \vDash \psi$.

Theorem

The problem of modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

Conclusion

We have shown that:

- Every $ML(\Box)$ formula is first-order definable over C_{KD45} .
- Modal definability of FOL formulas in the language $ML(\Box)$ over C_{KD45} is PSPACE-complete.
- Modal definability of FOL formulas in the language $\mathrm{ML}(\Box,[U])$ over $\mathcal{C}_{\mathrm{KD45}}$ is PSPACE-complete.

イロト イポト イヨト イヨト

Conclusion

We have shown that:

- Every $\mathrm{ML}(\Box)$ formula is first-order definable over $\mathcal{C}_{\mathrm{KD45}}$.
- Modal definability of FOL formulas in the language ${\rm ML}(\Box)$ over ${\it C}_{{\rm KD45}}$ is PSPACE-complete.

- Modal definability of FOL formulas in the language $\mathrm{ML}(\Box,[U])$ over $\mathcal{C}_{\mathrm{KD45}}$ is PSPACE-complete.

・ロト ・同ト ・ヨト ・ヨト

Conclusion

We have shown that:

- Every $\mathrm{ML}(\Box)$ formula is first-order definable over $\mathcal{C}_{\mathrm{KD45}}$.
- Modal definability of FOL formulas in the language ${\rm ML}(\Box)$ over ${\it C}_{{\rm KD45}}$ is PSPACE-complete.

- Modal definability of FOL formulas in the language $ML(\Box, [U])$ over C_{KD45} is PSPACE-complete.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Future work

- First-order definability of $\mathrm{ML}(\Box, [U])$ formulas over $\mathcal{C}_{\mathrm{KD45}}$ must be examined.
- Definability in $C_{
 m K45}$ and $C_{
 m K5}$ may also be explored.
- Is it possible to obtain similar results with respect to $\mathrm{ML}(\Box, [\neq])$?

・ロト ・同ト ・ヨト ・ヨト

Future work

- First-order definability of $\mathrm{ML}(\Box, [U])$ formulas over $\mathcal{C}_{\mathrm{KD45}}$ must be examined.
- Definability in ${\it C}_{\rm K45}$ and ${\it C}_{\rm K5}$ may also be explored.

- Is it possible to obtain similar results with respect to $\mathrm{ML}(\Box, [\neq])$?

Future work

- First-order definability of $\mathrm{ML}(\Box, [U])$ formulas over $\mathcal{C}_{\mathrm{KD45}}$ must be examined.
- Definability in ${\it C}_{\rm K45}$ and ${\it C}_{\rm K5}$ may also be explored.
- Is it possible to obtain similar results with respect to $\mathrm{ML}(\Box,[\neq])?$

・ロト ・同ト ・ヨト ・ヨト

Thank you for your time!

Thank you for your time!

Dimiter Georgiev Computability of definability in the class of all KD45 frame

イロト イポト イヨト イヨト