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The Logic of Conditional Beliefs (CDL)

The Logic of Conditional Beliefs

Multi-agent modal epistemic logic, featuring the conditional belief operator:

Beli(B|A), “agent i believes B having learnt A”

Three-wise-men puzzle

- Agent a believes that she is wearing a white hat: BelaWa

- Agent a learns that agent b knows the colour of the hat that b herself is
wearing, and changes her beliefs: she is now convinced that she is wearing a
black hat: Bela(Ba|KbWb ∨ KbBb)

References

Baltag and Smets (2006); Baltag and Smets (2008); Board (2004); Pacuit (2013).
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The Logic of Conditional Beliefs (CDL)

Language of CDL

A := P | ⊥ | ¬A | A ∧ A | A ∨ A | A ⊃ A | Beli(A|A)

Epistemic operators

- Conditional belief (primitive): Beli(C|B), “agent i believes C, given B”

- Unconditional belief (defined): BeliB =df Beli(B|>), “agent i believes B”

- Knowledge (defined): KiB =df Beli(⊥|¬B), “agent i knows B”
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Axiomatic presentation of CDL [Board, 2004]

Inference rules

(1) If ` B, then ` Beli(B|A) (epistemization rule)

(2) If ` A ⊃⊂ B, then ` Beli(C|A) ⊃⊂ Beli(C|B) (rule of logical equivalence)

Axioms

Any axiomatization of the classical propositional calculus, plus:

(3) (Beli(B|A) ∧ Beli(B ⊃ C|A)) ⊃ Beli(C|A) (distribution axiom)

(4) Beli(A|A) (success axiom)

(5) Beli(B|A) ⊃⊂ (Beli(C|A∧ B) ⊃ Beli(C|A)) (minimal change principle 1)

(6) ¬Beli(¬B|A) ⊃ (Beli(C|A ∧ B) ⊃⊂ Beli(B ⊃ C|A)) (minimal change principle 2)

(7) Beli(B|A) ⊃ Beli(Beli(B|A)|C) (positive introspection)

(8) ¬Beli(B|A) ⊃ Beli(¬Beli(B|A)|C) (negative introspection)

(9) A ⊃ ¬Beli(⊥|A) (consistency axiom)

The axiomatization is related to the AGM postulates of belief revision.
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Epistemic Plausibility Models for CDL

Epistemic plausibility models [Board, 2004; Baltag and Smets, 2008; Pacuit, 2013]

Let A be a set of agents; an epistemic plausibility model (EPM) has the form

M = 〈W, {∼i}i∈A, {�i}i∈A, ~ �〉

where

- W is a non-empty set of elements called “worlds”;

- for each i ∈ A, ∼i is an equivalence relation over W;

- for each i ∈ A, �i is a well-founded pre-order over W;

- ~ � : Atm→ P(W) is the evaluation for atomic formulas.

The relations ∼i and �i satisfy the following properties:

- Plausibility implies possibility: If w �i v then w ∼i v

- Local connectedness: If w ∼i v then w �i v or v �i w
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Epistemic Plausibility Models for CDL

Truth conditions for formulas in EPM
- ~¬A� ≡ W − ~A�

- ~A ∧ B� ≡ ~A� ∩ ~B�

- ~A ∨ B� ≡ ~A� ∪ ~B�

- ~A ⊃ B� ≡ (W − ~A�) ∪ ~B�
- ~Beli(B|A)� ≡ {x ∈ W |Min�i ([x]∼i ∩ ~A�) ⊆ ~B�}

where [x]∼i = {w | w ∼i x}
and Min�i (S) = {u ∈ S | ∀z ∈ S (u �i z)}

Theorem: Completeness of the axiomatization [Board, 2004]

A formula A is a theorem of CDL if and only if it is valid in the class of epistemic
plausibility models.
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Neighbourhood Models for CDL

Neighbourhood models

- These models associate to each world a set of sets of worlds, used to
interpret modalities; they were originally proposed to give an interpretation of
non-normal modal logics: Scott (1970), Montague (1970), Chellas (1980)...

- Semantics of counterfactuals: Sphere models, Lewis (1973);

- Semantics of belief revision: Grove (1988);

- Studied recently also by Pacuit (2007); Marti and Pinosio (2013); Negri and
Olivetti (2015); Negri (2016).
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Neighbourhood Models for CDL

Multi-agent neighbourhood models

Let A be a set of agents; a multi-agent neighbourhood model (NM) has the form

M = 〈W, {I }i∈A, ~ �〉

where

- W is a non empty set of elements called “worlds” ;
- for each i ∈ A, Ii : W → P(P(W)) is the neighbourhood function, satisfying

the following properties:
Non-emptiness: ∀α ∈ Ii(x), α , ∅
Nesting: ∀α, β ∈ Ii(x), α ⊆ β or β ⊆ α
Total reflexivity: ∃α ∈ Ii(x) such that x ∈ α
Local absoluteness: If α ∈ Ii(x) and y ∈ α then Ii(x) = Ii(y)
Closure under intersection: If S ⊆ Ii(x) and S , ∅ then

⋂
S ∈ S (always holds in

finite models)

- ~ � : Atm→ P(W) is the evaluation for atomic formulas.
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Neighbourhood Models for CDL

Forcing relation [Negri, 2016]

- variables for worlds: x, y, z . . .

- variables for neighbourhoods: α, β, γ . . .

- “x forces A ”, for A formula: x  A iff x ∈ ~A�

- “α universally forces A ”: α ∀ A iff ∀y ∈ α (y  A)

- “α existentially forces A ”: α ∃ A iff ∃y ∈ α (y  A)

Truth conditions for formulas in NM

- Truth conditions for propositional formulas are the ones defined for EPM
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Conditional Belief

Truth condition

x  Beli(B|A) iff ∀α ∈ Ii(x)(α ∩ ~A� = ∅) or ∃β ∈ Ii(x)(β ∩ ~A� , ∅ and β ∩ ~A� ⊆ ~B�)

iff ∀α ∈ Ii(x)(α ∀ ¬A) or ∃β ∈ Ii(x)(β ∃ A and β ∀ A ⊃ B)
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Belief

Truth condition

x  BeliA iff ∃β ∈ Ii(x) (β ⊆ ~A�)

iff ∃β ∈ Ii(x) (β ∀ A)
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x
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β
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Knowledge

Truth condition

x  KiA iff ∀β ∈ Ii(x) (β ⊆ ~A�)

iff ∀β ∈ Ii(x) (β ∀ A)

y
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x
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Equivalence Between Plausibility Models and
Neighbourhood Models

Theorem: Equivalence between models

A formula A is valid in the class of epistemic plausibility models if and only if it is
valid in the class of multi-agent neighbourhood models.

Proof.

Generalization of the canonical “topological construction” considered by Pacuit
(2013) and Marti and Pinosio (2013), and going back to Alexandroff (1937). �

Corollary: Completeness of the axiomatization

A formula A is a theorem of CDL if and only if it is valid in the class of
neighbourhood models.
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A Labelled Sequent Calculus for CDL

Sequent calculus G3CDL

G3CDL is a labelled sequent calculus which internalizes the neighbourhood
semantics of CDL.

- labels for worlds: x, y, z . . .

- labels for neighbourhoods: a, b, c . . .

- a ∃ A ≡ ∃x (x ∈ a and x  A)
- a ∀ A ≡ ∀x (x ∈ a implies x  A)
- x i B|A ≡ ∃c (c ∈ Ii(x) and c ∃ A and c ∀ A ⊃ B)
- x  Beli(B|A) ≡ ∀a ∈ Ii(x)(a ∀ ¬A) or x i B|A
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A Labelled Sequent Calculus for CDL

G3CDL Rules (1)

Initial sequents x : P,Γ⇒ ∆, x : P

Rules for local forcing

x ∈ a,Γ⇒ ∆, x : A
Γ⇒ ∆, a ∀ A

R∀ (x fresh)
x : A, x ∈ a, a ∀ A,Γ⇒ ∆

x ∈ a, a ∀ A,Γ⇒ ∆
L∀

x ∈ a,Γ⇒ ∆, x : A, a ∃ A
x ∈ a,Γ⇒ ∆, a ∃ A

R∃
x ∈ a, x : A,Γ⇒ ∆

a ∃ A,Γ⇒ ∆
L∃ (x fresh)

Propositional rules: rules of G3K [Negri 2005]
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A Labelled Sequent Calculus for CDL

G3CDL Rules (2)

Rules for conditional belief

a ∈ Ii(x), a ∃ A,Γ⇒ ∆, x i B|A
Γ⇒ ∆, x : Beli(B|A)

RB (a fresh)

a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆, a ∃ A x i B|A, a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆

a ∈ Ii(x), x : Beli(B|A),Γ⇒ ∆
LB

a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∃ A a ∈ Ii(x),Γ⇒ ∆, x i B|A, a ∀ A ⊃ B
a ∈ Ii(x),Γ⇒ ∆, x i B|A

RC

a ∈ Ii(x), a ∃ A, a ∀ A ⊃ B,Γ⇒ ∆

x i B|A,Γ⇒ ∆
LC(a fresh)
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A Labelled Sequent Calculus for CDL

G3CDL Rules (3)

Rules for inclusion

a ⊆ a,Γ⇒ ∆

Γ⇒ ∆
Ref

c ⊆ a, c ⊆ b, b ⊆ a,Γ⇒ ∆

c ⊆ b, b ⊆ a,Γ⇒ ∆
Tr

x ∈ a, a ⊆ b, x ∈ b,Γ⇒ ∆

x ∈ a, a ⊆ b,Γ⇒ ∆
L⊆

Rules for semantic conditions

a ⊆ b, a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆ b ⊆ a, a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆

a ∈ Ii(x), b ∈ Ii(x),Γ⇒ ∆
S

x ∈ a, a ∈ Ii(x),Γ⇒ ∆

Γ⇒ ∆
T (a fresh)

a ∈ Ii(x), y ∈ a, b ∈ Ii(x), b ∈ Ii(y),Γ⇒ ∆

a ∈ Ii(x), y ∈ a, b ∈ Ii(x),Γ⇒ ∆
A1

a ∈ Ii(x), y ∈ a, a ∈ Ii(y),Γ⇒ ∆

a ∈ Ii(x), y ∈ a,Γ⇒ ∆
A2
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Derivation Example: Axiom (6) ¬Beli(¬B|A) ⊃ (Beli(B ⊃ C|A) ⊃ Beli(C|A ∧ B))

D



y : A · · · ⇒ . . . y : A y : B · · · ⇒ . . . y : B

y : A, y : B, y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . y : A ∧ B
(R∧)

y : A, y : B, y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B
(R ∃)

y ∈ b, c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, y : A ⊃ ¬B
(R ⊃, R¬)

c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, b ∀ A ⊃ ¬B
(R ∀)

c ∈ Ii(x), c ∃ A, b ∈ Ii(x) · · · ⇒ . . . b ∃ A ∧ B, x i ¬B|A
(RC)

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . x : Beli(¬B|A), b ∃ A ∧ B
(RB)

E



z : A · · · ⇒ . . . z : A z : c · · · ⇒ . . . z : C

z : A ⊃ C, z : A, z : B, z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B, · · · ⇒ . . . z : C
(L ⊃)

z : A, z : B, z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . z : C
(L ∀)

z ∈ b, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . z : (A ∧ B) ⊃ C
(R ⊃, L∧)

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∃ A ∧ B · · · ⇒ . . . b ∀ (A ∧ B) ⊃ C
(R ∀)

D E

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ C, a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A)⇒ x : Beli(¬B|A), x i C|A ∧ B
(RC)

x i C|A, a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A)⇒ x : Beli(¬B|A), x i C|A ∧ B
(LC)

a ∈ Ii(x), a ∃ A ∧ B, x : Beli(C|A)⇒ x : Beli(¬B|A), x i C|A ∧ B
(LB)

x : Beli(C|A)⇒ x : Beli(¬B|A), x : Beli(C|A ∧ B)
(RB)

x : ¬(Beli(¬B|A)), x : Beli(C|A)⇒ x : Beli(C|A ∧ B)
(L¬)
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Structural Properties of G3CDL

Admissibility of Weakening

The rules of left and right weakening are height-preserving admissible in G3CDL.

Invertibility

All the rules of G3CDL are height-preserving invertible.

Admissibility of Contraction

The rules of left and right contraction are height-preserving admissible in G3CDL.

Admissibility of Cut

Rule of Cut is admissible in G3CDL.
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Adding Knowlege and Belief

G3CDL Rules (4)

Rules for knowledge and belief

a ∈ Ii(x),Γ⇒ ∆, a ∀ A
Γ⇒ ∆, x : KiA

LK (a new)
a ∈ Ii(x), x : KiA, a ∀ A,Γ⇒ ∆

a ∈ Ii(x), x : KiA,Γ⇒ ∆
RK

a ∈ Ii(x),Γ⇒ ∆, x : BeliA, a ∀ A
a ∈ Ii(x),Γ⇒ ∆, x : BeliA

LSB
a ∈ Ii(x), a ∀ A⇒ ∆

x : BeliA,Γ⇒ ∆
RSB (a new)

Admissibility of the rules

The rules for knowledge and belief are admissible in G3CDL.
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Main Results

Soundness

If a sequent Γ⇒ ∆ is derivable in G3CDL, then it is valid in the class of
multi-agent neighbourhood models.

Completeness

If a formula A is valid in the class of multi-agent neighbourhood models, then it is
derivable in G3CDL.

Termination

Adopting a suitable strategy, proof search for any sequent of the form⇒ x0 : A
always comes to an end after a finite number of steps.

Finite model property

If a formula A is satisfiable in the class of neighbourhood models, then it is
satisfiable in the class of finite neighbourhood models.
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Proof sketch

Definition of saturated sequent

Definition of a suitable proof search strategy

Claim: Terminating derivation tree

Each sequent that occurs as a leaf of a derivation tree built in accordance with the
search strategy is either an initial sequent or a saturated sequent.

Claim: Existence of a finite countermodel

Let Γi ⇒ ∆i be a saturated sequent occurring as a leaf of a derivation branch.
Then there exists a finite countermodelM to Γi ⇒ ∆i that satisfies all formulas in
↓ Γi and falsifies all formulas in ↓ ∆i (where ↓Γi =

⋃
j≤i Γj and ↓∆i =

⋃
j≤i ∆j).

Girlando, Negri, Olivetti, Risch The Logic of Conditional Beliefs 27 / 37



Outline

(1) The logic CDL

(2) Semantics

(3) Labelled Sequent Calculus

(4) Main results: Soundness, Termination and Completeness

(5) Conclusions

Girlando, Negri, Olivetti, Risch The Logic of Conditional Beliefs 28 / 37



Conclusions

Results

- A new simple neighbourhood semantics for CDL
- A labelled sequent calculus based on it with good properties:

- analyticity, cut-freeness
- terminating proof-search

- Constructive proof of the finite model property of CDL

Future Research

- Provide an interpretation in NM of other epistemic operators defined in the
literature: safe belief, strong belief [Baltag and Smets, 2008];

- Provide a direct proof of completeness of the axiomatization with respect to
the semantics defined in terms of neighbourhood models;

- Long term goal: to obtain modular and uniform calculi covering all logics at
least as strong as CDL, including the family of Lewis’ logic of counterfactuals.
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Thank you !
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Equivalence of Plausibility Models and Neighbourhood
Models (1)

Theorem 1

if a formula A is valid in the class of multi-agent Neighbourhood Models then it is
valid in the class of Epistemic Plausibility Models

Proof.

LetMP = 〈W, {∼i}i∈A, {�i}i∈A, [ ]〉 be an P-model. Let u ∈ W define its downward
closed set:

↓�i u = {v ∈ W | v �i u}

We define the N-modelmodelMN = 〈W, {I}i∈A, [ ]〉, where for x ∈ W

Ii(x) = {↓�i u | u ∼i x}

�
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Equivalence of Plausibility Models and Neighbourhood
Models (2)

Theorem 2

if a formula A is valid in the class of Epistemic Plausibility Models then it is valid in
the class of multi-agent Neighbourhood Models

Proof.

LetMN = 〈W, {I}i∈A, [ ]〉 be a multi-agent N-model. We construct an P-model
MP = 〈W, {∼i}i∈A, {�i}i∈A, [ ]〉, by stipulating:

x ∼i y iff ∃α ∈ Ii(x), y ∈ α
x �i y iff ∀α ∈ Ii(y), if y ∈ α then x ∈ α.

�

Corollary

A formula A is a theorem of CDL if and only if it is valid in the class of
neighbourhood models.
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Adding Knowlege and Belief

Admissibility of LK in G3CDL

KiA =df Beli(⊥|¬A)

a ∈ Ii(x),Γ⇒ ∆, a ∀ A
Γ⇒ ∆, x : KiA

LK (a new)

a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A, a ∃ ¬A

a ∈ Ii(x),Γ⇒ ∆, a ∀ A

a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A, a ∀ A
Wk

a ∈ Ii(x), a ∃ ¬A,Γ⇒ ∆, x i ⊥|¬A
RC

Γ⇒ ∆, x : Beli(⊥|¬A)
RB
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Derivation Example: Axiom (9) A ⊃ ¬Beli(⊥|A)

D :

x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒ a ∃ A, x : A

x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒ a ∃ A
R∃

....
D

y ∈ b, y : A, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ ⊥, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒ y : A;

y : ⊥, y ∈ b, y : A, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ ⊥, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒

y : A ⊃ ⊥, y ∈ b, y : A, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ ⊥, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒
L⊃

y ∈ b, y : A, b ∈ Ii(x), b ∃ A, b ∀ A ⊃ ⊥, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒
L∀

b ∈ Ii(x), b ∃ A, b ∀ A ⊃ ⊥, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒
L∃

x i ⊥|A, x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒
LC

x ∈ a, a ∈ Ii(x), x : A, x : Beli(⊥|A)⇒
LB

x : A, x : Beli(⊥|A)⇒
T

x : A⇒ x : ¬Beli(⊥|A)
R¬
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Main results

Saturated sequent

Consider a derivation branch of the form Γ0 ⇒ ∆0, ...,Γk ⇒ ∆k,Γk+1 ⇒ ∆k+1, ...
where Γ0 ⇒ ∆0 is the sequent⇒ x0 : A, and ↓Γi =

⋃
j≤i Γj and ↓∆i =

⋃
j≤i ∆j. For

each rule (R), we say that a sequent Γ⇒ ∆ satisfies the saturation condition
associated to (R) if the following hold:

(R ∀) If a ∀ A is in ↓ ∆, then for some x there is x ∈ a in Γ and x : A in
↓ ∆;
(L ∀) If x ∈ a and a ∀ A are in Γ, then x : A is in Γ;
(RB) If x : Beli(B|A) is in ↓ ∆, then for some i ∈ A and for some a,
a ∈ Ii(x) is in Γ, a ∃ A is in ↓ Γ and x i B|A is in ↓ ∆;
(LB) If a ∈ Ii(x) and x : Beli(B|A) are in Γ, then either a ∃ A is in ↓ ∆ or
x i B|A is in ↓ Γ;
(T) For all x occurring in ↓ Γ∪ ↓ ∆, for all i ∈ A there is an a such that
a ∈ Ii(x) and x ∈ a are in Γ;
(S) If a ∈ Ii(x) and b ∈ Ii(x) are in Γ, then a ⊆ b or b ⊆ a are in Γ;
...

A sequent Γ⇒ ∆ is saturated if (Init) There is no x : P in Γ ∩ ∆; (L⊥) There is no
x : ⊥ in Γ; Γ⇒ ∆ satisfies all saturation conditions listed above.
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Main results

Proof search strategy

When constructing root-first a derivation tree for a sequent⇒ x0 : A, apply the
following strategy:

(1) No rule can be applied to an initial sequent;

(2) If k(x) < k(y) all rules applicable to x are applied before any rule applicable to
y.

(3) Rule (T) is applied as the first one to each world label x.

(4) Rules which do not introduce a new label (static rules) are applied before the
rules which do introduce new labels (dynamic rules), with the exception of
(T), as in (iii);

(5) Rule (RB) is applied before rule (LC);
(6) A rule (R) cannot be applied to a sequent Γi ⇒ ∆i if ↓ Γi and / or ↓ ∆i satisfy

the saturation condition associated to (R).
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