The Logic of Conditional Beliefs: Neighbourhood Semantics and Sequent Calculus

Marianna Girlando, Sara Negri, Nicola Olivetti, Vincent Risch

Aix Marseille Université, Laboratoire des Sciences de l'Information et des Systèmes; University of Helsinki, Department of Philosophy

> Advances in Modal Logics Budapest, August 30 - September 2, 2016

- (1) The logic \mathbb{CDL}
- (2) Semantics
- (3) Labelled Sequent Calculus
- (4) Main results: Soundness, Termination and Completeness
- (5) Conclusions

Outline

(1) The logic \mathbb{CDL}

- (2) Semantics
- (3) Labelled Sequent Calculus
- (4) Main results: Soundness, Termination and Completeness
- (5) Conclusions

The Logic of Conditional Beliefs (CDL)

The Logic of Conditional Beliefs

Multi-agent modal epistemic logic, featuring the conditional belief operator:

 $Bel_i(B|A)$, "agent i believes B having learnt A"

Three-wise-men puzzle

- Agent a believes that she is wearing a white hat: Bel_aW_a
- Agent a learns that agent b knows the colour of the hat that b herself is wearing, and changes her beliefs: she is now convinced that she is wearing a black hat: $Bel_a(B_a|K_bW_b \lor K_bB_b)$

References

Baltag and Smets (2006); Baltag and Smets (2008); Board (2004); Pacuit (2013).

The Logic of Conditional Beliefs (CDL)

Language of \mathbb{CDL}

$A := P \mid \perp \mid \neg A \mid A \land A \mid A \lor A \mid A \supset A \mid Bel_i(A|A)$

Epistemic operators

- Conditional belief (primitive): Bel_i(C|B), "agent i believes C, given B"
- Unconditional belief (defined): $Bel_iB =_{df} Bel_i(B|\top)$, "agent *i* believes B"

- Knowledge (defined): $K_i B =_{df} Bel_i(\perp | \neg B)$, "agent *i* knows *B*"

Axiomatic presentation of CDL [Board, 2004]

Inference rules

(1) If $\vdash B$, then $\vdash Bel_i(B|A)$ (epistemization rule)(2) If $\vdash A \supset \subset B$, then $\vdash Bel_i(C|A) \supset \subset Bel_i(C|B)$ (rule of logical equivalence)

Axioms

Any axiomatization of the classical propositional calculus, plus:

 $\begin{array}{lll} (3) & (Bel_i(B|A) \land Bel_i(B \supset C|A)) \supset Bel_i(C|A) & (\text{distribution axiom}) \\ (4) & Bel_i(A|A) & (\text{success axiom}) \\ (5) & Bel_i(B|A) \supset \subset (Bel_i(C|A \land B) \supset Bel_i(C|A)) & (\text{minimal change principle 1}) \\ (6) & \neg Bel_i(\neg B|A) \supset (Bel_i(C|A \land B) \supset \subset Bel_i(B \supset C|A)) & (\text{minimal change principle 2}) \\ (7) & Bel_i(B|A) \supset Bel_i(Bel_i(B|A)|C) & (\text{positive introspection}) \\ (8) & \neg Bel_i(B|A) \supset Bel_i(\neg Bel_i(B|A)|C) & (\text{negative introspection}) \\ (9) & A \supset \neg Bel_i(\bot|A) & (\text{consistency axiom}) \end{array}$

The axiomatization is related to the AGM postulates of belief revision.

(1) The logic CDL

(2) Semantics

- (3) Labelled Sequent Calculus
- (4) Main results: Soundness, Termination and Completeness
- (5) Conclusions

Epistemic Plausibility Models for CDL

Epistemic plausibility models [Board, 2004; Baltag and Smets, 2008; Pacuit, 2013] Let \mathcal{A} be a set of agents; an *epistemic plausibility model* (*EPM*) has the form

 $\mathcal{M} = \langle W, \{\sim_i\}_{i \in \mathcal{A}}, \{\leq_i\}_{i \in \mathcal{A}}, \llbracket \ \rrbracket \rangle$

where

- W is a non-empty set of elements called "worlds";
- for each $i \in \mathcal{A}$, \sim_i is an equivalence relation over W;
- for each $i \in \mathcal{A}$, \leq_i is a well-founded pre-order over W;
- $\llbracket \ \rrbracket$: Atm $\rightarrow \mathcal{P}(W)$ is the evaluation for atomic formulas.

The relations \sim_i and \leq_i satisfy the following properties:

- Plausibility implies possibility: If $w \leq_i v$ then $w \sim_i v$
- Local connectedness: If $w \sim_i v$ then $w \leq_i v$ or $v \leq_i w$

Epistemic Plausibility Models for CDL

Truth conditions for formulas in EPM

- $\llbracket \neg A \rrbracket \equiv W \llbracket A \rrbracket$
- $\llbracket A \land B \rrbracket \equiv \llbracket A \rrbracket \cap \llbracket B \rrbracket$
- $\llbracket A \lor B \rrbracket \equiv \llbracket A \rrbracket \cup \llbracket B \rrbracket$
- $\llbracket A \supset B \rrbracket \equiv (W \llbracket A \rrbracket) \cup \llbracket B \rrbracket$
- $\llbracket Bel_i(B|A) \rrbracket \equiv \{x \in W \mid Min_{\leq_i}([x]_{\sim_i} \cap \llbracket A \rrbracket) \subseteq \llbracket B \rrbracket\}$ where $[x]_{\sim_i} = \{w \mid w \sim_i x\}$ and $Min_{\leq_i}(S) = \{u \in S \mid \forall z \in S \ (u \leq_i z)\}$

Theorem: Completeness of the axiomatization [Board, 2004]

A formula A is a theorem of \mathbb{CDL} if and only if it is valid in the class of epistemic plausibility models.

Neighbourhood models

- These models associate to each world a set of sets of worlds, used to interpret modalities; they were originally proposed to give an interpretation of non-normal modal logics: Scott (1970), Montague (1970), Chellas (1980)...
- Semantics of counterfactuals: Sphere models, Lewis (1973);
- Semantics of belief revision: Grove (1988);
- Studied recently also by Pacuit (2007); Marti and Pinosio (2013); Negri and Olivetti (2015); Negri (2016).

Neighbourhood Models for \mathbb{CDL}

Multi-agent neighbourhood models

Let \mathcal{A} be a set of agents; a multi-agent neighbourhood model (NM) has the form

 $\mathcal{M} = \langle W, \{I\}_{i \in \mathcal{A}}, \llbracket] \rangle$

where

- W is a non empty set of elements called "worlds";
- for each $i \in \mathcal{A}$, $I_i : W \to \mathcal{P}(\mathcal{P}(W))$ is the neighbourhood function, satisfying the following properties:
 - Non-emptiness: $\forall \alpha \in I_i(x), \alpha \neq \emptyset$
 - Nesting: $\forall \alpha, \beta \in I_i(x), \alpha \subseteq \beta \text{ or } \beta \subseteq \alpha$
 - Total reflexivity: $\exists \alpha \in I_i(x)$ such that $x \in \alpha$
 - Local absoluteness: If $\alpha \in I_i(x)$ and $y \in \alpha$ then $I_i(x) = I_i(y)$
 - Closure under intersection: If S ⊆ I_i(x) and S ≠ Ø then ∩ S ∈ S (always holds in finite models)
- $\llbracket \rrbracket$: *Atm* $\rightarrow \mathcal{P}(W)$ is the evaluation for atomic formulas.

Neighbourhood Models for \mathbb{CDL}

Forcing relation [Negri, 2016]

- variables for worlds: *x*, *y*, *z*...
- variables for neighbourhoods: $\alpha, \beta, \gamma \dots$
- "x forces A ", for A formula: $x \Vdash A$ iff $x \in \llbracket A \rrbracket$
- " α universally forces A ": $\alpha \Vdash^{\forall} A$ iff $\forall y \in \alpha (y \Vdash A)$
- " α existentially forces A ": $\alpha \Vdash^{\exists} A$ iff $\exists y \in \alpha (y \Vdash A)$

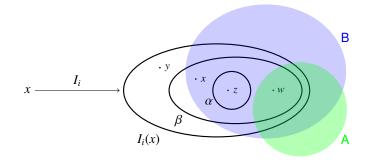
Truth conditions for formulas in NM

- Truth conditions for propositional formulas are the ones defined for EPM

Conditional Belief

Truth condition

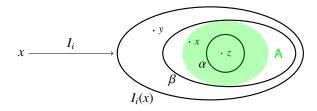
$\begin{aligned} x \Vdash Bel_i(B|A) & iff \quad \forall \alpha \in I_i(x)(\alpha \cap [\![A]\!] = \emptyset) \ or \ \exists \beta \in I_i(x)(\beta \cap [\![A]\!] \neq \emptyset \ and \ \beta \cap [\![A]\!] \subseteq [\![B]\!]) \\ & iff \quad \forall \alpha \in I_i(x)(\alpha \Vdash^{\forall} \neg A) \quad or \quad \exists \beta \in I_i(x)(\beta \Vdash^{\exists} A \ and \ \beta \Vdash^{\forall} A \supset B) \end{aligned}$



Belief

Truth condition

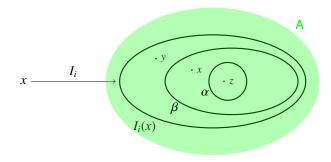
$$\begin{split} x \Vdash Bel_i A & iff \quad \exists \beta \in I_i(x) \ (\beta \subseteq \llbracket A \rrbracket) \\ & iff \quad \exists \beta \in I_i(x) \ (\beta \Vdash^{\forall} A) \end{split}$$



Knowledge

Truth condition

$$x \Vdash K_i A \quad iff \quad \forall \beta \in I_i(x) \ (\beta \subseteq \llbracket A \rrbracket)$$
$$iff \quad \forall \beta \in I_i(x) \ (\beta \Vdash^{\forall} A)$$



Equivalence Between Plausibility Models and Neighbourhood Models

Theorem: Equivalence between models

A formula *A* is valid in the class of epistemic plausibility models if and only if it is valid in the class of multi-agent neighbourhood models.

Proof.

Generalization of the canonical "topological construction" considered by Pacuit (2013) and Marti and Pinosio (2013), and going back to Alexandroff (1937).

Corollary: Completeness of the axiomatization

A formula A is a theorem of \mathbb{CDL} if and only if it is valid in the class of neighbourhood models.

(1) The logic CDL

(2) Semantics

(3) Labelled Sequent Calculus

(4) Main results: Soundness, Termination and Completeness

(5) Conclusions

A Labelled Sequent Calculus for CDL

Sequent calculus G3CDL

G3CDL is a labelled sequent calculus which internalizes the neighbourhood semantics of \mathbb{CDL} .

- labels for worlds: x, y, z...
- labels for neighbourhoods: *a*, *b*, *c*...
- $a \Vdash^{\exists} A \equiv \exists x \ (x \in a \ and \ x \Vdash A)$
- $a \Vdash^{\forall} A \equiv \forall x \ (x \in a \ implies \ x \Vdash A)$
- $x \Vdash_i B | A \equiv \exists c \ (c \in I_i(x) \ and \ c \Vdash^{\exists} A \ and \ c \Vdash^{\forall} A \supset B)$
- $x \Vdash Bel_i(B|A) \equiv \forall a \in I_i(x)(a \Vdash^{\forall} \neg A) \text{ or } x \Vdash_i B|A$

A Labelled Sequent Calculus for \mathbb{CDL}

G3CDL Rules (1)

Initial sequents

 $x: P, \Gamma \Rightarrow \Delta, x: P$

Rules for local forcing

$$\frac{x \in a, \Gamma \Rightarrow \Delta, x : A}{\Gamma \Rightarrow \Delta, a \Vdash^{\forall} A} \xrightarrow{R \Vdash^{\forall} (x \text{ fresh})} \frac{x : A, x \in a, a \Vdash^{\forall} A, \Gamma \Rightarrow \Delta}{x \in a, a \Vdash^{\forall} A, \Gamma \Rightarrow \Delta} \xrightarrow{L \Vdash^{\forall} A} \xrightarrow{R \Vdash^{\exists} A} x \in a, \Gamma \Rightarrow \Delta, x : A, a \Vdash^{\exists} A} \xrightarrow{R \Vdash^{\exists} A} \frac{x \in a, x : A, \Gamma \Rightarrow \Delta}{a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta} \xrightarrow{L \Vdash^{\exists} (x \text{ fresh})}$$

Propositional rules: rules of G3K [Negri 2005]

A Labelled Sequent Calculus for CDL

G3CDL Rules (2)

Rules for conditional belief

$$\frac{a \in I_{i}(x), a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{i} B|A}{\Gamma \Rightarrow \Delta, x : Bel_{i}(B|A)} RB (a \text{ fresh})$$

$$\frac{a \in I_{i}(x), x : Bel_{i}(B|A), \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad x \Vdash_{i} B|A, a \in I_{i}(x), x : Bel_{i}(B|A), \Gamma \Rightarrow \Delta}{a \in I_{i}(x), x : Bel_{i}(B|A), \Gamma \Rightarrow \Delta} LB$$

$$\frac{a \in I_{i}(x), \Gamma \Rightarrow \Delta, x \Vdash_{i} B|A, a \Vdash^{\exists} A \quad a \in I_{i}(x), \Gamma \Rightarrow \Delta, x \Vdash_{i} B|A, a \Vdash^{\forall} A \supset B}{a \in I_{i}(x), \Gamma \Rightarrow \Delta, x \Vdash_{i} B|A} RC$$

$$\frac{a \in I_{i}(x), a \Vdash^{\exists} A, a \Vdash^{\forall} A \supset B, \Gamma \Rightarrow \Delta}{x \Vdash_{i} B|A, \Gamma \Rightarrow \Delta} LC(a \text{ fresh})$$

A Labelled Sequent Calculus for CDL

G3CDL Rules (3)

Rules for inclusion

$$\begin{array}{l} \underline{a \subseteq a, \Gamma \Rightarrow \Delta} \\ \overline{\Gamma \Rightarrow \Delta} \end{array} \stackrel{Ref}{} \qquad \qquad \underbrace{ \begin{array}{l} \underline{c \subseteq a, c \subseteq b, b \subseteq a, \Gamma \Rightarrow \Delta} \\ \overline{c \subseteq b, b \subseteq a, \Gamma \Rightarrow \Delta} \end{array}}_{X \in a, a \subseteq b, x \in b, \Gamma \Rightarrow \Delta} \\ \underline{x \in a, a \subseteq b, \Gamma \Rightarrow \Delta} \end{array} \stackrel{L \subseteq}{} \\ \end{array}$$

Rules for semantic conditions

$$\frac{a \subseteq b, a \in I_i(x), b \in I_i(x), \Gamma \Rightarrow \Delta \quad b \subseteq a, a \in I_i(x), b \in I_i(x), \Gamma \Rightarrow \Delta}{a \in I_i(x), b \in I_i(x), \Gamma \Rightarrow \Delta} s$$

$$\frac{x \in a, a \in I_i(x), \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} T (a \text{ fresh})$$

$$\frac{a \in I_i(x), y \in a, b \in I_i(x), b \in I_i(y), \Gamma \Rightarrow \Delta}{a \in I_i(x), y \in a, b \in I_i(x), \Gamma \Rightarrow \Delta} A_1 \qquad \frac{a \in I_i(x), y \in a, a \in I_i(y), \Gamma \Rightarrow \Delta}{a \in I_i(x), y \in a, \Gamma \Rightarrow \Delta} A_2$$

Derivation Example: Axiom (6) $\neg Bel_i(\neg B|A) \supset (Bel_i(B \supset C|A) \supset Bel_i(C|A \land B))$

$$\mathcal{D} \left\{ \begin{array}{c} \frac{y:A\cdots\Rightarrow\ldots y:A}{y:B,\cdots\Rightarrow\ldots y:A} y:B\cdots\Rightarrow\ldots y:B}{(R\wedge)} \\ \frac{y:A,y:B,y\in b,c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots y:A\wedge B}{y:A,y:B,y\in b,c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots b \Vdash^{\exists}A\wedge B} \\ \frac{y\in b,c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots b \Vdash^{\exists}A\wedge B,y:A\supset B}{c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots b \Vdash^{\exists}A\wedge B,x \Vdash_{i}\neg B|A} \\ \frac{c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots b \Vdash^{\exists}A\wedge B,x \Vdash_{i}\neg B|A}{c\in I_{i}(x),c \Vdash^{\exists}A,b\in I_{i}(x)\cdots\Rightarrow\ldots b \Vdash^{\exists}A\wedge B,x \Vdash_{i}\neg B|A} \\ (RB)$$

$$\left\{ \begin{array}{c} \displaystyle \frac{z:A\cdots\Rightarrow\ldots z:A}{2:c\cdots\Rightarrow\ldots z:C} & (L\supset) \\ \displaystyle \frac{z:A\supset C, z:A, z:B, z\in b, b\in I_i(x), b\Vdash^{\exists}A, b\Vdash^{\forall}A\supset C, a\Vdash^{\exists}A\land B, \cdots\Rightarrow\ldots z:C}{(L\models^{\forall})} \\ \displaystyle \frac{z:A, z:B, z\in b, b\in I_i(x), b\Vdash^{\exists}A, b\Vdash^{\forall}A\supset C, a\Vdash^{\exists}A\land B\cdots\Rightarrow\ldots z:C}{b\in I_i(x), b\Vdash^{\exists}A, b\Vdash^{\forall}A\supset C, a\Vdash^{\exists}A\land B\cdots\Rightarrow\ldots z:(A\land B)\supset C} & (R\supset, L\land) \\ \displaystyle \frac{b\in I_i(x), b\Vdash^{\exists}A, b\Vdash^{\forall}A\supset C, a\Vdash^{\exists}A\land B\cdots\Rightarrow\ldots z:(A\land B)\supset C}{b\in I_i(x), b\Vdash^{\exists}A, b\Vdash^{\forall}A\supset C, a\Vdash^{\exists}A\land B\cdots\Rightarrow\ldots b\Vdash^{\forall}(A\land B)\supset C} & (R\Vdash^{\forall}) \end{array} \right.$$

$$\frac{\mathcal{D}}{b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset C, a \in I_{i}(x), a \Vdash^{\exists} A \land B, x : Bel_{i}(C|A) \Rightarrow x : Bel_{i}(\neg B|A), x \Vdash_{i} C|A \land B} (RC)$$

$$\frac{x \Vdash_{i} C|A, a \in I_{i}(x), a \Vdash^{\exists} A \land B, x : Bel_{i}(C|A) \Rightarrow x : Bel_{i}(\neg B|A), x \Vdash_{i} C|A \land B}{\frac{a \in I_{i}(x), a \Vdash^{\exists} A \land B, x : Bel_{i}(C|A) \Rightarrow x : Bel_{i}(\neg B|A), x \Vdash_{i} C|A \land B}{x : Bel_{i}(C|A) \Rightarrow x : Bel_{i}(\neg B|A), x \Vdash_{i} C|A \land B}} (RB)} (RC)$$

Girlando, Negri, Olivetti, Risch

ε

Structural Properties of G3CDL

Admissibility of Weakening

The rules of left and right weakening are height-preserving admissible in G3CDL.

Invertibility

All the rules of G3CDL are height-preserving invertible.

Admissibility of Contraction

The rules of left and right contraction are height-preserving admissible in G3CDL.

Admissibility of Cut

Rule of Cut is admissible in G3CDL.

Adding Knowlege and Belief

G3CDL Rules (4)

1

Rules for knowledge and belief

$$\frac{a \in I_{i}(x), \Gamma \Rightarrow \Delta, a \Vdash^{\forall} A}{\Gamma \Rightarrow \Delta, x : K_{i}A} \overset{LK (a new)}{LK (a new)} \qquad \frac{a \in I_{i}(x), x : K_{i}A, a \Vdash^{\forall} A, \Gamma \Rightarrow \Delta}{a \in I_{i}(x), x : K_{i}A, \Gamma \Rightarrow \Delta} \overset{RK}{RK}$$

$$\frac{a \in I_{i}(x), \Gamma \Rightarrow \Delta, x : Bel_{i}A, a \Vdash^{\forall} A}{a \in I_{i}(x), \Gamma \Rightarrow \Delta, x : Bel_{i}A} \overset{LSB}{LSB} \qquad \frac{a \in I_{i}(x), a \Vdash^{\forall} A \Rightarrow \Delta}{x : Bel_{i}A, \Gamma \Rightarrow \Delta} \overset{RSB (a new)}{RSB (a new)}$$

Admissibility of the rules

The rules for knowledge and belief are admissible in G3CDL.

(1) The logic CDL

- (2) Semantics
- (3) Labelled Sequent Calculus

(4) Main results: Soundness, Termination and Completeness

(5) Conclusions

Main Results

Soundness

If a sequent $\Gamma \Rightarrow \Delta$ is derivable in *G3CDL*, then it is valid in the class of multi-agent neighbourhood models.

Completeness

If a formula A is valid in the class of multi-agent neighbourhood models, then it is derivable in G3CDL.

Termination

Adopting a suitable strategy, proof search for any sequent of the form $\Rightarrow x_0 : A$ always comes to an end after a finite number of steps.

Finite model property

If a formula *A* is satisfiable in the class of neighbourhood models, then it is satisfiable in the class of *finite* neighbourhood models.

Proof sketch

- Definition of saturated sequent
- Definition of a suitable proof search strategy

Claim: Terminating derivation tree

Each sequent that occurs as a leaf of a derivation tree built in accordance with the search strategy is either an *initial sequent* or a *saturated sequent*.

Claim: Existence of a finite countermodel

Let $\Gamma_i \Rightarrow \Delta_i$ be a saturated sequent occurring as a leaf of a derivation branch. Then there exists a finite countermodel \mathcal{M} to $\Gamma_i \Rightarrow \Delta_i$ that *satisfies* all formulas in $\downarrow \Gamma_i$ and *falsifies* all formulas in $\downarrow \Delta_i$ (where $\downarrow \Gamma_i = \bigcup_{j \le i} \Gamma_j$ and $\downarrow \Delta_i = \bigcup_{j \le i} \Delta_j$). (1) The logic CDL

- (2) Semantics
- (3) Labelled Sequent Calculus
- (4) Main results: Soundness, Termination and Completeness

(5) Conclusions

Conclusions

Results

- A new simple neighbourhood semantics for \mathbb{CDL}
- A labelled sequent calculus based on it with good properties:
 - analyticity, cut-freeness
 - terminating proof-search
- Constructive proof of the finite model property of \mathbb{CDL}

Future Research

- Provide an interpretation in *NM* of other epistemic operators defined in the literature: *safe belief*, *strong belief* [Baltag and Smets, 2008];
- Provide a direct proof of completeness of the axiomatization with respect to the semantics defined in terms of neighbourhood models;
- Long term goal: to obtain modular and uniform calculi covering all logics at least as strong as CDL, including the family of Lewis' logic of counterfactuals.

Thank you !

References

Alexandroff, P. (1937). Diskrete Räume. Mat.Sb. (NS), 2(3):501–519.

- Baltag, A. and Smets, S. (2006). Conditional doxastic models: A qualitative approach to dynamic belief revision. *Electronic Notes in Theoretical Computer Science*, 165:5–21.
- Baltag, A. and Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. *Logic and the foundations of game and decision theory (LOFT 7)*, 3:9–58.
- Board, O. (2004). Dynamic interactive epistemology. Games and Economic Behavior, 49(1):49-80.
- Chellas, B. F. (1980). Modal logic: an introduction, volume 316. Cambridge University Press.
- Grove, A. (1988). Two modellings for theory change. *Journal of philosophical logic*, 17(2):157–170. Lewis, D. K. (1973). *Counterfactuals*. Blackwell.
- Marti L and Dinasia D (2012) Tanalagical compartica for conditionals. Th
- Marti, J. and Pinosio, R. (2013). Topological semantics for conditionals. The Logica Yearbook.
- Montague, R. (1970). Pragmatics and intensional logic. Synthese, 22(1-2):68-94.
- Negri, S. (2016). Proof theory for non-normal modal logics: The neighbourhood formalism and basic results. *to appear*,. http://www.helsinki.fi/~negri/negri_ifcolog.pdf.
- Negri, S. and Olivetti, N. (2015). A sequent calculus for preferential conditional logic based on neighbourhood semantics. In Automated Reasoning with Analytic Tableaux and Related Methods, pages 115–134. Springer.
- Pacuit, E. (2007). Neighborhood semantics for modal logic. Notes of a course on neighborhood structures for modal logic: http://ai.stanford.edu/ epacuit/classes/esslli/nbhdesslli.pdf.
- Pacuit, E. (2013). Dynamic epistemic logic I: Modeling knowledge and belief. *Philosophy Compass*, 8(9):798–814.
- Scott, D. (1970). Advice on modal logic. In Philosophical problems in logic, pages 143–173. Springer.

Equivalence of Plausibility Models and Neighbourhood Models (1)

Theorem 1

if a formula *A* is valid in the class of multi-agent Neighbourhood Models then it is valid in the class of Epistemic Plausibility Models

Proof.

Let $\mathcal{M}_P = \langle W, \{\sim_i\}_{i \in \mathcal{A}}, \{\leq_i\}_{i \in \mathcal{A}}, [] \rangle$ be an *P*-model. Let $u \in W$ define its downward closed set:

$$\downarrow^{\leq_i} u = \{ v \in W \mid v \leq_i u \}$$

We define the *N*-modelmodel $\mathcal{M}_N = \langle W, \{I\}_{i \in \mathcal{A}}, [] \rangle$, where for $x \in W$

$$I_i(x) = \{ \downarrow^{\leq_i} u \mid u \sim_i x \}$$

Equivalence of Plausibility Models and Neighbourhood Models (2)

Theorem 2

if a formula A is valid in the class of Epistemic Plausibility Models then it is valid in the class of multi-agent Neighbourhood Models

Proof.

Let $\mathcal{M}_N = \langle W, \{I\}_{i \in \mathcal{A}}, [] \rangle$ be a multi-agent *N*-model. We construct an *P*-model $\mathcal{M}_P = \langle W, \{\sim_i\}_{i \in \mathcal{A}}, \{\leq_i\}_{i \in \mathcal{A}}, [] \rangle$, by stipulating:

•
$$x \sim_i y$$
 iff $\exists \alpha \in I_i(x), y \in \alpha$

• $x \leq_i y$ iff $\forall \alpha \in I_i(y)$, if $y \in \alpha$ then $x \in \alpha$.

Corollary

A formula A is a theorem of \mathbb{CDL} if and only if it is valid in the class of neighbourhood models.

Girlando, Negri, Olivetti, Risch

Adding Knowlege and Belief

Admissibility of LK in G3CDL

•
$$K_i A =_{df} Bel_i(\bot | \neg A)$$

$$\frac{a \in I_i(x), \Gamma \Rightarrow \Delta, a \Vdash^{\forall} A}{\Gamma \Rightarrow \Delta, x : K_i A} LK (a new)$$

$$\frac{a \in I_i(x), a \Vdash^{\exists} \neg A, \Gamma \Rightarrow \Delta, x \Vdash_i \bot | \neg A, a \Vdash^{\exists} \neg A}{\overline{a \in I_i(x), a \Vdash^{\exists} \neg A, \Gamma \Rightarrow \Delta, x \Vdash_i \bot | \neg A, a \Vdash^{\forall} A}} \frac{w_k}{RC}$$

$$\frac{a \in I_i(x), a \Vdash^{\exists} \neg A, \Gamma \Rightarrow \Delta, x \Vdash_i \bot | \neg A, a \Vdash^{\exists} \neg A, \Gamma \Rightarrow \Delta, x \Vdash_i \bot | \neg A, a \Vdash^{\forall} A}{\Gamma \Rightarrow \Delta, x : Bel_i(\bot | \neg A)} RB$$

Derivation Example: Axiom (9) $A \supset \neg Bel_i(\perp|A)$

$$\mathcal{D}: \qquad \frac{x \in a, a \in I_i(x), x : A, x : Bel_i(\bot|A) \Rightarrow a \Vdash^{\exists} A, x : A}{x \in a, a \in I_i(x), x : A, x : Bel_i(\bot|A) \Rightarrow a \Vdash^{\exists} A} \xrightarrow{R \Vdash^{\exists}} R$$

$$\begin{array}{c} y \in b, y : A, b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow y : A; \\ y : \bot, y \in b, y : A, b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline y : A \supset \bot, y \in b, y : A, b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline y \in b, y : A, b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline y \in b, y : A, b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline b \in I_{i}(x), b \Vdash^{\exists} A, b \Vdash^{\forall} A \supset \bot, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline x \Vdash_{i} \bot|A, x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline x \in a, a \in I_{i}(x), x : A, x : Bel_{i}(\bot|A) \Rightarrow \\ \hline x : A \Rightarrow x : \neg Bel_{i}(\bot|A) \overset{R}{=} T \end{array}$$

Main results

Saturated sequent

Consider a derivation branch of the form $\Gamma_0 \Rightarrow \Delta_0, ..., \Gamma_k \Rightarrow \Delta_k, \Gamma_{k+1} \Rightarrow \Delta_{k+1}, ...$ where $\Gamma_0 \Rightarrow \Delta_0$ is the sequent $\Rightarrow x_0 : A$, and $\downarrow \Gamma_i = \bigcup_{j \le i} \Gamma_j$ and $\downarrow \Delta_i = \bigcup_{j \le i} \Delta_j$. For each rule (*R*), we say that a sequent $\Gamma \Rightarrow \Delta$ satisfies the saturation condition associated to (*R*) if the following hold:

 $(R \Vdash^{\forall})$ If $a \Vdash^{\forall} A$ is $in \downarrow \Delta$, then for some x there is $x \in a$ in Γ and x : A in $\downarrow \Delta$; $(L \Vdash^{\forall})$ If $x \in a$ and $a \Vdash^{\forall} A$ are in Γ , then x : A is in Γ ; (RB) If $x : Bel_i(B|A)$ is $in \downarrow \Delta$, then for some $i \in \mathcal{A}$ and for some a, $a \in I_i(x)$ is $in \Gamma, a \Vdash^{\exists} A$ is $in \downarrow \Gamma$ and $x \Vdash_i B|A$ is $in \downarrow \Delta$; (LB) If $a \in I_i(x)$ and $x : Bel_i(B|A)$ are $in \Gamma$, then either $a \Vdash^{\exists} A$ is $in \downarrow \Delta$ or $x \Vdash_i B|A$ is $in \downarrow \Gamma$; (T) For all x occurring $in \downarrow \Gamma \cup \downarrow \Delta$, for all $i \in \mathcal{A}$ there is an a such that $a \in I_i(x)$ and $x \in a$ are $in \Gamma$; (S) If $a \in I_i(x)$ and $b \in I_i(x)$ are $in \Gamma$, then $a \subseteq b$ or $b \subseteq a$ are $in \Gamma$; ...

A sequent $\Gamma \Rightarrow \Delta$ is *saturated* if (Init) There is no x : P in $\Gamma \cap \Delta$; ($L \perp$) There is no $x : \perp$ in Γ ; $\Gamma \Rightarrow \Delta$ satisfies *all* saturation conditions listed above.

Proof search strategy

When constructing root-first a derivation tree for a sequent $\Rightarrow x_0 : A$, apply the following strategy:

- (1) No rule can be applied to an initial sequent;
- (2) If k(x) < k(y) all rules applicable to x are applied before any rule applicable to y.
- (3) Rule (T) is applied as the first one to each world label *x*.
- (4) Rules which do not introduce a new label (static rules) are applied *before* the rules which do introduce new labels (dynamic rules), with the exception of (*T*), as in (iii);
- (5) Rule (*RB*) is applied *before* rule (*LC*);
- (6) A rule (*R*) cannot be applied to a sequent Γ_i ⇒ Δ_i if ↓ Γ_i and / or ↓ Δ_i satisfy the saturation condition associated to (*R*).