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The tangle modality 〈t〉

Extend the basic modal language L2 to L〈t〉2 by allowing formation of
the formula

〈t〉Γ

when Γ is any finite non-empty set of formulas.

Semantics of 〈t〉 in a model on a Kripke frame (W,R):

x |= 〈t〉Γ iff there is an endless R-path

xRx1 · · ·xnRxn+1 · · · · · ·

in W with each member of Γ being true at xn for infinitely many n.
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In a finite transitive frame:

an endless R-path eventually enters some non-degenerate cluster and
stays there.

x |= 〈t〉Γ iff x is R-related to some non-degenerate cluster C
with each member of Γ true at some point of C.

x |= 〈t〉{ϕ} iff there is a y with xRy and yRy and y |= ϕ

In a finite S4-model

x |= 〈t〉{ϕ} iff there is a y with xRy and y |= ϕ

iff x |= 3ϕ
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The modal mu-calculus language Lµ2
Allows formation of the least fixed point formula

µp.ϕ

when p is positive in ϕ.

The greatest fixed point formula νp.ϕ is

¬µp.ϕ(¬p/p).

Semantics in a model on a frame or space:

[[µp.ϕ]] is the least fixed point of the function S 7→ [[ϕ]]p:=S

[[µp.ϕ]] =
⋂
{S ⊆W : [[ϕ]]p:=S ⊆ S}

[[νp.ϕ]] is the greatest fixed point:

[[νp.ϕ]] =
⋃
{S ⊆W : S ⊆ [[ϕ]]p:=S}
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〈t〉Γ is definable in Lµ2
In any model on a transitive frame,

[[〈t〉Γ]] =
⋃
{S ⊆W : S ⊆

⋂
γ∈Γ

R−1([[γ]] ∩ S)}

i.e. [[〈t〉Γ]] is the largest set S such that

for all γ ∈ Γ, S ⊆ R−1([[γ]] ∩ S).

But R−1[[ϕ]] = [[3ϕ]], and
⋂

interprets
∧

,
so 〈t〉Γ has the same meaning as the Lµ2-formula

νp.
∧

γ∈Γ
3(γ ∧ p)

Suggests a topological semantics: replace R−1 by closure
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Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is
equivalent to L2.

This holds relative to any elementary class of frames (e.g. transitive).
And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993
The bisimulation-invariant fragment of monadic
second-order logic is equivalent to Lµ2.

Dawar & Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order
logic collapses to that of first-order logic, with both
fragments, and Lµ2, being equivalent to the tangle
extension L〈t〉2 .
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Fernández-Duque 2011

coined the name “tangle”.

axiomatised the L〈t〉2 -logic of the class of all (finite)
S4-frames, as S4 +

Fix: 〈t〉Γ→ 3(γ ∧ 〈t〉Γ), all γ ∈ Γ.

Ind: 2(ϕ→
∧
γ∈Γ 3(γ ∧ ϕ))→ (ϕ→ 〈t〉Γ).

provided its topological interpretation, with closure in
place of R−1.
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The derivative modality language L[d]

Replace 2 and 3 by [d] and 〈d〉, with [[〈d〉ϕ]] = R−1[[ϕ]]

Define 2ϕ as ϕ ∧ [d]ϕ, and 3ϕ = ϕ ∨ 〈d〉ϕ.

In a topological space X, the derivative of a subset S is

derivS = {x ∈ X : x is a limit point of S}.

x ∈ derivS iff every neighbourhood O of x has (O \ {x}) ∩ S 6= ∅.

In a model on X, [[〈d〉ϕ]] = deriv[[ϕ]], so

x |= 〈d〉ϕ iff every punctured neighbourhood of x intersects [[ϕ]],

x |= [d]ϕ iff some punctured neighbourhood of x is included in [[ϕ]].
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L[d] is more expressive than L2

[[2ϕ]] = the interior of [[ϕ]]. [[3ϕ]] = the closure of [[ϕ]].

Validity of the R-transitivity axiom

4 : 〈d〉〈d〉ϕ→ 〈d〉ϕ

holds iff X is a TD space, meaning deriv{x} is always closed.
[Aull & Thron 1962]

Validity of the axiom
D : 〈d〉>

holds iff X is dense-in-itself, i.e. no isolated points.
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Shehtman 1990:
Derived sets in Euclidean spaces and modal logic.
Proved

the L[d]-logic of every zero-dimensional separable dense-in-itself
metric space is KD4.
the L[d]-logic of the Euclidean space Rn for any n ≥ 2 is

KD4 + G1 : 〈d〉p ∧ 〈d〉¬p→ 〈d〉(3p ∧3¬p)

Conjectured
the L[d]-logic of the real line R is KD4 + G2, where Gn is∧

i≤n
〈d〉Qi → 〈d〉

(∧
i≤n

3¬Qi
)
, with Qi = pi ∧

∧
i 6=j≤n

¬pj .

[Proven later by Shehtman, and by Lucero-Bryan]
Asked

Is KD4G1 the largest logic of any dense-in-itself metric space?
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The tangled derivative language L〈dt〉2

Replace 〈t〉 by 〈dt〉.
Interpret 〈dt〉 by replacing R−1 by deriv:

In a model on space X,

[[〈dt〉Γ]] = the tangled derivative of {[[γ]] : γ ∈ Γ}.

=
⋃
{S ⊆ X : S ⊆

⋂
γ∈Γ

deriv([[γ]] ∩ S)}.

Whereas,

[[〈t〉Γ]] = the tangled closure of {[[γ]] : γ ∈ Γ}.

=
⋃
{S ⊆ X : S ⊆

⋂
γ∈Γ

closure([[γ]] ∩ S)}.
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Defining 〈t〉 from 〈dt〉

In a topological space X, 〈t〉Γ is equivalent to

(
∧

Γ) ∨ 〈d〉(
∧

Γ) ∨ 〈dt〉Γ

if, and only if X is a TD space.
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Main results of our AiML 2016 paper:

Let Lt be the logic that extends a logic L by the tangle axioms

Fix: 〈dt〉Γ→ 〈d〉(γ ∧ 〈dt〉Γ)

Ind: 2(ϕ→
∧
γ∈Γ 〈d〉(γ ∧ ϕ))→ (ϕ→ 〈dt〉Γ).

If X is any zero-dimensional dense-in-itself metric space, then the
L〈dt〉[d] -logic of X is axiomatisable as KD4t.

The L〈dt〉[d] -logic of R is KD4G2t.
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Adding the universal modality ∀
L.U is the extension of L that has the universal modality ∀ with
semantics

w |= ∀ϕ iff for all v ∈W , v |= ϕ,

the S5 axioms and rules for ∀, and the axiom ∀ϕ→ [d]ϕ.

If X is any zero-dimensional dense-in-itself metric space, then the
L〈dt〉[d]∀-logic of X is KD4t.U.

The L〈dt〉[d]∀-logic of R is KD4G2t.UC, where C is the axiom

∀(2ϕ ∨2¬ϕ)→ (∀ϕ ∨ ∀¬ϕ),

expressing topological connectedness.
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Strong completeness: ‘consistent sets are satisfiable’

Any countable KD4t-consistent set Γ of L〈dt〉[d] -formulas is satisfiable in
any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for “large enough” Γ:

{3pi : i < κ} ∪ {¬3(pi ∧ pj) : i < j < κ}

Not satisfiable in frame F if κ > cardF .

Not satisfiable in space X if κ > 2cardX .
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Strong completeness can fail for Kripke semantics for countable Γ:

Σ = {3p0}∪
{2(p2n → 3(p2n+1 ∧ q)),2(p2n+1 → 3(p2n+2 ∧ ¬q)) : n < ω}

Σ ∪ {¬〈t〉{q,¬q}} is finitely satisfiable, so is K4t-consistent, but is not
satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the ‘Truth Lemma’ fails.
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Proving a logic L is complete over space X:

1 Prove the finite model property for L over Kripke frames:
if L 0 ϕ, then ϕ is falsifiable in some suitable finite frame F |=L.

2 Construct a surjective d-morphism f : X � F :

f−1(R−1(S)) = deriv f−1(S).

Such an f preserves validity of formulas from X to F , so X 6|= ϕ.
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Enncoding a d-morphism X � F ,
when F is a point-generated S4-frame.
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Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space.
Then X is dissectable:

Let G be a non-empty open subset of X, and let r, s < ω.

Then G can be partitioned into non-empty subsets

G1, . . . ,Gr,B0, . . . ,Bs

such that the Gi’s are all open and

cl(Gi) \Gi = deriv(Bj) = cl(G) \ (G1 ∪ · · · ∪Gr).
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Further dissections of a dense-in-itself metric X

1 Let G be a non-empty open subset of X, and let k < ω. Then there
are pairwise disjoint non-empty subsets I0, . . . , Ik ⊆ G satisfying

deriv Ii = cl(G) \G for each i ≤ k.

2 Let X be zero-dimensional.
If G is a non-empty open subset of X, and n < ω, then G can be
partitioned into non-empty open subsets G0, . . . ,Gn such that

cl(Gi) \Gi = cl(G) \G for each i ≤ n.
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