The Tangled Derivative Logic of the Real Line and Zero-Dimensional Spaces

Rob Goldblatt

Victoria University of Wellington

Advances in Modal Logic 2016

Budapest, 30 August-2 September

Joint work with Ian Hodkinson

Prior paper:

• Spatial logic of modal mu-calculus and tangled closure operators. *arXiv: 1603.01766*

The tangle modality $\langle t \rangle$

Extend the basic modal language \mathcal{L}_\square to $\mathcal{L}_\square^{\langle\ell\rangle}$ by allowing formation of the formula

 $\langle t \rangle \Gamma$

when Γ is any finite non-empty set of formulas.

Semantics of $\langle t \rangle$ in a model on a Kripke frame (W, R): $x \models \langle t \rangle \Gamma$ iff there is an endless *R*-path

 $xRx_1\cdots x_nRx_{n+1}\cdots\cdots$

in W with each member of Γ being true at x_n for infinitely many n.

The tangle modality $\langle t \rangle$

Extend the basic modal language \mathcal{L}_\square to $\mathcal{L}_\square^{\langle t\rangle}$ by allowing formation of the formula

 $\langle t \rangle \Gamma$

when Γ is any finite non-empty set of formulas.

Semantics of $\langle t \rangle$ in a model on a Kripke frame (W, R): $x \models \langle t \rangle \Gamma$ iff there is an endless *R*-path

 $xRx_1\cdots x_nRx_{n+1}\cdots\cdots$

in W with each member of Γ being true at x_n for infinitely many n.

The tangle modality $\langle t \rangle$

Extend the basic modal language \mathcal{L}_\square to $\mathcal{L}_\square^{\langle t\rangle}$ by allowing formation of the formula

 $\langle t \rangle \Gamma$

when Γ is any finite non-empty set of formulas.

Semantics of $\langle t \rangle$ in a model on a Kripke frame (W, R):

 $x \models \langle t \rangle \Gamma$ iff there is an endless *R*-path

 $xRx_1\cdots x_nRx_{n+1}\cdots\cdots$

in W with each member of Γ being true at x_n for infinitely many n.

In a finite transitive frame:

an endless *R*-path eventually enters some non-degenerate cluster and stays there.

 $x \models \langle t \rangle \Gamma$ iff x is *R*-related to some non-degenerate cluster C with each member of Γ true at some point of C.

 $x \models \langle t \rangle \{ \varphi \}$ iff there is a y with xRy and yRy and $y \models \varphi$

In a finite S4-model

 $x \models \langle t \rangle \{\varphi\}$ iff there is a *y* with *xRy* and *y* \models φ iff $x \models \Diamond \varphi$

In a finite transitive frame:

an endless *R*-path eventually enters some non-degenerate cluster and stays there.

 $x \models \langle t \rangle \Gamma$ iff x is *R*-related to some non-degenerate cluster C with each member of Γ true at some point of C.

 $x \models \langle t \rangle \{ \varphi \}$ iff there is a y with xRy and yRy and $y \models \varphi$

In a finite S4-model

 $\begin{array}{l} x \models \langle t \rangle \{\varphi\} \text{ iff } \ \text{ there is a } y \text{ with } xRy \text{ and } y \models \varphi \\ \text{ iff } \ x \models \Diamond \varphi \end{array}$

The modal mu-calculus language \mathcal{L}^{μ}_{\Box}

Allows formation of the least fixed point formula

$\mu p. \varphi$

when p is positive in φ .

The greatest fixed point formula $\nu p.\varphi$ is

 $\neg \mu p.\varphi(\neg p/p).$

Semantics in a model on a frame or space:

 $\llbracket \mu p. \varphi \rrbracket$ is the least fixed point of the function $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$\llbracket \mu p.\varphi \rrbracket = \bigcap \{ S \subseteq W : \llbracket \varphi \rrbracket_{p:=S} \subseteq S \}$$

 $\llbracket \nu p. \varphi \rrbracket$ is the greatest fixed point:

$$\llbracket \nu p.\varphi \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \llbracket \varphi \rrbracket_{p:=S} \}$$

The modal mu-calculus language \mathcal{L}^{μ}_{\Box}

Allows formation of the least fixed point formula

$\mu p.\varphi$

when p is positive in φ .

The greatest fixed point formula $\nu p.\varphi$ is

 $\neg \mu p.\varphi(\neg p/p).$

Semantics in a model on a frame or space:

 $\llbracket \mu p. \varphi \rrbracket$ is the least fixed point of the function $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$\llbracket \mu p.\varphi \rrbracket = \bigcap \{ S \subseteq W : \llbracket \varphi \rrbracket_{p:=S} \subseteq S \}$$

 $\llbracket \nu p. \varphi \rrbracket$ is the greatest fixed point:

$$\llbracket \nu p.\varphi \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \llbracket \varphi \rrbracket_{p:=S} \}$$

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But $R^{-1}[\![\varphi]\!] = [\![\Diamond \varphi]\!]$, and \bigcap interprets \bigwedge , so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But $R^{-1}\llbracket\varphi\rrbracket = \llbracket\Diamond\varphi\rrbracket$, and \bigcap interprets \bigwedge , so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But
$$R^{-1}\llbracket \varphi \rrbracket = \llbracket \Diamond \varphi \rrbracket$$
, and \bigcap interprets \bigwedge ,
so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

In any model on a transitive frame,

$$\llbracket \langle t \rangle \Gamma \rrbracket = \bigcup \{ S \subseteq W : S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S) \}$$

i.e. $[\![\langle t \rangle \Gamma]\!]$ is the largest set S such that

for all
$$\gamma \in \Gamma$$
, $S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S)$.

But
$$R^{-1}\llbracket \varphi \rrbracket = \llbracket \Diamond \varphi \rrbracket$$
, and \bigcap interprets \bigwedge ,
so $\langle t \rangle \Gamma$ has the same meaning as the \mathcal{L}^{μ}_{\Box} -formula

$$\nu p. \bigwedge_{\gamma \in \Gamma} \diamondsuit(\gamma \land p)$$

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to $\mathcal{L}_{\Box}.$

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\Box} .

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin & Walukiewicz 1993

The bisimulation-invariant fragment of monadic second-order logic is equivalent to \mathcal{L}^{μ}_{\Box} .

Dawar & Otto 2009

Fernández-Duque 2011

- coined the name "tangle".
- axiomatised the $\mathcal{L}_{\Box}^{\langle t \rangle}$ -logic of the class of all (finite) S4-frames, as S4 +

Fix:
$$\langle t \rangle \Gamma \to \Diamond (\gamma \land \langle t \rangle \Gamma)$$
, all $\gamma \in \Gamma$.

$$\mathsf{Ind:} \ \Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \Diamond(\gamma \land \varphi)) \to (\varphi \to \langle t \rangle \Gamma).$$

 provided its topological interpretation, with closure in place of R⁻¹.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \Box and \diamond by [d] and $\langle d \rangle$, with $[\![\langle d \rangle \varphi]\!] = R^{-1}[\![\varphi]\!]$ Define $\Box \varphi$ as $\varphi \land [d] \varphi$, and $\diamond \varphi = \varphi \lor \langle d \rangle \varphi$.

In a topological space X, the derivative of a subset S is

deriv $S = \{x \in X : x \text{ is a limit point of } S\}.$

 $x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \setminus \{x\}) \cap S \neq \emptyset$.

In a model on X, $[\![\langle d \rangle \varphi]\!] = \operatorname{deriv}[\![\varphi]\!]$, so

 $x \models \langle d \rangle \varphi$ iff every punctured neighbourhood of x intersects $[\![\varphi]\!]$,

 $x \models [d]\varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\Box}

- $\llbracket \Box \varphi \rrbracket$ = the interior of $\llbracket \varphi \rrbracket$. $\llbracket \Diamond \varphi \rrbracket$ = the closure of $\llbracket \varphi \rrbracket$.
- Validity of the *R*-transitivity axiom

$$4: \quad \langle d \rangle \langle d \rangle \varphi \to \langle d \rangle \varphi$$

holds iff X is a T_D space, meaning deriv $\{x\}$ is always closed. [*Aull & Thron* 1962]

• Validity of the axiom $D: \langle d \rangle$

holds iff X is dense-in-itself, i.e. no isolated points.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\Box}

- $\llbracket \Box \varphi \rrbracket$ = the interior of $\llbracket \varphi \rrbracket$. $\llbracket \Diamond \varphi \rrbracket$ = the closure of $\llbracket \varphi \rrbracket$.
- Validity of the *R*-transitivity axiom

$$4: \quad \langle d \rangle \langle d \rangle \varphi \to \langle d \rangle \varphi$$

holds iff X is a T_D space, meaning deriv $\{x\}$ is always closed. [*Aull & Thron* 1962]

Validity of the axiom

 $D: \langle d \rangle \top$

holds iff X is dense-in-itself, i.e. no isolated points.

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \leq n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \leq n} \Diamond \neg Q_i \big), \qquad \text{with } Q_i = p_i \land \bigwedge_{i \neq j \leq n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \leq n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \leq n} \Diamond \neg Q_i\big), \qquad \text{with } Q_i = p_i \land \bigwedge_{i \neq j \leq n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

AiML2016

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic. Proved

- the L_[d]-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$ -logic of the Euclidean space \mathbb{R}^n for any $n \geq 2$ is

$$\mathsf{KD4} + \mathsf{G}_1 : \langle d \rangle p \land \langle d \rangle \neg p \to \langle d \rangle (\Diamond p \land \Diamond \neg p)$$

Conjectured

• the $\mathcal{L}_{[d]}$ -logic of the real line \mathbb{R} is KD4 + G₂, where G_n is

$$\bigwedge_{i \le n} \langle d \rangle Q_i \to \langle d \rangle \big(\bigwedge_{i \le n} \Diamond \neg Q_i\big), \qquad \text{with } Q_i = p_i \land \bigwedge_{i \ne j \le n} \neg p_j.$$

[Proven later by Shehtman, and by Lucero-Bryan] Asked

Is KD4G₁ the largest logic of any dense-in-itself metric space?

AiML2016

The tangled derivative language $\mathcal{L}_{\Box}^{\langle dt \rangle}$

Replace $\langle t \rangle$ by $\langle dt \rangle$. Interpret $\langle dt \rangle$ by replacing R^{-1} by deriv:

In a model on space X,

$$\begin{split} \llbracket \langle dt \rangle \Gamma \rrbracket &= \text{the tangled derivative of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Whereas,

$$\begin{split} \llbracket \langle t \rangle \Gamma \rrbracket &= \text{the tangled closure of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \text{closure}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

The tangled derivative language $\mathcal{L}_{\Box}^{\langle dt \rangle}$

Replace $\langle t \rangle$ by $\langle dt \rangle$. Interpret $\langle dt \rangle$ by replacing R^{-1} by deriv:

In a model on space X,

$$\begin{split} \llbracket \langle dt \rangle \Gamma \rrbracket &= \text{the tangled derivative of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \frac{\operatorname{deriv}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Whereas,

$$\begin{split} \llbracket \langle t \rangle \Gamma \rrbracket &= \text{the tangled closure of } \{\llbracket \gamma \rrbracket : \gamma \in \Gamma \}. \\ &= \bigcup \{ S \subseteq X : S \subseteq \bigcap_{\gamma \in \Gamma} \text{closure}(\llbracket \gamma \rrbracket \cap S) \}. \end{split}$$

Defining $\langle t \rangle$ from $\langle dt \rangle$

In a topological space X, $\langle t \rangle \Gamma$ is equivalent to

 $(\bigwedge \Gamma) \vee \langle d \rangle (\bigwedge \Gamma) \vee \langle dt \rangle \Gamma$

if, and only if X is a T_D space.

Main results of our AiML 2016 paper:

Let Lt be the logic that extends a logic L by the tangle axioms Fix: $\langle dt \rangle \Gamma \rightarrow \langle d \rangle (\gamma \land \langle dt \rangle \Gamma)$ Ind: $\Box(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \rightarrow (\varphi \rightarrow \langle dt \rangle \Gamma).$

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of X is axiomatisable as KD4t.
- The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.

Main results of our AiML 2016 paper:

Let Lt be the logic that extends a logic L by the tangle axioms

Fix:
$$\langle dt \rangle \Gamma \rightarrow \langle d \rangle (\gamma \land \langle dt \rangle \Gamma)$$

 $\text{Ind:} \quad \Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \to (\varphi \to \langle dt \rangle \Gamma).$

• If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of X is axiomatisable as KD4t.

• The $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.

Main results of our AiML 2016 paper:

Let Lt be the logic that extends a logic L by the tangle axioms

Fix:
$$\langle dt \rangle \Gamma \to \langle d \rangle (\gamma \land \langle dt \rangle \Gamma)$$

 $\text{Ind:} \quad \Box(\varphi \to \bigwedge_{\gamma \in \Gamma} \langle d \rangle (\gamma \land \varphi)) \to (\varphi \to \langle dt \rangle \Gamma).$

• If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -logic of X is axiomatisable as KD4t.

• The
$$\mathcal{L}_{[d]}^{\langle dt
angle}$$
-logic of $\mathbb R$ is KD4G₂ t .

Adding the universal modality \forall

L.U is the extension of L that has the universal modality \forall with semantics

$$w \models \forall \varphi \text{ iff for all } v \in W, v \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

• If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]\vee}^{\langle dt \rangle}$ -logic of X is KD4t.U.

• The $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.UC, where C is the axiom $\forall (\Box \varphi \lor \Box \neg \varphi) \rightarrow (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Adding the universal modality \forall

L.U is the extension of L that has the universal modality \forall with semantics

$$w \models \forall \varphi \text{ iff for all } v \in W, v \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

• If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of X is KD4t.U.

• The $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.UC, where C is the axiom $\forall (\Box \varphi \lor \Box \neg \varphi) \rightarrow (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Adding the universal modality \forall

L.U is the extension of L that has the universal modality \forall with semantics

$$w \models \forall \varphi \text{ iff for all } v \in W, v \models \varphi,$$

the S5 axioms and rules for \forall , and the axiom $\forall \varphi \rightarrow [d] \varphi$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of X is KD4t.U.
- The $\mathcal{L}_{[d]\forall}^{\langle dt \rangle}$ -logic of \mathbb{R} is KD4G₂t.UC, where C is the axiom $\forall (\Box \varphi \lor \Box \neg \varphi) \rightarrow (\forall \varphi \lor \forall \neg \varphi),$

expressing topological connectedness.

Strong completeness: 'consistent sets are satisfiable'

Any countable KD4*t*-consistent set Γ of $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" Γ :

 $\{ \diamondsuit p_i : i < \kappa \} \cup \{ \neg \diamondsuit (p_i \land p_j) : i < j < \kappa \}$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

Not satisfiable in space X if $\kappa > 2^{\operatorname{card} X}$.

Strong completeness: 'consistent sets are satisfiable'

Any countable KD4*t*-consistent set Γ of $\mathcal{L}_{[d]}^{\langle dt \rangle}$ -formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" Γ :

$$\{\Diamond p_i : i < \kappa\} \cup \{\neg \Diamond (p_i \land p_j) : i < j < \kappa\}$$

Not satisfiable in frame \mathcal{F} if $\kappa > \operatorname{card} \mathcal{F}$.

Not satisfiable in space X if $\kappa > 2^{\operatorname{card} X}$.

Strong completeness can fail for Kripke semantics for countable Γ :

$$\Sigma = \{ \diamondsuit p_0 \} \cup \\ \{ \Box(p_{2n} \to \diamondsuit(p_{2n+1} \land q)), \Box(p_{2n+1} \to \diamondsuit(p_{2n+2} \land \neg q)) : n < \omega \}$$

 $\Sigma \cup \{\neg \langle t \rangle \{q, \neg q\}\}$ is finitely satisfiable, so is K4*t*-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for K4t, the 'Truth Lemma' fails.

Proving a logic L is complete over space X:

Prove the finite model property for L over Kripke frames:
 if L μ φ, then φ is falsifiable in some suitable finite frame F |=L.

2 Construct a surjective d-morphism $f: X \twoheadrightarrow \mathcal{F}$:

$$f^{-1}(R^{-1}(S)) = \operatorname{deriv} f^{-1}(S).$$

Such an *f* preserves validity of formulas from *X* to \mathcal{F} , so $X \not\models \varphi$.

Enncoding a d-morphism $X \twoheadrightarrow \mathcal{F}$, when \mathcal{F} is a point-generated S4-frame.

Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space. Then X is dissectable:

Let \mathbb{G} be a non-empty open subset of X, and let $r, s < \omega$.

Then $\ensuremath{\mathbb{G}}$ can be partitioned into non-empty subsets

 $\mathbb{G}_1,\ldots,\mathbb{G}_r,\mathbb{B}_0,\ldots,\mathbb{B}_s$

such that the \mathbb{G}_i 's are all open and

 $\operatorname{cl}(\mathbb{G}_i) \setminus \mathbb{G}_i = \operatorname{deriv}(\mathbb{B}_j) = \operatorname{cl}(\mathbb{G}) \setminus (\mathbb{G}_1 \cup \cdots \cup \mathbb{G}_r).$

Further dissections of a dense-in-itself metric *X*

• Let \mathbb{G} be a non-empty open subset of X, and let $k < \omega$. Then there are pairwise disjoint non-empty subsets $\mathbb{I}_0, \ldots, \mathbb{I}_k \subseteq \mathbb{G}$ satisfying

```
deriv \mathbb{I}_i = \operatorname{cl}(\mathbb{G}) \setminus \mathbb{G} for each i \leq k.
```

Let X be zero-dimensional.

If \mathbb{G} is a non-empty open subset of X, and $n < \omega$, then \mathbb{G} can be partitioned into non-empty open subsets $\mathbb{G}_0, \ldots, \mathbb{G}_n$ such that

 $\operatorname{cl}(\mathbb{G}_i) \setminus \mathbb{G}_i = \operatorname{cl}(\mathbb{G}) \setminus \mathbb{G}$ for each $i \leq n$.