The Tangled Derivative Logic of the Real Line and Zero-Dimensional Spaces

Rob Goldblatt

Victoria University of Wellington

Advances in Modal Logic 2016
Budapest, 30 August-2 September

Joint work with Ian Hodkinson

Prior paper:

- Spatial logic of modal mu-calculus and tangled closure operators. arXiv: 1603.01766

The tangle modality $\langle t\rangle$

Extend the basic modal language \mathcal{L}_{\square} to $\mathcal{L}_{\square}^{\langle t\rangle}$ by allowing formation of the formula

$$
\langle t\rangle \Gamma
$$

when Γ is any finite non-empty set of formulas.
Semantics of $\langle t\rangle$ in a model on a Kripke frame (W, R) :
$x \models\langle t\rangle \Gamma$ iff there is an endless R-path

$$
x R x_{1} \cdots x_{n} R x_{n+1}
$$

in W with each member of Γ being true at x_{n} for infinitely many n.

The tangle modality $\langle t\rangle$

Extend the basic modal language \mathcal{L}_{\square} to $\mathcal{L}_{\square}^{\langle t\rangle}$ by allowing formation of the formula

$$
\langle t\rangle \Gamma
$$

when Γ is any finite non-empty set of formulas.
Semantics of $\langle t\rangle$ in a model on a Kripke frame (W, R) :
$x \models\langle t\rangle \Gamma$ iff there is an endless R-path
$x R x_{1} \cdots x_{n} R x_{n+1}$
in W with each member of Γ being true at x_{n} for infinitely many n.

The tangle modality $\langle t\rangle$

Extend the basic modal language \mathcal{L}_{\square} to $\mathcal{L}_{\square}^{\langle t\rangle}$ by allowing formation of the formula

$$
\langle t\rangle \Gamma
$$

when Γ is any finite non-empty set of formulas.
Semantics of $\langle t\rangle$ in a model on a Kripke frame (W, R) :
$x \models\langle t\rangle \Gamma$ iff there is an endless R-path

$$
x R x_{1} \cdots x_{n} R x_{n+1} \cdots \cdots
$$

in W with each member of Γ being true at x_{n} for infinitely many n.

In a finite transitive frame:

 an endless R-path eventually enters some non-degenerate cluster and stays there.$x \models\langle t\rangle \Gamma$ iff x is R-related to some non-degenerate cluster C with each member of Γ true at some point of C.
$x \models\langle t\rangle\{\varphi\}$ iff there is a y with $x R y$ and $y R y$ and $y \models \varphi$

In a finite S4-model
$x=\langle t\rangle\{\varphi\}$ iff there is a y with $x R y$ and $y=\varphi$

In a finite transitive frame:

an endless R-path eventually enters some non-degenerate cluster and stays there.
$x \models\langle t\rangle \Gamma$ iff x is R-related to some non-degenerate cluster C with each member of Γ true at some point of C.
$x \vDash\langle t\rangle\{\varphi\}$ iff there is a y with $x R y$ and $y R y$ and $y \models \varphi$

In a finite S4-model

$$
x \models\langle t\rangle\{\varphi\} \text { iff there is a } y \text { with } x R y \text { and } y \models \varphi
$$

$$
\text { iff } \quad x \models \diamond \varphi
$$

The modal mu-calculus language $\mathcal{L}_{\square}^{\mu}$

Allows formation of the least fixed point formula

$$
\mu p . \varphi
$$

when p is positive in φ.
The greatest fixed point formula $\nu p . \varphi$ is

$$
\neg \mu p . \varphi(\neg p / p) .
$$

Semantics in a model on a frame or space:
$\llbracket \mu p . \varphi \rrbracket$ is the least fixed point of the function $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$\llbracket \nu p . \varphi \rrbracket$ is the greatest fixed point:

$$
\llbracket \nu p . \varphi \rrbracket=\bigcup\left\{S \subset W: S \subseteq \llbracket \varphi \rrbracket_{p:=S\}}\right\}
$$

The modal mu-calculus language $\mathcal{L}_{\square}^{\mu}$

Allows formation of the least fixed point formula

$$
\mu p . \varphi
$$

when p is positive in φ.
The greatest fixed point formula $\nu p . \varphi$ is

$$
\neg \mu p . \varphi(\neg p / p) .
$$

Semantics in a model on a frame or space:
$\llbracket \mu p . \varphi \rrbracket$ is the least fixed point of the function $S \mapsto \llbracket \varphi \rrbracket_{p:=S}$

$$
\llbracket \mu p . \varphi \rrbracket=\bigcap\left\{S \subseteq W: \llbracket \varphi \rrbracket_{p:=S} \subseteq S\right\}
$$

$\llbracket \nu p . \varphi \rrbracket$ is the greatest fixed point:

$$
\llbracket \nu p . \varphi \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \llbracket \varphi \rrbracket_{p:=S}\right\}
$$

$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$

In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

$$
\text { i.e. } \llbracket\langle t\rangle \Gamma \rrbracket \text { is the largest set } S \text { such that }
$$

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

Suggests a topological semantics: replace R^{-1} by closure
$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$$
\nu p . \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge p)
$$

Suggests a topological semantics: replace R^{-1} by closure
$\langle t\rangle \Gamma$ is definable in $\mathcal{L}_{\square}^{\mu}$
In any model on a transitive frame,

$$
\llbracket\langle t\rangle \Gamma \rrbracket=\bigcup\left\{S \subseteq W: S \subseteq \bigcap_{\gamma \in \Gamma} R^{-1}(\llbracket \gamma \rrbracket \cap S)\right\}
$$

i.e. $\llbracket\langle t\rangle \Gamma \rrbracket$ is the largest set S such that

$$
\text { for all } \gamma \in \Gamma, \quad S \subseteq R^{-1}(\llbracket \gamma \rrbracket \cap S) \text {. }
$$

But $R^{-1} \llbracket \varphi \rrbracket=\llbracket \diamond \varphi \rrbracket$, and \bigcap interprets \wedge,
so $\langle t\rangle \Gamma$ has the same meaning as the $\mathcal{L}_{\square}^{\mu}$-formula

$$
\nu p . \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge p)
$$

Suggests a topological semantics: replace R^{-1} by closure

Origin of the tangle modality:

van Benthem 1976

The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$.

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

> This holds relative to any elementary class of frames (e.g. transitive) And relative to the class of all finite frames [Rosen 1997] Janin \& Walukiewicz 1993 The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otio 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive). And relative to the class of all finite frames [Rosen 1997]

Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order
logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive).
And relative to the class of all finite frames [Rosen 1997]

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.

This holds relative to any elementary class of frames (e.g. transitive).
And relative to the class of all finite frames [Rosen 1997]
Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009
over the class of finite transitive frames, the
bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t}$

Origin of the tangle modality:

van Benthem 1976
The bisimulation-invariant fragment of first-order logic is equivalent to \mathcal{L}_{\square}.
This holds relative to any elementary class of frames (e.g. transitive).
And relative to the class of all finite frames [Rosen 1997]
Janin \& Walukiewicz 1993
The bisimulation-invariant fragment of monadic second-order logic is equivalent to $\mathcal{L}_{\square}^{\mu}$.

Dawar \& Otto 2009

over the class of finite transitive frames, the bisimulation-invariant fragment of monadic second-order logic collapses to that of first-order logic, with both fragments, and $\mathcal{L}_{\square}^{\mu}$, being equivalent to the tangle extension $\mathcal{L}_{\square}^{\langle t\rangle}$.

Fernández-Duque 2011

- coined the name "tangle".
- axiomatised the $\mathcal{L}_{\square}^{\langle t\rangle}$-logic of the class of all (finite) S4-frames, as S4 +

$$
\begin{aligned}
& \text { Fix: }\langle t\rangle \Gamma \rightarrow \diamond(\gamma \wedge\langle t\rangle \Gamma), \quad \text { all } \gamma \in \Gamma . \\
& \text { Ind: } \square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma} \diamond(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle t\rangle \Gamma) .
\end{aligned}
$$

- provided its topological interpretation, with closure in place of R^{-1}.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { deriv } S=\{x \in X: x \text { is a limit point of } S\} \text {. }
$$

$x \in$ deriv S iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \pi(d\rangle \varphi \pi=$ deriv $\Pi \varphi \pi$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x \perp[d] \varphi$ iff some punctured neighbourhood of x is included in $\Pi \varphi\rangle$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { deriv } S=\{x \in X: x \text { is a limit point of } S\} .
$$

$x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \quad[\langle d\rangle \varphi \overline{=} \operatorname{deriv}[\varphi]$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x=[d] \varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi\rceil$.

The derivative modality language $\mathcal{L}_{[d]}$

Replace \square and \diamond by $[d]$ and $\langle d\rangle$, with $\llbracket\langle d\rangle \varphi \rrbracket=R^{-1} \llbracket \varphi \rrbracket$
Define $\square \varphi$ as $\varphi \wedge[d] \varphi$, and $\diamond \varphi=\varphi \vee\langle d\rangle \varphi$.
In a topological space X, the derivative of a subset S is

$$
\text { deriv } S=\{x \in X: x \text { is a limit point of } S\} .
$$

$x \in \operatorname{deriv} S$ iff every neighbourhood O of x has $(O \backslash\{x\}) \cap S \neq \emptyset$.
In a model on $X, \llbracket\langle d\rangle \varphi \rrbracket=\operatorname{deriv} \llbracket \varphi \rrbracket$, so
$x \models\langle d\rangle \varphi$ iff every punctured neighbourhood of x intersects $\llbracket \varphi \rrbracket$,
$x \models[d] \varphi$ iff some punctured neighbourhood of x is included in $\llbracket \varphi \rrbracket$.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\square}

- $\llbracket \square \varphi \rrbracket=$ the interior of $\llbracket \varphi \rrbracket . \quad \llbracket \diamond \varphi \rrbracket=$ the closure of $\llbracket \varphi \rrbracket$.
- Validity of the R-transitivity axiom

$$
4: \quad\langle d\rangle\langle d\rangle \varphi \rightarrow\langle d\rangle \varphi
$$

holds iff X is a T_{D} space, meaning deriv $\{x\}$ is always closed. [Aull \& Thron 1962]

- Validity of the axiom
holds iff X is dense-in-itself, i.e. no isolated points.

$\mathcal{L}_{[d]}$ is more expressive than \mathcal{L}_{\square}

- $\llbracket \square \varphi \rrbracket=$ the interior of $\llbracket \varphi \rrbracket . ~ \llbracket \diamond \varphi \rrbracket=$ the closure of $\llbracket \varphi \rrbracket$.
- Validity of the R-transitivity axiom

$$
4: \quad\langle d\rangle\langle d\rangle \varphi \rightarrow\langle d\rangle \varphi
$$

holds iff X is a T_{D} space, meaning deriv $\{x\}$ is always closed. [Aull \& Thron 1962]

- Validity of the axiom

$$
\mathrm{D}: \quad\langle d\rangle \mathrm{T}
$$

holds iff X is dense-in-itself, i.e. no isolated points.

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

[Proven later by Shehtman, and by Lucero-Bryan]
\square
- Is KD4G 1 the largest logic of any dense-in-itself metric space?

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

Conjectured

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

$$
\bigwedge_{i \leq n}\langle d\rangle Q_{i} \rightarrow\langle d\rangle\left(\bigwedge_{i \leq n} \diamond \neg Q_{i}\right), \quad \text { with } Q_{i}=p_{i} \wedge \bigwedge_{i \neq j \leq n} \neg p_{j} .
$$

[Proven later by Shehtman, and by Lucero-Bryan]

Shehtman 1990:

Derived sets in Euclidean spaces and modal logic.
Proved

- the $\mathcal{L}_{[d]}$-logic of every zero-dimensional separable dense-in-itself metric space is KD4.
- the $\mathcal{L}_{[d]}$-logic of the Euclidean space \mathbb{R}^{n} for any $n \geq 2$ is

$$
\mathrm{KD} 4+\mathrm{G}_{1}:\langle d\rangle p \wedge\langle d\rangle \neg p \rightarrow\langle d\rangle(\diamond p \wedge \diamond \neg p)
$$

Conjectured

- the $\mathcal{L}_{[d]}$-logic of the real line \mathbb{R} is $\mathrm{KD} 4+\mathrm{G}_{2}$, where G_{n} is

$$
\bigwedge_{i \leq n}\langle d\rangle Q_{i} \rightarrow\langle d\rangle\left(\bigwedge_{i \leq n} \diamond \neg Q_{i}\right), \quad \text { with } Q_{i}=p_{i} \wedge \bigwedge_{i \neq j \leq n} \neg p_{j} .
$$

[Proven later by Shehtman, and by Lucero-Bryan]
Asked

- Is $\mathrm{KD}_{4} \mathrm{G}_{1}$ the largest logic of any dense-in-itself metric space?

The tangled derivative language $\mathcal{L}_{\square}^{\langle d t\rangle}$

Replace $\langle t\rangle$ by $\langle d t\rangle$.
Interpret $\langle d t\rangle$ by replacing R^{-1} by deriv:
In a model on space X,

$$
\begin{aligned}
\llbracket\langle d t\rangle \Gamma \rrbracket & =\text { the tangled derivative of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S)\right\} .
\end{aligned}
$$

Whereas,

$\llbracket\langle t\rangle \Gamma \rrbracket=$ the tangled closure of $\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\}$.

The tangled derivative language $\mathcal{L}_{\square}^{\langle d t\rangle}$

Replace $\langle t\rangle$ by $\langle d t\rangle$.
Interpret $\langle d t\rangle$ by replacing R^{-1} by deriv:
In a model on space X,

$$
\begin{aligned}
\llbracket\langle d t\rangle \Gamma \rrbracket & =\text { the tangled derivative of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{deriv}(\llbracket \gamma \rrbracket \cap S)\right\} .
\end{aligned}
$$

Whereas,

$$
\begin{aligned}
\llbracket\langle t\rangle \Gamma \rrbracket & =\text { the tangled closure of }\{\llbracket \gamma \rrbracket: \gamma \in \Gamma\} . \\
& =\bigcup\left\{S \subseteq X: S \subseteq \bigcap_{\gamma \in \Gamma} \operatorname{closure}(\llbracket \gamma \rrbracket \cap S)\right\}
\end{aligned}
$$

Defining $\langle t\rangle$ from $\langle d t\rangle$

In a topological space $X,\langle t\rangle \Gamma$ is equivalent to

$$
(\bigwedge \Gamma) \vee\langle d\rangle(\bigwedge \Gamma) \vee\langle d t\rangle \Gamma
$$

if, and only if X is a T_{D} space.

Main results of our AiML 2016 paper:

Let $L t$ be the logic that extends a logic L by the tangle axioms
Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle\alpha t\rangle}$-logic of X is axiomatisable as KD4t.

Main results of our AiML 2016 paper:

Let $L t$ be the logic that extends a logic L by the tangle axioms
Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of X is axiomatisable as KD4t.
- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}_{\text {(G }}^{2}$ t.

Main results of our AiML 2016 paper:

Let $L t$ be the logic that extends a logic L by the tangle axioms
Fix: $\langle d t\rangle \Gamma \rightarrow\langle d\rangle(\gamma \wedge\langle d t\rangle \Gamma)$
Ind: $\square\left(\varphi \rightarrow \bigwedge_{\gamma \in \Gamma}\langle d\rangle(\gamma \wedge \varphi)\right) \rightarrow(\varphi \rightarrow\langle d t\rangle \Gamma)$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of X is axiomatisable as KD4t.
- The $\mathcal{L}_{[d]}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}_{2} \mathrm{G}_{2} t$.

Adding the universal modality \forall

L. U is the extension of L that has the universal modality \forall with semantics

$$
w \models \forall \varphi \text { iff for all } v \in W, v \models \varphi,
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d \|\rangle}^{\langle d t\rangle}$-logic of X is KD4t.U.
- The $\mathcal{L}_{[d] \forall^{-}}^{\langle d d\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{\text {(G }}{ }_{2} t$. UC , where C is the axiom $V(\square \varphi \vee \square \neg \varphi) \rightarrow(V \varphi \vee \vee \neg \varphi)$,

Adding the universal modality \forall

$L . U$ is the extension of L that has the universal modality \forall with semantics

$$
w \models \forall \varphi \text { iff for all } v \in W, v \models \varphi,
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- If X is any zero-dimensional dense-in-itself metric space, then the
$\mathcal{L}_{[d] \forall}^{\langle d t\rangle}$-logic of X is KD4t.U.
- The $\mathcal{L}_{[d] \forall^{-}}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{2} \mathrm{G}_{2} t$.UC, where C is the axiom

expressing topological connectedness.

Adding the universal modality \forall

L. U is the extension of L that has the universal modality \forall with semantics

$$
w \models \forall \varphi \text { iff for all } v \in W, v \models \varphi,
$$

the S5 axioms and rules for \forall, and the axiom $\forall \varphi \rightarrow[d] \varphi$.

- If X is any zero-dimensional dense-in-itself metric space, then the $\mathcal{L}_{[d]\}}^{\langle d t\rangle}$-logic of X is KD4t.U.
- The $\mathcal{L}_{[d]]^{-}}^{\langle d t\rangle}$-logic of \mathbb{R} is $\mathrm{KD}^{2} \mathrm{G}_{2} t$.UC, where C is the axiom

$$
\forall(\square \varphi \vee \square \neg \varphi) \rightarrow(\forall \varphi \vee \forall \neg \varphi),
$$

expressing topological connectedness.

Strong completeness: 'consistent sets are satisfiable’

Any countable KD4t-consistent set Γ of $\mathcal{L}_{[d]}^{\langle d t\rangle}$-formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" Γ :

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $n>2^{\text {card } X}$

Strong completeness: 'consistent sets are satisfiable'

Any countable KD4t-consistent set Γ of $\mathcal{L}_{[d]}^{\langle d t\rangle}$-formulas is satisfiable in any zero-dimensional dense-in-itself metric space.

Can fail for frame and spatial semantics for "large enough" Γ :

$$
\left\{\diamond p_{i}: i<\kappa\right\} \cup\left\{\neg \diamond\left(p_{i} \wedge p_{j}\right): i<j<\kappa\right\}
$$

Not satisfiable in frame \mathcal{F} if $\kappa>\operatorname{card} \mathcal{F}$.
Not satisfiable in space X if $\kappa>2^{\operatorname{card} X}$.

Strong completeness can fail for Kripke semantics for countable Γ :

$$
\begin{aligned}
\Sigma= & \left\{\diamond p_{0}\right\} \cup \\
& \left\{\square\left(p_{2 n} \rightarrow \diamond\left(p_{2 n+1} \wedge q\right)\right), \square\left(p_{2 n+1} \rightarrow \diamond\left(p_{2 n+2} \wedge \neg q\right)\right): n<\omega\right\}
\end{aligned}
$$

$\Sigma \cup\{\neg\langle t\rangle\{q, \neg q\}\}$ is finitely satisfiable, so is K4t-consistent, but is not satisfiable in any Kripke model.

Also shows that in the canonical model for $\mathrm{K} 4 t$, the 'Truth Lemma' fails.

Proving a logic L is complete over space X :

(1) Prove the finite model property for L over Kripke frames: if $L \nvdash \varphi$, then φ is falsifiable in some suitable finite frame $\mathcal{F} \models \mathrm{L}$.
(2) Construct a surjective d-morphism $f: X \rightarrow \mathcal{F}$:

$$
f^{-1}\left(R^{-1}(S)\right)=\operatorname{deriv} f^{-1}(S) .
$$

Such an f preserves validity of formulas from X to \mathcal{F}, so $X \not \vDash \varphi$.

Enncoding a d-morphism $X \rightarrow \mathcal{F}$, when \mathcal{F} is a point-generated S4-frame.

Modified Tarski Dissection Theorem

Let X be a dense-in-itself metric space.
Then X is dissectable:
Let \mathbb{G} be a non-empty open subset of X, and let $r, s<\omega$.
Then \mathbb{G} can be partitioned into non-empty subsets

$$
\mathbb{G}_{1}, \ldots, \mathbb{G}_{r}, \mathbb{B}_{0}, \ldots, \mathbb{B}_{s}
$$

such that the \mathbb{G}_{i} 's are all open and

$$
\operatorname{cl}\left(\mathbb{G}_{i}\right) \backslash \mathbb{G}_{i}=\operatorname{deriv}\left(\mathbb{B}_{j}\right)=\operatorname{cl}(\mathbb{G}) \backslash\left(\mathbb{G}_{1} \cup \cdots \cup \mathbb{G}_{r}\right)
$$

Further dissections of a dense-in-itself metric X

(1) Let \mathbb{G} be a non-empty open subset of X, and let $k<\omega$. Then there are pairwise disjoint non-empty subsets $\mathbb{I}_{0}, \ldots, \mathbb{I}_{k} \subseteq \mathbb{G}$ satisfying

$$
\operatorname{deriv} \mathbb{I}_{i}=\operatorname{cl}(\mathbb{G}) \backslash \mathbb{G} \quad \text { for each } i \leq k
$$

(2) Let X be zero-dimensional.

If \mathbb{G} is a non-empty open subset of X, and $n<\omega$, then \mathbb{G} can be partitioned into non-empty open subsets $\mathbb{G}_{0}, \ldots, \mathbb{G}_{n}$ such that

$$
\operatorname{cl}\left(\mathbb{G}_{i}\right) \backslash \mathbb{G}_{i}=\operatorname{cl}(\mathbb{G}) \backslash \mathbb{G} \text { for each } i \leq n
$$

