The length of distinguishing modal formulae

Valentin Goranko¹ Louwe B. Kuijer²

¹Department of Philosophy, Stockholm University, Sweden ²University of Liverpool, UK & LORIA, CNRS, France Our setting: basic modal logic.

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid \Box \varphi \mid \Diamond \varphi$$

The question

Our question: given pointed models M_1 , w_1 and M_2 , w_2 , what is the length of the shortest formula that distinguishes between M_1 , w_1 and M_2 , w_2 ?

- Length is number of symbols in the formula.
- Worst case.
- Compared to $|M_1| + |M_2|$.

If M_1 , w_1 and M_2 , w_2 are distinguishable, then there is a formula of exponential length (w.r.t. $|M_1| + |M_2|$) that distinguishes between them.

- Very unsurprising.
- More or less already known.
- But: we couldn't find anyone explicitly stating it.

If M_1 , w_1 and M_2 , w_2 are distinguishable, then there is a formula of exponential length (w.r.t. $|M_1| + |M_2|$) that distinguishes between them.

• Very unsurprising.

- More or less already known.
- But: we couldn't find anyone explicitly stating it.

If M_1 , w_1 and M_2 , w_2 are distinguishable, then there is a formula of exponential length (w.r.t. $|M_1| + |M_2|$) that distinguishes between them.

- Very unsurprising.
- More or less already known.
- But: we couldn't find anyone explicitly stating it.

If M_1 , w_1 and M_2 , w_2 are distinguishable, then there is a formula of exponential length (w.r.t. $|M_1| + |M_2|$) that distinguishes between them.

- Very unsurprising.
- More or less already known.
- But: we couldn't find anyone explicitly stating it.

The exponential bound is tight.

Tight bound

Theorem

There is a sequence $\{M_k \mid k \in \mathbb{N}\}$ of models such that:

- for every $k \in \mathbb{N}$, M_k , w_k and M_k , v_k are distinguishable,
- the size of M_k grows linearly with k,
- the length of the smallest formula that distinguishes between M_k , w_k and M_k , v_k grows exponentially with k

Proof: by explicitly constructing the models.

• Suppose $M_k, w_k \models \varphi$ and $M_k, v_k \not\models \varphi$.

- Successors of v_k : subset of successors of w_k .
- Therefore: $\varphi = \Diamond \psi$, where $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.

• Suppose $M_k, w_k \models \varphi$ and $M_k, v_k \not\models \varphi$.

• Successors of v_k : subset of successors of w_k .

• Therefore: $\varphi = \Diamond \psi$, where $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.

- Suppose $M_k, w_k \models \varphi$ and $M_k, v_k \not\models \varphi$.
- Successors of v_k : subset of successors of w_k .
- Therefore: $\varphi = \Diamond \psi$, where $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.

- Suppose $M_k, w_k \models \varphi$ and $M_k, v_k \not\models \varphi$.
- Successors of v_k : subset of successors of w_k .
- Therefore: $\varphi = \Diamond \psi$, where $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.

- Recall: $\varphi = \Diamond \psi$, with $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.
- Successors of s_k : subset of successors of t_k . Therefore: ψ has subformula $\Box \chi$ where $x_k \models \chi, y_k \models \chi, z_k \not\models \chi$.
- Successors of s_k: superset of successors of u_k. Therefore: ψ has subformula ◊ξ where x_x ⊨ ξ, y_k ⊭ ξ.

- Recall: $\varphi = \Diamond \psi$, with $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.
- Successors of s_k : subset of successors of t_k . Therefore: ψ has subformula $\Box \chi$ where $x_k \models \chi, y_k \models \chi, z_k \not\models \chi$.
- Successors of s_k : superset of successors of u_k . Therefore: ψ has subformula $\Diamond \xi$ where $x_k \models \xi$, $y_k \not\models \xi$.

- Recall: $\varphi = \Diamond \psi$, with $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.
- Successors of s_k : subset of successors of t_k . Therefore: ψ has subformula $\Box \chi$ where $x_k \models \chi, y_k \models \chi, z_k \not\models \chi$.
- Successors of s_k: superset of successors of u_k. Therefore: ψ has subformula ◊ξ where x_x ⊨ ξ, y_k ⊭ ξ.

- Recall: $\varphi = \Diamond \psi$, with $s_k \models \psi$, $t_k \not\models \psi$ and $u_k \not\models \psi$.
- Successors of s_k : subset of successors of t_k . Therefore: ψ has subformula $\Box \chi$ where $x_k \models \chi, y_k \models \chi, z_k \not\models \chi$.
- Successors of s_k: superset of successors of u_k. Therefore: ψ has subformula ◊ξ where x_x ⊨ ξ, y_k ⊭ ξ.

(a) M_0 (b) M_k for k > 0

- Recall: $\varphi = \Diamond (\Box \chi \land \Diamond \xi)$, with $x_k \models \chi, y_k \models \chi, z_k \models \chi$ and $x_k \models \xi$, $y_k \not\models \xi$.
- Distinguishing between xk, yk and/or xk: at least as difficult as between wk-1 and vk-1.
- Therefore: φ is at least twice as long as shortest formula distinguishing between w_{k-1} and v_{k-1}.

- Recall: $\varphi = \Diamond (\Box \chi \land \Diamond \xi)$, with $x_k \models \chi, y_k \models \chi, z_k \models \chi$ and $x_k \models \xi$, $y_k \not\models \xi$.
- Distinguishing between xk, yk and/or xk: at least as difficult as between wk-1 and vk-1.
- Therefore: φ is at least twice as long as shortest formula distinguishing between w_{k-1} and v_{k-1}.

- Recall: $\varphi = \Diamond (\Box \chi \land \Diamond \xi)$, with $x_k \models \chi, y_k \models \chi, z_k \models \chi$ and $x_k \models \xi$, $y_k \not\models \xi$.
- Distinguishing between xk, yk and/or xk: at least as difficult as between wk-1 and vk-1.
- Therefore: φ is at least twice as long as shortest formula distinguishing between w_{k-1} and v_{k-1}.

Concluding remarks

- Worst-case formula length is exponential. But precise bound still unknown.
- Results generalize to other logics: e.g. multi-agent modal logic, tense logic, CTL, CTL*.
- Not known whether exponential bound is tight for μ -calculus.