Decidable first-order modal logics with counting quantifiers

Christopher Hampson
christopher.hampson@kcl.ac.uk
Department of Informatics
King's College London

Background

First-order modal logics with counting quantifiers

- Formulas: $\quad \varphi::=P_{i}\left(x_{1}, \ldots, x_{n}\right)|\neg \varphi|\left(\varphi_{1} \wedge \varphi_{2}\right)|\diamond \varphi|\left(\exists_{\leq c} x \varphi\right)$
- First-order Kripke models: $\quad \mathfrak{M}=(\mathfrak{F}, D, I)$
- Kripke frame $\mathfrak{F}=(\boldsymbol{W}, \boldsymbol{R})$
- Non-empty domain $\quad D=\{$ domains objects $\}$
- Interpretation function

$$
I(w)=\left\langle D, P_{0}^{I(w)}, P_{1}^{I(w)}, \ldots\right\rangle
$$

- Satisfiability:

$$
\begin{array}{r}
\mid \mathfrak{M}, \boldsymbol{w} \models^{\mathfrak{a}}\left(\exists_{\leq c} x \varphi\right) \quad \text { iff } \quad\left|\left\{b \in D: \mathfrak{M}, \boldsymbol{w} \models^{\mathfrak{a}(x / b)} \varphi\right\}\right| \leq c \\
\text { (where } \mathfrak{a}(x / b)(x)=b \text { and } \mathfrak{a}(x / b)(y)=\mathfrak{a}(y) \text {, for } y \neq x .)
\end{array}
$$

First-order modal logics with counting quantifiers

- Logics with counting quantifiers

$$
\mathbf{Q}^{\#} \log (\mathcal{C})=\{\text { formulas valid in all frames } \mathfrak{F} \in \mathcal{C}\}
$$

- Some examples:

$$
\begin{aligned}
& \text { Q\#K }=\mathbf{Q} \text { \# } \log \{\text { all frames }\} \\
& \mathbf{Q}^{\#} \mathbf{K T}=\mathbf{Q} \text { \# } \log \{\text { all reflexive frames }\} \\
& \mathbf{Q}^{\#} \mathbf{K B}=\mathbf{Q} \text { \# } \log \{\text { all symmetric frames }\} \\
& \mathbf{Q}^{\#} \mathbf{S 5}=\mathbf{Q} \text { \# } \mathbf{L o g}\{\text { all equivalence relations }\} \\
& \text { Q\#Alt }=\mathbf{Q} \text { \# } \log \{\text { all partial functions }\}
\end{aligned}
$$

First-order modal logics with counting quantifiers

- \quad-variable fragment:

$$
\mathcal{Q}^{\#} \mathcal{M}^{\ell}=\left\{\varphi \in \mathcal{Q}^{\#} \mathcal{M} \mathcal{L}: \varphi \text { contains only } x_{1}, \ldots, x_{\ell}\right\}
$$

- k-bounded fragment

$$
\mathcal{Q}^{\#} \mathcal{M}_{\boldsymbol{k}}=\left\{\varphi \in \mathcal{Q}^{\#} \boldsymbol{\mathcal { M } \mathcal { L }}: \varphi \text { contains only }\left(\exists_{\leq c} \boldsymbol{x}_{\boldsymbol{i}}\right) \text { for } c \leq \boldsymbol{k}\right\}
$$

- zero-bounded $=$ regular $\mathrm{FOL} \quad \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{\mathbf{0}}$

First-order modal logics with counting quantifiers

- \quad-variable fragment:

$$
\mathcal{Q}^{\#} \mathcal{M}^{\ell}=\left\{\varphi \in \mathcal{Q}^{\#} \mathcal{M} \mathcal{L}: \varphi \text { contains only } x_{1}, \ldots, x_{\ell}\right\}
$$

- k-bounded fragment

$$
\mathcal{Q}^{\#} \mathcal{M}_{\boldsymbol{k}}=\left\{\varphi \in \mathcal{Q}^{\#} \boldsymbol{\mathcal { M } \mathcal { L }}: \varphi \text { contains only }\left(\exists_{\leq c} \boldsymbol{x}_{\boldsymbol{i}}\right) \text { for } c \leq \boldsymbol{k}\right\}
$$

- zero-bounded = regular FOL $\mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{\mathbf{0}}$
- k-bounded, ℓ-variable fragment

$$
\mathcal{Q}^{\#} \mathcal{M}_{\mathcal{L}_{k}^{\ell}}^{\ell}=\mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}^{\ell} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{k}
$$

Finite model property

- Finite model property (fmp):

$$
\varphi \text { is } \mathbf{Q}^{\#} \boldsymbol{L} \text {-satisfiable } \quad \Longrightarrow \quad(\mathfrak{F}, D, I), w \models^{\mathfrak{a}} \varphi \text {, for } \mathfrak{F} \in \operatorname{Fr} L
$$

where:

- Finite (fmp): $|\mathfrak{F}|$ and $|\boldsymbol{D}|$ are both finite,
- Poly-size fmp: $|\mathfrak{F}|$ and $|\boldsymbol{D}|$ are polynomial in the size of φ,
- Exponential fmp: $|\mathfrak{F}|$ and $|\boldsymbol{D}|$ are exponential in the size of φ,

Two-dimensional modal logics

- Bimodal formulas:

$$
\varphi::=p|\neg \varphi|\left(\varphi_{1} \wedge \varphi_{2}\right)\left|\diamond_{h} \varphi\right| \diamond_{v} \varphi
$$

- Kripke models:

$$
\mathfrak{M}=(\mathfrak{F}, \mathfrak{V})
$$

- Kripke 2-frame

$$
\mathfrak{F}=\left(\boldsymbol{W}, \boldsymbol{R}_{\boldsymbol{h}}, \boldsymbol{R}_{v}\right)
$$

- Propositional valuation

$$
\mathfrak{V}(\boldsymbol{p})=\{\text { domains objects }\}
$$

- Logic of \mathcal{C} :

$$
\log (\mathcal{C})=\{\text { formulas valid in all frames } \mathfrak{F} \in \mathcal{C}\}
$$

Two-dimensional modal logics

Shehtman 1978, Segerberg 1973

The product frame of $\mathfrak{F}_{h}=\left(\boldsymbol{W}_{\boldsymbol{h}}, \boldsymbol{R}_{\boldsymbol{h}}\right)$ and $\mathfrak{F}_{v}=\left(\boldsymbol{W}_{v}, \boldsymbol{R}_{v}\right)$ is the 2-frame

$$
\mathfrak{F}_{h} \times \mathfrak{F}_{v}=\left(\boldsymbol{W}_{\boldsymbol{h}} \times \boldsymbol{W}_{v}, \overline{\boldsymbol{R}}_{h}, \overline{\boldsymbol{R}}_{v}\right)
$$

where

$$
\begin{aligned}
(x, y) \bar{R}_{h}\left(x^{\prime}, y^{\prime}\right) & \Longleftrightarrow \\
x R_{h} x^{\prime} \text { and } y & =y^{\prime}
\end{aligned}
$$

and

$$
\begin{gathered}
(x, y) \bar{R}_{v}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \\
x=x^{\prime} \text { and } y R_{v} y^{\prime}
\end{gathered}
$$

The product of two Kripke complete unimodal logics $\boldsymbol{L}_{\mathbf{1}}, \boldsymbol{L}_{\mathbf{2}}$ is the bimodal logic

$$
\boldsymbol{L}_{1} \times \boldsymbol{L}_{2}=\log \left\{\mathfrak{F}_{h} \times \mathfrak{F}_{v}: \mathfrak{F}_{h} \models \boldsymbol{L}_{1} \text { and } \mathfrak{F}_{v} \models \boldsymbol{L}_{2}\right\}
$$

Connection with first-order modal logics

- Zero-bounded (counting free) fragment: $\quad \mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{0}^{1}$
- Classical case: $\quad \mathbf{S 5}=\log \{$ all equivalence relations $\}$

$$
p_{i} \sim P_{i}(x) \quad \diamond \psi \quad \sim(\exists x \psi)
$$

S5 $\leadsto \rightarrow$ classical FOL

Connection with first-order modal logics

- Zero-bounded (counting free) fragment:

$$
\mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{0}^{1}
$$

- Classical case:

$$
\mathbf{S 5}=\log \{\text { all equivalence relations }\}
$$

$$
p_{i} \sim P_{i}(x) \quad \nabla \psi \sim(\exists x \psi)
$$

$$
\text { S5 } \leftrightarrow \rightarrow \text { classical FOL }
$$

- Modal case:

$$
\begin{array}{ccc|}
\hline \nabla_{h} \psi \leadsto \diamond \psi & \diamond_{v} \psi \leadsto(\exists x \psi) \\
\hline \boldsymbol{L} \times \mathbf{S 5} & \leadsto & \mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{0}^{1} \\
\hline
\end{array}
$$

Connection with first-order modal logics

- One-bounded fragment: $\mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \mathcal{M} \mathcal{L}_{1}^{1}$
- Classical case: \quad Diff $=\log \{$ all difference frames $(\boldsymbol{W}, \neq)\}$

$$
\diamond \psi \sim\left(\exists^{\neq} x \psi\right):=\left(\neg \psi \wedge \exists_{>0} x \psi\right) \vee \exists_{>1} \psi
$$

Diff \quad classical FOL $+\exists_{\leq 0}, \exists_{\leq 1}$

Connection with first-order modal logics

- One-bounded fragment: $\mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{1}^{1}$
- Classical case: \quad Diff $=\boldsymbol{\operatorname { L o g }}\{$ all difference frames $(\boldsymbol{W}, \neq)\}$

$$
\diamond \psi \sim(\exists \neq x \psi):=\left(\neg \psi \wedge \exists_{>0} x \psi\right) \vee \exists_{>1} \psi
$$

Diff $\quad \leftrightarrow \quad$ classical FOL $+\exists_{\leq 0}, \exists_{\leq 1}$

- Modal case:

$$
\nabla_{h} \psi \sim \diamond \psi \quad \diamond_{v} \psi \sim(\exists \neq x \psi)
$$

$$
\boldsymbol{L} \times \text { Diff } \quad \text { M } \quad \mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\# \boldsymbol{\mathcal { M }} \mathcal{L}_{1}^{1}}
$$

The story so far...

- Kripke 1962

The two-variable monadic fragment is undecidable.

- Marx 1999
$\begin{aligned} L \times \mathbf{S} 5 & \text { is CoNEXPTIME-hard } \quad(\mathbf{K} \subseteq \boldsymbol{L} \subseteq \mathbf{S} 5), \\ & \sim \quad \mathbf{Q}^{\#} \boldsymbol{L} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{\mathbf{0}}^{1} \quad \text { is CoNEXPTIME-hard }\end{aligned}$
- Wolter-Zakharyaschev 2001

The monodic fragment is decidable.

- Pratt-Hartmann 2005

Two-variable FOL + counting is coNEXPTIME-complete,
$\sim \quad \mathbf{Q}^{\#} \mathbf{S} 5 \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}^{1}$ is coNEXPTIME-complete.

The story so far...

- H-Kurucz 2012
'K + universal operator' \times Diff is undecidable
$\sim \quad \mathbf{Q}^{\#} \mathbf{K}^{\forall} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{1}^{1} \quad$ is undecidable
' $K+$ transitive closure' \times Diff is non-r.e.
$\leadsto \quad \mathbf{Q}^{\#} \mathbf{K}^{*} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}_{1}^{1} \quad$ is non-r.e.
- H-Kurucz 2015
'linear’ \times Diff usually undeciable (or worse!)
$\sim \quad \mathbf{Q}^{\#} \mathrm{~K} 4.3 \cap \mathcal{Q}^{\#} \mathcal{M}^{1} \mathcal{L}_{1}^{1} \quad$ is undecidable $\mathbf{Q}^{\#} \log (\mathbb{N}) \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }}_{1}^{1} \quad$ is Π_{1}^{1}-hard

Main results

Main results I

Theorem The one-variable fragment of $\mathbf{Q}^{\#} \mathbf{K}$:
(i) has the exponential fmp,
(ii) is coNExpTime-complete.

Proof (overview):
Step 1) Define an appropriate notion of a 'quasimodel'

Step 2) Establish the equivalance

\exists Quasimodel iff \quad Q\#K-satisfiable

Step 3) Procedure to 'prune' large quasimodels

$$
\text { Quasimodel size }=O\left(2^{\|\varphi\|}\right)
$$

Quasistates and Quasimodels

- Quasistate:
(T, μ)
- Domain $\boldsymbol{T}^{\boldsymbol{T}}=\{$ Boolean saturated types $\}$
- (Bounded) Multiplicity function $\quad \mu: T \rightarrow\{1, \ldots, C, C+1\}$
- Saturation criterion:
$(\exists \leq c \boldsymbol{x} \xi) \in t \quad$ iff $\quad \sum_{\xi \in t^{\prime}} \mu\left(t^{\prime}\right) \leq c$

Quasistates and Quasimodels

- Quasimodel:

$$
\mathfrak{Q}=(\boldsymbol{W}, \prec, \boldsymbol{q}, \mathfrak{R})
$$

- Intransitive, irreflexive tree $\quad(\boldsymbol{W}, \prec)$
- Quasistate assignment $\mathbf{q}(\boldsymbol{w})=\left(T_{w}, \mu_{w}\right)$
- Set of (indexed) runs $\quad \boldsymbol{r}(\boldsymbol{w}) \in \boldsymbol{T}_{\boldsymbol{w}} \quad$ for all $\boldsymbol{w} \in \boldsymbol{W}$

Quasistates and Quasimodels

- Quasimodel:

$$
\mathfrak{Q}=(\boldsymbol{W}, \prec, \boldsymbol{q}, \mathfrak{R})
$$

- Intransitive, irreflexive tree $\quad(\boldsymbol{W}, \prec)$
- Quasistate assignment $\mathbf{q}(\boldsymbol{w})=\left(T_{w}, \mu_{w}\right)$
- Set of (indexed) runs $\quad r(\boldsymbol{w}) \in \boldsymbol{T}_{\boldsymbol{w}} \quad$ for all $\boldsymbol{w} \in \boldsymbol{W}$

Quasistates and Quasimodels

- Quasimodel:

$$
\mathfrak{Q}=(\boldsymbol{W}, \prec, \boldsymbol{q}, \mathfrak{R})
$$

- Intransitive, irreflexive tree $\quad(\boldsymbol{W}, \prec)$
- Quasistate assignment $\mathbf{q}(\boldsymbol{w})=\left(T_{w}, \mu_{w}\right)$
- Set of (indexed) runs $\quad \boldsymbol{r}(\boldsymbol{w}) \in \boldsymbol{T}_{\boldsymbol{w}} \quad$ for all $\boldsymbol{w} \in \boldsymbol{W}$

Pruning Procedure

Step 1a) Build a 'small' subtree of witnesses,

Pruning Procedure

Step 1a) Build a 'small' subtree of witnesses,

Pruning Procedure

Step la) Build a `small' subtree of witnesses,

Pruning Procedure

Step la) Build a `small' subtree of witnesses,

Pruning Procedure

Step la) Build a 'small' subtree of witnesses,
Step 1b) Saturate with 'sufficiently' many runs,

Pruning Procedure

Step 2a) Clone each subtree 'sufficiently' many times,

Pruning Procedure

Step 2a) Clone each subtree 'sufficiently' many times,

Pruning Procedure

Step 2a) Clone each subtree 'sufficiently' many times,

Step 2b) Repair saturation criterion by transposing runs in cloned states

Main results II

Theorem The one-variable fragment of $\mathbf{Q}^{\#} \boldsymbol{L}$:
(i) has the exponential fmp,
(ii) is coNExpTime-complete.
for $L \in\{K T, K B, \mathbf{S 5}\}$.

Proof (overview):
Define a model-level reduction for each $L \in\{K T, K B, \mathbf{S 5}\}$,

- Translation

$$
(\cdot)^{\dagger}: \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}^{1} \rightarrow \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}^{1}
$$

- Frame Transformation $\quad(\cdot)^{\star}:$ Frames $(\mathbf{K}) \rightarrow$ Frames (L)

$$
\mathfrak{F} \not \vDash \varphi^{\dagger} \quad \text { iff } \quad \mathfrak{F}^{\star} \not \models \varphi
$$

Main results III

Theorem The one-variable fragment of $\mathbf{Q}^{\text {\# }}$ Alt:
(i) has the poly-size fmp,
(ii) is coNP-complete.

Proof (overview):
Obsv 1) Every $\mathbf{Q}^{\#}$ Alt-satisfiable formula has a model of depth $\leq \operatorname{md}(\varphi)$.
Obsv 2) Modal depth can be 'flattened' to yield $\quad \mathbf{t}_{\ell}(\varphi) \in \mathcal{C}^{1}$ φ is satisfiable in model of depth ℓ iff $\mathbf{t}_{\ell}(\varphi)$ is FO-satisfiable
($^{1}=$ one-variable fragment of classical $F O L$ with counting quantifiers)

Obsv 3) The one-variable fragment \mathcal{C}^{1} is NP-complete.
Pratt-Hartmann 2005

Conclusion

Open problems

Q: Is the monodic fragment of $\mathbf{Q} \# \mathbf{K}$ appropriately extended with counting quantifiers decidable?

- Note: No obvious application of Wolter-Zakharyaschev 1998

$$
\because \quad \mathbf{Q}^{\#} \mathbf{K}^{*} \cap \mathcal{Q}^{\#} \boldsymbol{\mathcal { M }} \mathcal{L}^{1} \quad \text { is non-r.e. }
$$

H-Kurucz 2012

Q: Is the one-variable fragment of $\mathbf{Q}^{\#} \mathbf{K} 4$ ('transitive frames') decidable?

Q: The one-variable fragment of \mathbf{Q} \# $\mathbf{K} 4.3$ ('linear orders') is undecidable
H-Kurucz 2015

- Does this remain true over expanding domains?

Thank you for listening!

Some references

- S. A. Kripke. The undecidability of monadic modal quantification theory. Mathematical Logic Quarterly, 8(2):113-116, 1962.
- K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, 2:77-96, 1973.
- V. Shehtman. Two-dimensional modal logics. Mathematical Notices of the USSR Academy of Sciences, 23:417-424, 1978. (Translated from Russian).
- F. Wolter and M. Zakharyaschev. Temporalizing Description Logics. In D. M. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems 2, pages 104-109, 1998.
- M. Marx. Complexity of products of modal logics. Journal of Logic and Computation, 9(2):197-214, 1999.
- F. Wolter and M. Zakharyaschev. Decidable Fragments of First-Order Modal Logics. The Journal of Symbolic Logic, 66(3):1415-1438, 2001.
- I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information, 14(3):369-395, 2005.
- C. Hampson and A. Kurucz. On Modal Products with the Logic of 'Elsewhere'. In T. Bolander, T. Braüner, S. Ghilardi, and L. Moss, editors, Advances in Modal Logic, volume 9 of Advances in Modal Logic, pages 339-347. College Publications, 2012.
- C. Hampson and A. Kurucz. Undecidable propositional bimodal logics and one-variable first-order linear temporal logics with counting. ACM Transactions on Computational Logic (TOCL), 16(3), 2015.

