GLT 00 Fast provability 0 Slow provability o

BIG AND SMALL STEPS FOR FAST AND SLOW PROVABILITY

Paula Henk

ILLC, University of Amsterdam

September 1, 2016

GLT 00 Fast provability o

Slow provability o

Gödel-Löb provability logic GL

- K together with Löb's axiom: (L) $\Box(\Box A \to A) \to \Box A$
- Complete w.r.t. transitive converse well-founded trees

Theorem (Solovay)

 GL is the provability logic of any reasonable theory T.

GL

$\label{eq:contains} \begin{array}{c} {\rm The \ bimodal \ system \ } {\sf GLT} \\ {\rm Contains \ } {\sf GL} \ {\rm for \ both \ } \vartriangle \ {\rm and \ } \Box, \ {\rm together \ with: } \end{array}$

$(T1) \ \triangle A \to \Box A$	$(T1) \ \Diamond A \to \triangledown A$
$(T2) \ \Box A \to \triangle \Box A$	$(T2) \ \triangledown \diamondsuit A \to \diamondsuit A$
$(T3) \ \Box A \to \Box \triangle A$	$(T3) \ \Diamond \triangledown A \to \Diamond A$
$(T4) \ \Box \triangle A \to \Box A$	$(T4) \ \Diamond A \to \Diamond \triangledown A$

Lindström-frame: $\langle W, \prec, \prec_{\infty} \rangle$, with $\langle W, \prec \rangle$ a GL-frame, and $x \prec_{\infty} y : \Leftrightarrow |\{z \mid x \prec z \prec y\}| = \infty$.

 $\begin{array}{l} x \Vdash \nabla A :\Leftrightarrow y \Vdash A \text{ for some } y \text{ with } x \prec y. \\ x \Vdash \diamond A :\Leftrightarrow y \Vdash A \text{ for some } y \text{ with } x \prec_{\infty} y. \end{array}$

Theorem (Lindström)

GLT is sound and complete w.r.t. Lindström-frames.

Fast provability

PA^* is Peano Arithmetic (PA) together with Parikh's rule:

if $\Box_{\mathsf{PA}}\varphi$, then φ .

Theorem (Parikh)

PA^{*} has speed-up over PA.

Theorem (Lindström)

 $\mathsf{GLT} \ \textit{is the joint provability logic of } \square_{\mathsf{PA}} \ \textit{and} \ \vartriangle_{\mathtt{p}}.$

Lemma (Lindström)

 $\mathsf{PA} \vdash \nabla_{\!\mathsf{p}} \varphi \leftrightarrow \Diamond^{\omega}_{\scriptscriptstyle \mathsf{PA}} \varphi$

Slow provability

Friedman, Rathjen, and Weiermann:

$$\mathsf{PA}_{\mathsf{F}} := \bigcup_{n \in \omega} \{ \mathrm{I}\Sigma_n \mid \mathsf{F}(n) \downarrow \},$$

where F is a certain recursive function with $\mathsf{PA} \nvDash \mathsf{F}\downarrow$. \triangle_{s} is the provability predicate of $\mathsf{PA}\upharpoonright_{\mathsf{F}}$.

Theorem (H. & Shavrukov)

 $\mathsf{GLT} \text{ is the joint provability logic of } \bigtriangleup_{\mathtt{s}} \text{ and } \square_{\mathtt{PA}}.$

Theorem (Pakhomov, Freund)

There are slow provability predicates \triangle_1 , \triangle_2 , for which

- $i. \ \mathsf{PA} \vdash \Diamond_{\mathsf{PA}} \varphi \leftrightarrow \triangledown_1^{\omega} \varphi$
- $ii. \ \mathsf{PA} \vdash \Diamond_{\mathsf{PA}} \varphi \leftrightarrow \triangledown_2^{\varepsilon_0} \varphi$