Kripke Completeness of Strictly Positive Implications in Meet-Semilattices with Operators

<u>S. Kikot</u>, A. Kurucz, Y. Tanaka, F. Wolter and M. Zakharyaschev

Budapest, 30 August 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strictly positive formulas and implications

Strictly positive formulas (SPF) are defined as $\phi ::= p_i \mid \perp \mid \top \mid \Diamond \phi \mid \phi \land \phi,$

where p_i are propositional variables.

Strictly positive implications (SPI) are of the form

 $\phi_1 \rightarrow \phi_2,$

where ϕ_1 and ϕ_2 are strictly positive.

Research problem

Given a normal modal logic \mathcal{L} , construct a calculus for its SPI-fragment (i.e., the set of all SP-implications from \mathcal{L}).

Can we reuse the axioms of \mathcal{L} , if they already are SPIs?

Related Research

Description logic \mathcal{EL} and medical ontologies

SNOMED CT contains \geq 300000 implications like

 $KidneyDisease \equiv Disorder \sqcap \exists \texttt{FindingSite}. KidneyStructure;$

A huge number of both theoretical and practical paper about numeruous reasoning tasks with such axioms.

Strictly Positive fragments of provability logics

L. Beklemishev, E. Dashkov studied SPI-fragments of the logic *GLP*; Svyatlovsky studied SPI-fragment of **K4.3**.

Reseach in meet-semilattice algebras

M. Jackson considered semilattices with closure related to the extensions of S5.

Distributive modal logic

(Goldblatt, 1989) and (M. Gherke, H. Nagahashi, Y. Venema, 2005) showed that a version of Sahlqvist completeness theorem holds if we remove negation from the basic modal language. What if we in addition remove disjunction?

Kripke completeness of SPIs

Two semantics for SPIs

Strictly positive formulas and implications may be interpreted:

- on Kripke frames; $\mathcal{E} \models_{Kr} \mathbf{e}$ is the consequence relation on all Kripke frames;
- on meet-semilattices with monotone operators (SLOs) (or 'general' frames); $\mathcal{E} \models_{SLO}$ e is the consequence relation on all such structures.

Main definition

An *SPI*-theory \mathcal{E} is complete, if for all SP implications **e** we have

 $\mathcal{E} \models_{Kr} \mathbf{e} \iff \mathcal{E} \models_{SLO} \mathbf{e}.$

(in this case the SPI-fragment of $K+{\cal E}$ is axiomatised by ${\cal E}$ with standard SLO axioms)

Examples

- {} is complete (folklore)
- $\{p \to \Diamond p, \Diamond \Diamond p \to \Diamond p\}$ is complete (Jackson, 2004)
- any set of implications of the form $\Diamond_1 \dots \Diamond_n p \to \Diamond_0 p$ is complete (Sofronie-Stokkermans, 2008)

How does incompleteness occur ?

Implication $\mathbf{e} = p \land \Diamond \Diamond q \rightarrow \Diamond \Diamond (q \land \Diamond p)$ with FO equivalent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How does incompleteness occur ?

Implication $\mathbf{e} = p \land \Diamond \Diamond q \rightarrow \Diamond \Diamond (q \land \Diamond p)$ with FO equivalent

is incomplete, since $\mathbf{e} \models_{Kr} \Diamond \Diamond \Diamond \Diamond p \rightarrow \Diamond p$

but $\mathbf{e} \not\models_{SLO} \Diamond \Diamond \Diamond \Diamond p \rightarrow \Diamond p$

 $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(z, x))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How does incompleteness occur ?

Implication $p \land \Diamond q \to \Diamond (q \land \Diamond p)$ expressing symmetry $\bullet = \bullet \bullet$ is complete.

What remains of the Sahlqvist theorem ?

Theorem

Any \mathcal{EL} -theory $\mathcal E$ consisting of equations $\mathbf e = (\sigma o au)$ such that

- every variable in σ occurs in it only once,

 $\rightarrow \Diamond (\Diamond p \land \Diamond q)$

- au corresponds to the tree $\mathfrak{T}_{ au} = (W_{ au}, R_{ au}, V_{ au})$ with

- $|W_{\tau}| \ge 2$ and all points in some $V_{\tau}(p)$ are leaves of \mathfrak{T}_{τ} , - $V_{\tau}(p) \cap V_{\tau}(q) = \emptyset$ whenever $p \ne q$

is complete.

Example

Similar to the Jonsson-Tarski construction: we embed SLOs satisfying \mathcal{E} into Kripke frames with needed properties using filters (or even upward-closed sets) instead of ultrafilters.

Applied to:

 $\Diamond p \land \Diamond q$

reflexivity, transitivity, (generalised) density, standard rooted Horn formulas

Disjunction on the right-hand side of FO-equivalents is another reason of incompleteness:

The implication $\mathbf{e} = (p \land \Diamond_1 p \to \Diamond_2 p)$ with FO-equivalent $\forall x, y (R_1(x, y) \to R_2(x, x) \lor R_2(x, y))$ is not complete since $\mathbf{e} \models_{Kr} p \land \Diamond_1 \Diamond_2 p \to \Diamond_2 \Diamond_2 p$, but $\mathbf{e} \not\models_{SLO} p \land \Diamond_1 \Diamond_2 p \to \Diamond_2 \Diamond_2 p$:

However,

SPI-axiomatisation \mathcal{E} of S4.3: $p \to \Diamond p \qquad \Diamond \Diamond p \to \Diamond p \\ \Diamond (p \land q) \land \Diamond (p \land r) \to \Diamond (p \land \Diamond q \land \Diamond r)$

- *ε* is Kripke complete (can be proved via nice explicit description of SPI-consequences of *ε*).
- Not every *E*-SLO is embeddable to the complex algebra of an S4.3-frame.

So what SPI-theories are complete and what are not ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So what SPI-theories are complete and what are not ? $\Diamond_1(p \land \Diamond_1 q) \rightarrow \Diamond_1(p \land \Diamond_2 q)$ with profile $\bullet_1 = e^{-\frac{2}{1}} \bullet_1$ is complete while $\Diamond_1(p \land \Diamond_2 q) \rightarrow \Diamond_1(p \land \Diamond_1 q)$ with profile $\bullet_1 = e^{-\frac{1}{2}} \bullet_2$ is not; $p \rightarrow \Diamond \Diamond (p \land \Diamond p)$ expressing reflexivity is incomplete;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So what SPI-theories are complete and what are not ? $\Diamond_1(p \land \Diamond_1 q) \rightarrow \Diamond_1(p \land \Diamond_2 q)$ with profile $\bullet_1 \bullet_2 \bullet_1^2 \bullet_2^2 \bullet_2$

So what SPI-theories are complete and what are not ? $\Diamond_1(p \land \Diamond_1 q) \rightarrow \Diamond_1(p \land \Diamond_2 q)$ with profile $\bullet_1 \bullet_2 \bullet_1 \bullet_2 \bullet_2 \bullet_2 \bullet_1$ is complete while $\Diamond_1(p \land \Diamond_2 q) \rightarrow \Diamond_1(p \land \Diamond_1 q)$ with profile $\bullet_1 \bullet_2 \bullet_2 \bullet_2 \bullet_2 \bullet_2 \bullet_2 \bullet_2$ is not; $p \rightarrow \Diamond \Diamond (p \land \Diamond p)$ expressing reflexivity is incomplete; $\Diamond \Diamond p \land \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ expressing $R^3 \subseteq R$ is incomplete $\Diamond p \rightarrow p$ is incomplete;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

So what SPI-theories are complete and what are not ?

while $\Diamond_1(p \land \Diamond_2 q) \rightarrow \Diamond_1(p \land \Diamond_1 q)$ with profile $\bullet_1 \bullet_2 \bullet_2 \bullet_2 \bullet_3$ is not;

 $p \rightarrow \Diamond \Diamond (p \land \Diamond p)$ expressing reflexivity is incomplete;

 $\Diamond \Diamond p \land \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ expressing $R^3 \subseteq R$ is incomplete

 $\Diamond p \rightarrow p$ is incomplete;

. . .

all SPI-theories which axiomatise the extensions of ${f S5}$ except one are complete;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So what SPI-theories are complete and what are not ?

while $\Diamond_1(p \land \Diamond_2 q) \rightarrow \Diamond_1(p \land \Diamond_1 q)$ with profile $\bullet_1 \bullet_2 \bullet_2 \bullet_2 \bullet_3$ is not;

 $p \rightarrow \Diamond \Diamond (p \land \Diamond p)$ expressing reflexivity is incomplete;

 $\Diamond \Diamond p \land \Diamond \Diamond \Diamond p \to \Diamond p$ expressing $R^3 \subseteq R$ is incomplete

 $\Diamond p \rightarrow p$ is incomplete;

all SPI-theories which axiomatise the extensions of ${f S5}$ except one are complete;

•••

Theorem

It is undecidable whether an SPI-theory is Kripke complete.