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Language and logics

φ ::= p | ¬φ | φ ∨ φ | 2iφ, i = 1, 2.

⊥, → and ♦i are expressible in the usual way.
Normal modal logic.
Kn denotes the minimal normal modal logic with n modalities and K = K1.
L1 and L2 � two modal logics with one modality 2 then the fusion of these
logics is de�ned as

L1 ∗ L2 = K2 + L′1 + L2
′;

where L′i is the set of all formulas from Li where in all formulas 2 is replaced by
2i.



Topological and derivational semantics

Semantics on topological spaces can be built using closure operator cl where
cl(A) is the closure of A. The semantics de�ned like this:

Vcl(♦φ) = cl(Vcl(φ))

Or using derivative operator d, where d(A) is the set of all limit points of A.
The semantics de�ned like this:

Vd(♦φ) = d(Vd(φ))

closure semantics derivational semantics

all spaces S4 (McKinsey & Tarski'1944) wK4 (Esakia'1981)

Q, Cantor space S4 D4 (Shehtman'1990)

R S4 D4 + G2 (Shehtman'2000)

Rn, n ≥ 2 S4 D4 + G1 (Shehtman'1990)

wK4 = K +♦♦p→ ♦p ∨ p
D4 = K +♦♦p→ ♦p+♦>



The product of Kripke frames

For two frames F1 = (W1, R1) and F2 = (W2, R2)

F1 × F2 = (W1 ×W2, R
∗
1, R

∗
2), where (a1, a2)R∗1(b1, b2)⇔ a1R1b1 & a2 = b2

(a1, a2)R∗2(b1, b2)⇔ a1 = b1 & a2R2b2

For two logics L1 and L2

L1 × L2 = Log({F1 × F2 |F1 |= L1 & F2 |= L2})

(Shehtman, 1978)
For two classes of frames F1 and F2

Log({F1 × F2 |F1 ∈ F1 & F2 ∈ F2}) ⊇ Log(F1) ∗ Log(F2)+
+2122p↔ 2122p+♦122p→ 22♦1p.

K× K = K ∗ K + 2122p↔ 2122p+♦122p→ 22♦1p

S4× S4 = S4 ∗ S4 + 2122p↔ 2122p+♦122p→ 22♦1p

...



The product of topological spaces

(van Benthem et al, 2005)
For two topological space X1 = (X1, τ1) and X2 = (X2, τ2)

X1 × X2 = (X1 ×X2, τ
∗
1 , τ
∗
2 ), where τ∗1 has base {U1 × x2 |U1 ∈ τ1 & x2 ∈ X2}

τ∗2 has base {x1 × U2 |x1 ∈ X1 & U2 ∈ τ2}
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The product of topological spaces

(van Benthem et al, 2005)
For two topological space X1 = (X1, τ1) and X2 = (X2, τ2)

X1 × X2 = (X1 ×X2, τ
∗
1 , τ
∗
2 ), where τ∗1 has base {U1 × x2 |U1 ∈ τ1 & x2 ∈ X2}

τ∗2 has base {x1 × U2 |x1 ∈ X1 & U2 ∈ τ2}

For two logics L1 and L2

L1 ×t L2 = Log({X1 × X2 |X1 |= L1 & X2 |= L2}
S4×t S4 = Log(Q×Q) = S4 ∗ S4 (van Benthem et al, 2005)

Log(R× R) 6= S4 ∗ S4 (Kremer, 2010?)

Log(Cantor × Cantor) 6= S4 ∗ S4

d-logic of product of topological spaces was considered by L. Uridia (2011).

Log d(Q×Q) = D4 ∗ D4

Generalization to neighborhood frames was done by K. Sano (2011).



Known results

Theorem (2012)

Let L1 and L2 be from the set {D,T,D4,S4} then

L1 ×n L2 = L1 ∗ L2.

Not straightforward but still a

Corollary

In derivational semantics

1. D4×d D4 = D4 ∗ D4.
2. [Uridia'2011] Logd(Q×Q) = D4 ∗ D4

Note that all these logics include seriality: ¬2⊥.
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Without seriality

It is not the case for logic K!

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.

X1 × X2, (x, y) |= 21⊥ ⇐⇒ ∅ ∈ τ ′1(x, y) ⇐⇒
∅ ∈ τ1(x) ⇐⇒ ∀y′ ∈ X2 (∅ ∈ τ ′1(x, y′)) ⇐⇒

∀y′ ∈ X2 (X1 × X2, (x, y
′) |= 21⊥) =⇒ X1 × X2, (x, y) |= 2221⊥.

Hence, X1 × X2 |= 21⊥ → 2221⊥.
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It is not the case for logic K!
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X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.
Since ψ does not contain neither 22, nor variables, its value does not depend
on the second coordinate. Let F = X1 × X2. So F, (x, y) |= ψ, then
∀y′(F, (x, y′) |= ψ), hence, F, (x, y) |= 22ψ.



Without seriality

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

De�nition
For two unimodal logics L1 and L2, we de�ne weak commutator

〈L1, L2〉 = L1 ∗ L2 + ∆, where

∆ = {φ→ 22φ |φ is closed and 22-free}∪{ψ → 21ψ |ψ is closed and 21-free} .

Lemma
For any two normal modal logics L1 and L2 〈L1, L2〉 ⊆ L1 ×n L2.

Note that if ♦> ∈ L1 ∩ L2 then L1 ∗ L2 |= ∆.



Completeness results

Theorem (2014)

K×n K = 〈K,K〉.

Theorem
If logics L1 and L2 are axiomatizable by closed formulas and by axioms like
2p→ 2kp then L1 ×n L2 = 〈L1, L2〉.

Corollary

K4×d K4 = 〈K4,K4〉.



Logic S5

We put

∆1 = {φ→ 22φ |φ is closed and 22-free} ,
com12 = 2122p→ 2221p,

com21 = 2221p→ 2122p,

chr = ♦122p→ 22♦1p.

Theorem
If logic L is axiomatizable by closed formulas and by axioms like 2p→ 2kp
then L×n S5 = L ∗ S5 + ∆1 + com12 + chr.

For L = S4 was proved by Kremer in 2011.



How to prove

PLAN
We have two logics L1 and L2. Let Γi are all axioms from Li of form 2p→ 2kp.

Canonicity of the logic 〈L1, L2〉.
⇓

Construct F1 |= L1 and F2 |= L2, and 〈F1, F2〉� F〈L1,L2〉, and 〈F1, F2〉 |= ∆.
⇓

Construct Nω
Γ1(F1)×Nω

Γ2(F2) � N
(
〈F1, F2〉Γ1∪Γ2

)
.

⇓
Check that Nω

Γ1(F1) |= L1 and Nω
Γ2(F2) |= L2

Here ·Γ is a special operation which makes sure that if 2p→ 2kp ∈ Γ then
this formula is valid.



How to prove for S5

PLAN
We have two loogic L and S5

Canonicity of the logic 〈L, S5].
⇓

Construct F1 |= L and F2 |= S5, and 〈F1, F2] � F〈L,S5], and
〈F1, F2] |= ∆1, com1, chr.

⇓
Construct Nω

Γ(F1)×Nω
S5(F2) � N

(
〈F1, F2]Γ

)
.



Take rooted frames F1 = (W1, R1) and F2 = (W2, R2) such that
W1 ∩W2 = ∅ then

F1]F2 = {x1x2 . . . xn |xi ∈W1 ∪W2 and projecton on Wi is a path}

We de�ne a Semi-Thue system

C12 = {ab 7→ ba | a ∈W1, b ∈W2}

We also de�ne a Kripke frame

〈F1, F2] = (F1]F2, R
<
1 , R

/
2)

~aR<
1
~b ⇐⇒ ∃u ∈W1(~b = ~au)

~aR<
2
~b ⇐⇒ ∃v ∈W2(~b = ~av)

~aR/
2
~b ⇐⇒ ∃~b′ (~aR<

2
~b′ & ~b′ ==⇒

C12

~b)

Lemma
For F1 and F2 de�ned above

〈F1, F2] |= com12, chr, ∆1.





THANK YOU!
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