Neighbourhood products of pretransitive logics with S5

Andrey Kudinov

Institute for Information Transmission Problems, Moscow National Research University Higher School of Economics, Moscow Moscow Institute of Physics and Technology

September 1, 2016

Language and logics

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \Box_i \phi, \ i = 1, 2.$$

 \perp , \rightarrow and \diamondsuit_i are expressible in the usual way.

Normal modal logic.

 K_n denotes the minimal normal modal logic with n modalities and $\mathsf{K} = \mathsf{K}_1$. L_1 and L_2 — two modal logics with one modality \square then the fusion of these logics is defined as

$$L_{1}*L_{2}=K_{2}+L_{1}^{\prime }+L_{2}^{\prime };$$

where L_i' is the set of all formulas from L_i where in all formulas \square is replaced by \square_i .

Topological and derivational semantics

Semantics on topological spaces can be built using closure operator cl where cl(A) is the closure of A. The semantics defined like this:

$$V_{cl}(\diamondsuit \phi) = cl(V_{cl}(\phi))$$

Or using derivative operator d, where d(A) is the set of all limit points of A. The semantics defined like this:

$$V_d(\Diamond \phi) = d(V_d(\phi))$$

	closure semantics	derivational semantics
all spaces	S4 (McKinsey & Tarski'1944)	wK4 (Esakia'1981)
Q, Cantor space	S4	D4 (Shehtman'1990)
\mathbb{R}	S4	$D4 + G_2 \; (Shehtman'2000)$
$\mathbb{R}^n, \ n \geq 2$	S4	$D4 + G_1 \; (Shehtman'1990)$

$$\mathsf{wK4} = \mathsf{K} + \diamondsuit \diamondsuit p \to \diamondsuit p \lor p \\ \mathsf{D4} = \mathsf{K} + \diamondsuit \diamondsuit p \to \diamondsuit p + \diamondsuit \top$$

The product of Kripke frames

For two frames
$$F_1=(W_1,R_1)$$
 and $F_2=(W_2,R_2)$

$$F_1 \times F_2 = (W_1 \times W_2, R_1^*, R_2^*), \text{ where } (a_1, a_2) R_1^*(b_1, b_2) \Leftrightarrow a_1 R_1 b_1 \& a_2 = b_2$$

 $(a_1, a_2) R_2^*(b_1, b_2) \Leftrightarrow a_1 = b_1 \& a_2 R_2 b_2$

For two logics L_1 and L_2

$$\mathsf{L}_1 \times \mathsf{L}_2 = Log(\{F_1 \times F_2 \mid F_1 \models \mathsf{L}_1 \& F_2 \models \mathsf{L}_2\})$$

(Shehtman, 1978) For two classes of frames \mathfrak{F}_1 and \mathfrak{F}_2 $Log(\{F_1 \times F_2 \mid F_1 \in \mathfrak{F}_1 \ \& \ F_2 \in \mathfrak{F}_2\}) \supseteq Log(\mathfrak{F}_1) * Log(\mathfrak{F}_2) + \\ + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p.$ $\mathsf{K} \times \mathsf{K} = \mathsf{K} * \mathsf{K} + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p$ $\mathsf{S4} \times \mathsf{S4} = \mathsf{S4} * \mathsf{S4} + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p$

The product of topological spaces

```
(van Benthem et al, 2005) For two topological space \mathfrak{X}_1=(X_1,\tau_1) and \mathfrak{X}_2=(X_2,\tau_2) \mathfrak{X}_1\times\mathfrak{X}_2=(X_1\times X_2,\tau_1^*,\tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1\times x_2\,|\,U_1\in\tau_1\,\,\&\,\,x_2\in X_2\} \tau_2^* \text{ has base } \{x_1\times U_2\,|\,x_1\in X_1\,\,\&\,\,U_2\in\tau_2\}
```

The product of topological spaces

```
(van Benthem et al, 2005)
For two topological space \mathfrak{X}_1=(X_1,	au_1) and \mathfrak{X}_2=(X_2,	au_2)
```

$$\mathfrak{X}_1 \times \mathfrak{X}_2 = (X_1 \times X_2, \tau_1^*, \tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1 \times x_2 \,|\, U_1 \in \tau_1 \,\,\&\,\, x_2 \in X_2\}$$

$$\tau_2^* \text{ has base } \{x_1 \times U_2 \,|\, x_1 \in X_1 \,\,\&\,\, U_2 \in \tau_2\}$$

The product of topological spaces

(van Benthem et al, 2005) For two topological space $\mathfrak{X}_1=(X_1, au_1)$ and $\mathfrak{X}_2=(X_2, au_2)$

$$\mathfrak{X}_1 \times \mathfrak{X}_2 = (X_1 \times X_2, \tau_1^*, \tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1 \times x_2 \, | \, U_1 \in \tau_1 \, \, \& \, \, x_2 \in X_2 \}$$

$$\tau_2^* \text{ has base } \{x_1 \times U_2 \, | \, x_1 \in X_1 \, \, \& \, \, U_2 \in \tau_2 \}$$

For two logics L_1 and L_2

$$\begin{split} \mathsf{L}_1 \times_t \mathsf{L}_2 &= Log(\{\mathfrak{X}_1 \times \mathfrak{X}_2 \,|\, \mathfrak{X}_1 \models \mathsf{L}_1 \,\&\, \mathfrak{X}_2 \models \mathsf{L}_2\} \\ \mathsf{S4} \times_t \mathsf{S4} &= Log(\mathbb{Q} \times \mathbb{Q}) = \mathsf{S4} * \mathsf{S4} \quad \text{(van Benthem et al, 2005)} \\ Log(\mathbb{R} \times \mathbb{R}) &\neq \mathsf{S4} * \mathsf{S4} \quad \text{(Kremer, 2010?)} \end{split}$$

 $Log(Cantor \times Cantor) \neq S4 * S4$

d-logic of product of topological spaces was considered by L. Uridia (2011).

$$Log_d(\mathbb{Q} \times \mathbb{Q}) = D4 * D4$$

Generalization to neighborhood frames was done by K. Sano (2011).

Known results

Theorem (2012)

Let L_1 and L_2 be from the set $\{D,T,D4,S4\}$ then

$$\mathsf{L}_1 \times_n \mathsf{L}_2 = \mathsf{L}_1 * \mathsf{L}_2.$$

Not straightforward but still a

Corollary

In derivational semantics

- 1. $D4 \times_d D4 = D4 * D4$.
- 2. [Uridia'2011] $Log_d(\mathbb{Q} \times \mathbb{Q}) = \mathsf{D4} * \mathsf{D4}$

Note that all these logics include seriality: $\neg\Box\bot$

Known results

Theorem (2012)

Let L_1 and L_2 be from the set $\{D,T,D4,S4\}$ then

$$\mathsf{L}_1 \times_n \mathsf{L}_2 = \mathsf{L}_1 * \mathsf{L}_2.$$

Not straightforward but still a

Corollary

In derivational semantics

- 1. $D4 \times_d D4 = D4 * D4$.
- 2. [Uridia'2011] $Log_d(\mathbb{Q} \times \mathbb{Q}) = \mathsf{D4} * \mathsf{D4}$

Note that all these logics include seriality: $\neg \Box \bot$.

Without seriality

It is not the case for logic K!

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed \Box_1 -free formula ϕ and any closed \Box_2 -free formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Proof.

$$\mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y) \models \Box_{1} \bot \iff \varnothing \in \tau'_{1}(x,y) \iff \\ \varnothing \in \tau_{1}(x) \iff \forall y' \in X_{2} \ (\varnothing \in \tau'_{1}(x,y')) \iff \\ \forall y' \in X_{2} \ (\mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y') \models \Box_{1} \bot) \implies \mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y) \models \Box_{2} \Box_{1} \bot.$$

Hence,
$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot$$
.

Without seriality

It is not the case for logic K!

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed \Box_1 -free formula ϕ and any closed \Box_2 -free formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Proof.

Since ψ does not contain neither \square_2 , nor variables, its value does not depend on the second coordinate. Let $F=\mathfrak{X}_1\times\mathfrak{X}_2$. So $F,(x,y)\models\psi$, then $\forall y'(F,(x,y')\models\psi)$, hence, $F,(x,y)\models\square_2\psi$.

Without seriality

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed \Box_1 -free formula ϕ and any closed \Box_2 -free formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Definition

For two unimodal logics L_1 and L_2 , we define weak commutator

$$\langle L_1, L_2 \rangle = L_1 * L_2 + \Delta$$
, where

 $\Delta = \{\phi \rightarrow \square_2 \phi \,|\, \phi \text{ is closed and } \square_2\text{-free}\} \cup \{\psi \rightarrow \square_1 \psi \,|\, \psi \text{ is closed and } \square_1\text{-free}\}\,.$

Lemma

For any two normal modal logics L_1 and L_2 $\langle L_1, L_2 \rangle \subseteq L_1 \times_n L_2$.

Note that if $\lozenge \top \in L_1 \cap L_2$ then $L_1 * L_2 \models \Delta$.

Completeness results

Theorem (2014)

$$\mathsf{K} \times_n \mathsf{K} = \langle \mathsf{K}, \mathsf{K} \rangle.$$

Theorem

If logics L_1 and L_2 are axiomatizable by closed formulas and by axioms like $\Box p \to \Box^k p$ then $L_1 \times_n L_2 = \langle L_1, L_2 \rangle$.

Corollary

$$\mathsf{K4} \times_d \mathsf{K4} = \langle \mathsf{K4}, \mathsf{K4} \rangle.$$

Logic S5

We put

$$\begin{split} \Delta_1 &= \left\{\phi \to \Box_2 \phi \,|\, \phi \text{ is closed and } \Box_2\text{-free}\right\},\\ com_{12} &= \Box_1 \Box_2 p \to \Box_2 \Box_1 p,\\ com_{21} &= \Box_2 \Box_1 p \to \Box_1 \Box_2 p,\\ chr &= \diamondsuit_1 \Box_2 p \to \Box_2 \diamondsuit_1 p. \end{split}$$

Theorem

If logic L is axiomatizable by closed formulas and by axioms like $\Box p \to \Box^k p$ then L \times_n S5 = L * S5 + $\Delta_1 + com_{12} + chr$.

For L = S4 was proved by Kremer in 2011.

How to prove

PLAN

We have two logics L₁ and L₂. Let Γ_i are all axioms from L_i of form $\Box p \to \Box^k p$.

Canonicity of the logic
$$\langle L_1, L_2 \rangle$$
.

$$\Downarrow$$

Construct $F_1 \models \mathsf{L}_1$ and $F_2 \models \mathsf{L}_2$, and $\langle F_1, F_2 \rangle \twoheadrightarrow \mathcal{F}_{\langle \mathsf{L}_1, \mathsf{L}_2 \rangle}$, and $\langle F_1, F_2 \rangle \models \Delta$.

Construct
$$\mathcal{N}_{\omega}^{\Gamma_{1}}(F_{1}) \times \mathcal{N}_{\omega}^{\Gamma_{2}}(F_{2}) \twoheadrightarrow \mathcal{N}\left(\langle F_{1}, F_{2} \rangle^{\Gamma_{1} \cup \Gamma_{2}}\right).$$

Check that
$$\mathcal{N}_{\omega}^{\ \Gamma_1}(F_1)\models \mathsf{L}_1$$
 and $\mathcal{N}_{\omega}^{\ \Gamma_2}(F_2)\models \mathsf{L}_2$

Here \cdot^Γ is a special operation which makes sure that if $\Box p \to \Box^k p \in \Gamma$ then this formula is valid.

How to prove for S5

PLAN
We have two loogic L and S5

$$\begin{array}{c} \text{Canonicity of the logic } \langle \mathsf{L}, \mathsf{S5}]. \\ & \quad \quad \ \ \, \psi \\ \text{Construct } F_1 \models \mathsf{L} \text{ and } F_2 \models \mathsf{S5}, \text{ and } \langle F_1, F_2] \twoheadrightarrow \mathcal{F}_{\langle \mathsf{L}, \mathsf{S5}]}, \text{ and } \\ & \quad \langle F_1, F_2] \models \Delta_1, com_1, chr. \\ & \quad \quad \ \ \, \psi \\ \text{Construct } \mathcal{N}_\omega^{\ \Gamma}(F_1) \times \mathcal{N}_\omega^{\ \mathsf{S5}}(F_2) \twoheadrightarrow \mathcal{N}\left(\langle F_1, F_2]^\Gamma\right). \end{array}$$

Take rooted frames $F_1=(W_1,R_1)$ and $F_2=(W_2,R_2)$ such that $W_1\cap W_2=\varnothing$ then

$$F_1 \, \forall F_2 = \{x_1 x_2 \dots x_n \mid x_i \in W_1 \cup W_2 \text{ and projection on } W_i \text{ is a path}\}$$

We define a Semi-Thue system

$$C_{12} = \{ab \mapsto ba \mid a \in W_1, b \in W_2\}$$

We also define a Kripke frame

$$\begin{split} \langle F_1, F_2] &= (F_1 \otimes F_2, R_1^{<}, R_2^{<}) \\ \vec{a} R_1^{<} \vec{b} &\iff \exists u \in W_1 (\vec{b} = \vec{a}u) \\ \vec{a} R_2^{<} \vec{b} &\iff \exists v \in W_2 (\vec{b} = \vec{a}v) \\ \vec{a} R_2^{<} \vec{b} &\iff \exists \vec{b}' \ (\vec{a} R_2^{<} \vec{b}' \ \& \ \vec{b}' \Longrightarrow \vec{b}) \end{split}$$

Lemma

For F_1 and F_2 defined above

$$\langle F_1, F_2 \rangle \models com_{12}, \ chr, \ \Delta_1.$$

THANK YOU!