# It ain't necessarily so! <br> Basic sequent systems for negative modalities 

João Marcos<br>(joint work with Ori Lahav and Yoni Zohar)<br>UFRN (BR)

## AiML 2016

Budapest, 30.08-02.09 2016

## A parsimonious modal (interpreted) language

## A parsimonious modal (interpreted) language

Frame: $\quad \mathcal{F}=\langle W, R\rangle$, where $W \neq \varnothing$ and $R \subseteq W \times W$
Model: $\quad \mathcal{M}=\langle\mathcal{F}, V\rangle$, where $\mathcal{F}$ is a frame, and $V: W \times \mathcal{L} \rightarrow\{f, t\}$ respects
[Sゝ] $\mathcal{M}, w \Vdash \varphi \supset \psi$ iff $\mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \psi$
[S`] $\mathcal{M}, w \Vdash \smile \varphi \quad$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$

## A parsimonious modal (interpreted) language

Frame: $\quad \mathcal{F}=\langle W, R\rangle$, where $W \neq \varnothing$ and $R \subseteq W \times W$
Model: $\quad \mathcal{M}=\langle\mathcal{F}, V\rangle$, where $\mathcal{F}$ is a frame, and $V: W \times \mathcal{L} \rightarrow\{f, t\}$ respects
$[S \supset] \quad \mathcal{M}, w \Vdash \varphi \supset \psi \quad$ iff $\quad \mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \psi$ [S ] $\mathcal{M}, w \Vdash \smile \varphi \quad$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$

Recovering the (now standard) basic modal languages
$\sim \alpha:=\alpha \supset \smile(\alpha \supset \alpha)$ behaves as the classical negation and
$\square \alpha:=\sim \cup \alpha$ behaves as the usual (positive) modality box

## A parsimonious modal (interpreted) language

Frame: $\quad \mathcal{F}=\langle W, R\rangle$, where $W \neq \varnothing$ and $R \subseteq W \times W$
Model: $\quad \mathcal{M}=\langle\mathcal{F}, V\rangle$, where $\mathcal{F}$ is a frame, and $V: W \times \mathcal{L} \rightarrow\{f, t\}$ respects

## Recovering the (now standard) basic modal languages

$\sim \alpha:=\alpha \supset \smile(\alpha \supset \alpha)$ behaves as the classical negation and
$\square \alpha:=\sim \cup \alpha$ behaves as the usual (positive) modality box
Note 0. Conversely, the (paraconsistent) negation $\smile$ might be recovered through $\sim \square$.
Note 1. It is reasonable to expect $\smile$ to be, in general, weaker than $\sim$, i.e.:

$$
\sim \alpha \models \smile \alpha, \text { yet } \smile \alpha \not \models \sim \alpha
$$

Note 2. Our minimal language, in what follows, will be:

$$
\mathcal{L}_{\wedge \vee T \perp} \text {, classically interpreted }
$$

## Unary modal operators

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

A shared property: congruentiality

$$
\text { [cong] if } \alpha \equiv \beta \text {, then } \#(\alpha) \equiv \#(\beta)
$$

$$
\text { (where } \varphi \equiv \psi \text { means that both } \varphi \succ \psi \text { and } \psi \succ \varphi \text { ) }
$$

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

A shared property: congruentiality

$$
\text { [cong] if } \alpha \equiv \beta \text {, then } \#(\alpha) \equiv \#(\beta)
$$

$$
\text { (where } \varphi \equiv \psi \text { means that both } \varphi \succ \psi \text { and } \psi \succ \varphi \text { ) }
$$

Some stronger properties: $\succ$-preservation and $\succ$-reversal
[prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$
[rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$
(satisfied by all, but -)
(satisfied by all, but + )

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

A shared property: congruentiality

$$
\text { [cong] if } \alpha \equiv \beta \text {, then } \#(\alpha) \equiv \#(\beta)
$$

$$
\text { (where } \varphi \equiv \psi \text { means that both } \varphi \succ \psi \text { and } \psi \succ \varphi \text { ) }
$$

Some stronger properties: $\succ$-preservation and $\succ$-reversal
[prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$
[rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$
Interactions with $\wedge$ and $\vee$ :

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

A shared property: congruentiality

$$
\text { [cong] if } \alpha \equiv \beta \text {, then } \#(\alpha) \equiv \#(\beta)
$$

$$
\text { (where } \varphi \equiv \psi \text { means that both } \varphi \succ \psi \text { and } \psi \succ \varphi \text { ) }
$$

Some stronger properties: $\succ$-preservation and $\succ$-reversal
[prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$
[rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$

Interactions with $\wedge$ and $\vee$ :

$$
[\mathrm{PM} 1.1+]+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi \quad[\mathrm{PM} 2.1+] \quad+\varphi \vee+\psi \succ+(\varphi \vee \psi)
$$

## Unary modal operators

The classical case:

|  | $\curlyvee$ | + | - | $\curlywedge$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |

A shared property: congruentiality

$$
\text { [cong] if } \alpha \equiv \beta \text {, then } \#(\alpha) \equiv \#(\beta)
$$

$$
\text { (where } \varphi \equiv \psi \text { means that both } \varphi \succ \psi \text { and } \psi \succ \varphi \text { ) }
$$

Some stronger properties: $\succ$-preservation and $\succ$-reversal
[prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$
[rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$

Interactions with $\wedge$ and $\vee$ :
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
[PM2.1+] $+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$

## [Boxes] and <Diamonds>

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi \quad[P M 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
[PM2.1+] $+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
[PM1.2+] $+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
[PM2.1+] $+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
[PM1.2+] $+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
[PM2.2+] $+(\varphi \vee \psi) \succ+\varphi \vee+\psi$ type [+]

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
[PM2.1+] $+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
[PM1.2+] $+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
[PM2.2+] $+(\varphi \vee \psi) \succ+\varphi \vee+\psi$ type <+>

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$

$$
[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)
$$

$$
\begin{gathered}
{[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)} \\
{[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi} \\
\text { type <+> }
\end{gathered}
$$

$$
[\mathrm{PT}+] \succ+\mathrm{T}
$$

## [Boxes] and <Diamonds>

Case of [prs]:
[PM1.1+] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$

$$
[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)
$$

full type [+]

$$
\begin{gathered}
{[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)} \\
{[\text { PM2.2+] }+(\varphi \vee \psi) \succ+\varphi \vee+\psi} \\
\text { full type <+> }
\end{gathered}
$$

$$
[\mathrm{PT}+] \succ+\mathrm{T}
$$

$$
[\mathrm{PB}+]+\perp \succ
$$

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$
[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$
[DM2.2-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$
[DM2.2-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$ type [-]

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$ type [-]
[DM2.2-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
type <->

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$
full type [-]
$[\mathrm{DM} 2.1-]-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$
$[\mathrm{DM} 2.2-]-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
type <->

$$
[\mathrm{PT}-] \succ-\perp
$$

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$
full type [+]
$[\mathrm{PT}+] \succ+\mathrm{T}$
$[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)$
$[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi$
full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$
full type [-]

$$
[\mathrm{PT}-] \succ-\perp
$$

[DM2.1-] $-\varphi \vee-\psi \succ-(\varphi \wedge \psi)$
[DM2.2-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
full type <->

$$
[\mathrm{PB}-] \quad-\top \succ
$$

## [Boxes] and <Diamonds>

Case of [prs]:
$[$ PM1.1 + ] $+(\varphi \wedge \psi) \succ+\varphi \wedge+\psi$
$[\mathrm{PM} 1.2+]+\varphi \wedge+\psi \succ+(\varphi \wedge \psi)$ full type [+]

$$
[\mathrm{PT}+] \succ+\mathrm{T}
$$

Case of [rev]:
[DM1.1-] $-(\varphi \vee \psi) \succ-\varphi \wedge-\psi$
[DM1.2-] $-\varphi \wedge-\psi \succ-(\varphi \vee \psi)$
full type [-]

$$
[\mathrm{PT}-] \succ-\perp
$$

Negations?
$\llbracket$ falsificatio】 $\forall k \exists p \#^{k} p \nsucc \#^{k+1} p$

$$
[\mathrm{PM} 2.1+]+\varphi \vee+\psi \succ+(\varphi \vee \psi)
$$

$$
[\mathrm{PM} 2.2+]+(\varphi \vee \psi) \succ+\varphi \vee+\psi
$$

full type <+>

$$
[\mathrm{PB}+]+\perp \succ
$$

$$
[\mathrm{DM} 2.1-]-\varphi \vee-\psi \succ-(\varphi \wedge \psi)
$$

$$
[\mathrm{DM} 2.2-]-(\varphi \vee \psi) \succ-\varphi \wedge-\psi
$$

full type <->

$$
[\mathrm{PB}-]-\mathrm{T} \succ
$$

## [Boxes] and <Diamonds>

Let $\sim$ represent classical negation. Then:

$$
\begin{array}{ll}
{[+] \sim \alpha \equiv \sim<+>\alpha} & <+>\sim \alpha \equiv \sim[+] \alpha \\
{[-] \sim \alpha \equiv \sim<->\alpha} & <->\sim \alpha \equiv \sim[-] \alpha
\end{array}
$$

## [Boxes] and <Diamonds>

Let $\sim$ represent classical negation. Then:

$$
\begin{array}{ll}
{[+] \sim \alpha \equiv \sim<+>\alpha} & <+>\sim \alpha \equiv \sim[+] \alpha \\
{[-] \sim \alpha \equiv \sim<->\alpha} & <->\sim \alpha \equiv \sim[-] \alpha
\end{array}
$$



Figure: Square of Modalities (som)

Non-classical behavior and derivability adjustment

## Non－classical behavior and derivability adjustment

The two sides of negation：
【\＃－explosion』 $p, \# p \succ q \quad$ 【\＃－implosion』 $q \succ \# p, p$

## Non-classical behavior and derivability adjustment

The two sides of negation, and their failures:
$\begin{array}{lll}\llbracket \# \text {-explosion』 } & p, \# p \nsucc q \\ & \text { paraconsistency } & \llbracket \# \text {-implosion』 } q \succ \# p, p\end{array}$

## Non－classical behavior and derivability adjustment

The two sides of negation，and their failures：
【\＃－explosion】 $p, \# p \nsucc q$
«\＃－implosion】
$q \nsucc \# p, p$
paraconsistency
paracompleteness

## Non-classical behavior and derivability adjustment

The two sides of negation, and their failures:
«\#-explosion】
$p, \# p \nsucc q$
«\#-implosion】
$q \nsucc \# p, p$
paraconsistency
paracompleteness

Some (strong) gentler versions:

| $[\mathrm{C} 1 \#]$ | $\# p, p, \# p \succ$ | $[\mathrm{C} 2 \#]$ | $\succ p, \circledast p$ | $[\mathrm{C} 3 \#]$ | $\succ \# p, \circledast p$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{D} 1 \#]$ | $\succ \#, p, \circledast p$ | $[\mathrm{D} 2 \#]$ | $\# p, p \succ$ | $[\mathrm{D} 3 \#]$ | $\# p, \# p \succ$ |

When you encounter difficulties and contradictions, do not try to break them, but bend them with gentleness and time.

- Saint Francis de Sales


## Non－classical behavior and derivability adjustment

The two sides of negation，and their failures：
【\＃－explosion】
$p, \# p \nsucc q$
«\＃－implosion】
$q \nsucc \# p, p$
paraconsistency
paracompleteness
Some（strong）gentler versions：

| $[\mathrm{C} 1 \#]$ | $\# p, p, \# p \succ$ | $[\mathrm{C} 2 \#]$ | $\succ p, \circledast p$ | $[\mathrm{C} 3 \#]$ | $\succ \# p, \# p$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{D} 1 \#]$ | $\succ p, p, \# p$ | $[\mathrm{D} 2 \#]$ | $\# p, p \succ$ | $[\mathrm{D} 3 \#]$ | $\# p, \# p \succ$ |

When you encounter difficulties and con－ tradictions，do not try to break them，but bend them with gentleness and time．
－Saint Francis de Sales

## Enriching the object language through adjustment connectives

The［Cn\＃］clauses（strongly）internalize the＇consistency assumption＇，and the［Dn\＃］clauses（strongly）internalize the＇determinacy assumption＇．

Modal semantics: it ain't necessarily so!

## Modal semantics: it ain't necessarily so!

Consider the following negative modalities:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
$[\mathrm{S} \frown] \mathcal{M}, w \Vdash \frown \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$ equivalently:

$$
\mathcal{M}, w \Vdash \frown \varphi \quad \text { iff } \quad \mathcal{M}, v \Vdash \varphi \text { for every } v \in W \text { such that } w R v
$$

## Modal semantics: it ain't necessarily so!

Consider the following negative modalities:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$ [S〕] $\mathcal{M}, w \Vdash \frown \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$

It should be noted that, for non-degenerate classes of frames:
$\checkmark$ is a paraconsistent negation, and a full type <-> connective
$\bigcirc$ is a paracomplete negation, and a full type [-] connective

## Modal semantics: it ain't necessarily so!

Consider the following negative modalities:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
$[\mathrm{S} \frown] \mathcal{M}, w \Vdash \frown \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
It should be noted that, for non-degenerate classes of frames:
$\checkmark$ is a paraconsistent negation, and a full type <-> connective
$\bigcirc$ is a paracomplete negation, and a full type [-] connective

Consider also the following adjustment connectives:
[SCe]
$\mathcal{M}, w \Vdash \theta \varphi$
iff
$\mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \smile \varphi$
[SD $\partial] \mathcal{M}, w \Vdash \otimes \varphi$ iff $\mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \frown \varphi$

## Modal semantics: it ain't necessarily so!

Consider the following negative modalities:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
$[\mathrm{S} \frown] \mathcal{M}, w \Vdash \frown \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
It should be noted that, for non-degenerate classes of frames:
$\checkmark$ is a paraconsistent negation, and a full type <-> connective
$\checkmark$ is a paracomplete negation, and a full type [-] connective

Consider also the following adjustment connectives:
[SCe]
$\mathcal{M}, w \Vdash \theta \varphi$ iff
$\mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \smile \varphi$
$[\mathrm{SD} \triangleright] \mathcal{M}, w \Vdash \otimes \varphi \quad$ iff $\mathcal{M}, w \Vdash \varphi$ or $\mathcal{M}, w \Vdash \frown \varphi$

It should be noted that:
$\ominus$ expresses $\smile$-consistency,
and allows for $\smile$-explosiveness to be recovered
$\bigcirc$ expresses $\frown$-determinacy, and allows for $\frown$-implosiveness to be recovered

## Classical negation: interactions, and definability

## Classical negation: interactions, and definability

In modal terms, classical negation has a local character:
$[\mathrm{S} \sim] \quad \mathcal{M}, w \Vdash \sim \varphi$ iff $\mathcal{M}, w \Vdash \varphi$

## Classical negation: interactions, and definability

In modal terms, classical negation has a local character:
$[\mathrm{S} \sim] \quad \mathcal{M}, w \Vdash \sim \varphi$ iff $\mathcal{M}, w \Vdash \varphi$
Intuition: $\sim=\frown+\smile$
Note indeed that $\sim$ would be at once full type [-] and full type <->.

## Classical negation: interactions, and definability

In modal terms, classical negation has a local character:
$[\mathrm{S} \sim] \quad \mathcal{M}, w \Vdash \sim \varphi$ iff $\mathcal{M}, w \Vdash \varphi$
Intuition: $\sim=\frown+\smile$
Note indeed that $\sim$ would be at once full type [-] and full type <->.
How does classical negation relate to the non-classical ones?
Recall that:

$$
\begin{array}{lrlrl}
\text { Recall that: } & {[-] \sim \alpha} & \equiv \sim<->\alpha & <->\sim \alpha & \equiv \sim[-] \alpha \\
\text { In other words: } & \frown \sim \alpha & \equiv \sim \smile \alpha & \smile \sim \alpha & \equiv \sim \frown \alpha
\end{array}
$$

Moreover, in general: $\frown \alpha \succ \sim \alpha$

but the converses fail

## Classical negation：interactions，and definability

 In modal terms，classical negation has a local character：$[\mathrm{S} \sim] \quad \mathcal{M}, w \Vdash \sim \varphi$ iff $\mathcal{M}, w \Vdash \varphi$
Intuition：$\sim=\frown+\smile$
Note indeed that $\sim$ would be at once full type［－］and full type＜－＞．
How does classical negation relate to the non－classical ones？
Recall that：

$$
\begin{array}{lrlrl}
\text { Recall that: } & {[-] \sim \alpha} & \equiv \sim<->\alpha & <->\sim \alpha & \equiv \sim[-] \alpha \\
\text { In other words: } & \frown \sim \alpha & \equiv \sim \smile \alpha & \smile \sim \alpha & \equiv \sim \frown \alpha
\end{array}
$$

Moreover，in general： $\frown \alpha \succ \sim \alpha$

but the converses fail

What if classical negation is not taken as a primitive connective？
To investigate：In which situations is it even definable in $\mathcal{L}_{\text {ヘレT」レへ } \theta \theta}$ ？

## A sequent calculus for PK

A sequent calculus for PK
A sequent calculus for the weakest normal modal logic over $\mathcal{L}$
[A. Dodó \& J.M., ENTCS 2014]

$$
\begin{aligned}
& \text { [id] } \overline{\varphi \Rightarrow \varphi} \\
& {[\text { cut }] \quad \Gamma, \varphi \Rightarrow \Delta \quad \Gamma \Rightarrow \varphi, \Delta 1} \\
& {[W \Rightarrow] \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \Delta}} \\
& {[\Rightarrow W] \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \varphi, \Delta}} \\
& {[\perp \Rightarrow] \quad \overline{\Gamma, \perp \Rightarrow \Delta}} \\
& {[\wedge \Rightarrow] \quad \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta}} \\
& {[\Rightarrow T] \quad \begin{array}{r} 
\\
\Gamma \Rightarrow, \Delta
\end{array}} \\
& {[\Rightarrow \wedge] \quad \Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta 1} \\
& {[\vee \Rightarrow] \quad \begin{array}{r}
\Gamma, \varphi \Rightarrow \Delta \quad\ulcorner, \psi \Rightarrow \Delta \\
\Gamma, \varphi \vee \psi \Rightarrow \Delta
\end{array}} \\
& {[\Rightarrow \vee] \frac{\Gamma \Rightarrow \varphi, \psi, \Delta}{\Gamma \Rightarrow \varphi \vee \psi, \Delta}} \\
& {[\smile \Rightarrow] \frac{\Gamma \Rightarrow \varphi, \Delta}{\frown \Delta, \smile \varphi \Rightarrow \smile \Gamma}} \\
& {[\Rightarrow \wedge] \frac{\Gamma, \varphi \Rightarrow \Delta}{\frown \Delta \Rightarrow \neg \varphi, \smile \Gamma}} \\
& {[\theta \Rightarrow] \quad \Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \cup \varphi, \Delta 1} \\
& {[\Rightarrow \theta] \quad \begin{array}{r}
\Gamma, \varphi, \smile \varphi \Rightarrow \Delta \\
\Gamma \Rightarrow \theta \varphi, \Delta
\end{array}} \\
& {[\oslash \Rightarrow] \frac{\Gamma \Rightarrow \varphi, \neg \varphi, \Delta}{\Gamma, \partial \varphi \Rightarrow \Delta} \quad[\Rightarrow \varnothing] \quad \frac{\Gamma, \varphi \Rightarrow \Delta \Gamma, \curvearrowleft \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \partial \varphi, \Delta}}
\end{aligned}
$$

## The technology of Basic Sequents

## The technology of Basic Sequents

A basic rule: main sequent + context sequent

## The technology of Basic Sequents

A basic rule: main sequent + context sequent Examples:

$$
[\wedge \Rightarrow] \quad \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \quad[\Rightarrow \wedge] \quad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \wedge \psi, \Delta}
$$

are described as:

$$
[\wedge \Rightarrow] \quad\left\langle p_{1}, p_{2} \Rightarrow ; \pi_{0}\right\rangle / p_{1} \wedge p_{2} \Rightarrow \quad[\Rightarrow \wedge] \quad\left\langle\Rightarrow p_{1} ; \pi_{0}\right\rangle,\left\langle\Rightarrow p_{2} ; \pi_{0}\right\rangle / \Rightarrow p_{1} \wedge p_{2}
$$

where $\pi_{0}=\left\{\left\langle q_{1} \Rightarrow ; q_{1} \Rightarrow\right\rangle,\left\langle\Rightarrow q_{1} ; \Rightarrow q_{1}\right\rangle\right\}$.

## The technology of Basic Sequents

A basic rule: main sequent + context sequent
[O. Lahav \& A. Avron 2013] Examples:

$$
[\wedge \Rightarrow] \quad \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \quad[\Rightarrow \wedge] \quad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \wedge \psi, \Delta}
$$

are described as:

$$
[\wedge \Rightarrow] \quad\left\langle p_{1}, p_{2} \Rightarrow ; \pi_{0}\right\rangle / p_{1} \wedge p_{2} \Rightarrow \quad[\Rightarrow \wedge] \quad\left\langle\Rightarrow p_{1} ; \pi_{0}\right\rangle,\left\langle\Rightarrow p_{2} ; \pi_{0}\right\rangle / \Rightarrow p_{1} \wedge p_{2}
$$

where $\pi_{0}=\left\{\left\langle q_{1} \Rightarrow ; q_{1} \Rightarrow\right\rangle,\left\langle\Rightarrow q_{1} ; \Rightarrow q_{1}\right\rangle\right\}$.
while

$$
[\smile \Rightarrow] \frac{\Gamma \Rightarrow \varphi, \Delta}{\frown \Delta, \smile \varphi \Rightarrow \smile \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \frown q_{1} \Rightarrow\right\rangle\right\}$.

## The technology of Basic Sequents

A basic rule: main sequent + context sequent Examples:

$$
[\smile \Rightarrow] \frac{\ulcorner\Rightarrow \varphi, \Delta}{\frown \Delta, \smile \varphi \Rightarrow \smile \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \frown q_{1} \Rightarrow\right\rangle\right\}$.

## The technology of Basic Sequents

A basic rule: main sequent + context sequent Examples:

$$
[\smile \Rightarrow] \frac{\ulcorner\Rightarrow \varphi, \Delta}{\frown \Delta, \smile \varphi \Rightarrow \smile \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \neg q_{1} \Rightarrow\right\rangle\right\}$.
The main sequent is made to match an appropriate semantic condition.
For instance, [ $-\Rightarrow$ ] induces:
"if $\mathcal{M}, v \Vdash \Rightarrow \varphi$ for every world $v$ such that $w R v$, then $\mathcal{M}, w \Vdash \smile \varphi \Rightarrow$ "
and the context sequent is also made to match a semantic condition.
For instance, $\pi_{1}$ induces:
"if $w R v$ then $\mathcal{M}, w \Vdash \Rightarrow \smile \varphi$ whenever $\mathcal{M}, v \Vdash \varphi \Rightarrow$ "

## The technology of Basic Sequents

A basic rule: main sequent + context sequent Examples:

$$
[\backsim \Rightarrow] \frac{\ulcorner\Rightarrow \varphi, \Delta}{\checkmark \Delta, \smile \varphi \Rightarrow \neg \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \frown q_{1} \Rightarrow\right\rangle\right\}$.
The main sequent is made to match an appropriate semantic condition.
For instance, [ $\sim \Rightarrow$ ] induces:
"if $\mathcal{M}, v \Vdash \Rightarrow \varphi$ for every world $v$ such that $w R v$, then $\mathcal{M}, w \Vdash \smile \varphi \Rightarrow$ "
and the context sequent is also made to match a semantic condition.
For instance, $\pi_{1}$ induces:
"if $w R v$ then $\mathcal{M}, w \Vdash \Rightarrow \smile \varphi$ whenever $\mathcal{M}, v \Vdash \varphi \Rightarrow$ "
Together, these correspond precisely to:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$

## The technology of Basic Sequents

A basic rule: main sequent + context sequent Examples:

$$
[\smile \Rightarrow] \frac{\ulcorner\Rightarrow \varphi, \Delta}{\frown \Delta, \smile \varphi \Rightarrow \smile \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \frown q_{1} \Rightarrow\right\rangle\right\}$.
Together, these correspond precisely to:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$

## The technology of Basic Sequents

A basic rule: main sequent + context sequent
[O. Lahav \& A. Avron 2013] Examples:

$$
[\backsim \Rightarrow] \frac{\ulcorner\Rightarrow \varphi, \Delta}{\checkmark \Delta, \smile \varphi \Rightarrow \neg \Gamma}
$$

are described as:

$$
[\smile \Rightarrow] \quad\left\langle\Rightarrow p_{1} ; \pi_{1}\right\rangle / \smile p_{1} \Rightarrow
$$

where $\pi_{1}=\left\{\left\langle q_{1} \Rightarrow ; \Rightarrow \smile q_{1}\right\rangle,\left\langle\Rightarrow q_{1} ; \frown q_{1} \Rightarrow\right\rangle\right\}$.
Together, these correspond precisely to:
[S ] $\mathcal{M}, w \Vdash \smile \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R v$
For our convenience, we rewrite this as:
[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathbf{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$
where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=t$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=f^{\prime}$.

## The technology of Basic Sequents

$[\mathbf{F} \smile]$ if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\boldsymbol{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$
where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=t$ ', and ' $F_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=f^{\prime}$.

## The technology of Basic Sequents

[ $\mathbf{F} \cup$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\boldsymbol{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$
where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=t$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=f^{\prime}$.

Say that $w, v \in W$ agree with respect to the formula $\alpha$, according to $V$, if either $\left(\mathbf{T}_{w}(\alpha)\right.$ and $\left.\mathbf{T}_{v}(\alpha)\right)$ or $\left(\mathbf{F}_{w}(\alpha)\right.$ and $\left.\mathbf{F}_{v}(\alpha)\right)$.

Call $\mathcal{M}$ a differentiated model
if $w=v$ whenever $w$ and $v$ agree with respect to every $\alpha \in \mathcal{L}$, according to $V$.
Call $\mathcal{M}$ a strengthened model iff $w R v$
if $\left(\mathbf{T}_{v}(\alpha)\right.$ implies $\left.\mathbf{F}_{w}(\neg \alpha)\right)$ and $\left(\mathbf{F}_{v}(\alpha)\right.$ implies $\left.\mathbf{T}_{w}(\smile \alpha)\right)$, for every $\alpha \in \mathcal{L}$.

## The technology of Basic Sequents

[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathrm{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$
where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=t$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha)=f^{\prime}$ '.

Say that $w, v \in W$ agree with respect to the formula $\alpha$, according to $V$, if either $\left(\mathbf{T}_{w}(\alpha)\right.$ and $\left.\mathbf{T}_{v}(\alpha)\right)$ or $\left(\mathbf{F}_{w}(\alpha)\right.$ and $\left.\mathbf{F}_{v}(\alpha)\right)$.

Call $\mathcal{M}$ a differentiated model
if $w=v$ whenever $w$ and $v$ agree with respect to every $\alpha \in \mathcal{L}$, according to $V$.
Call $\mathcal{M}$ a strengthened model iff $w R v$
if $\left(\mathbf{T}_{v}(\alpha)\right.$ implies $\left.\mathbf{F}_{w}(\neg \alpha)\right)$ and $\left(\mathbf{F}_{v}(\alpha)\right.$ implies $\left.\mathbf{T}_{w}(\smile \alpha)\right)$, for every $\alpha \in \mathcal{L}$.

## Adequacy Theorem.

(corollary of [O. Lahav \& A. Avron 2013])
PK is sound and complete with respect to any class of Kripke models that: (i) contains only models that satisfy all the appropriate [ $\mathbf{T} \#]$ and $[\mathbf{F} \#]$ conditions; and (ii) contains all strengthened differentiated models that satisfy all the appropriate $[\mathbf{T} \#]$ and $[\mathbf{F} \#]$ conditions.

## Cut-elimination and analyticity, almost for free

## Cut-elimination and analyticity, almost for free

A strategy in two steps:

## Cut-elimination and analyticity, almost for free

A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.

## Cut-elimination and analyticity, almost for free

A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
$Q V: W \times \mathcal{L} \rightarrow\{\{f\},\{t\},\{f, t\}\}$ such that:
[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathbf{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $T_{u}(\alpha)$ ' as abbreviating ' $t \in Q V(u, \alpha)$ ', and ' $F_{u}(\alpha)$ ' as abbreviating ' $f \in Q V(u, \alpha)$ '.

## Cut-elimination and analyticity, almost for free

A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
$Q V: W \times \mathcal{L} \rightarrow\{\{f\},\{t\},\{f, t\}\}$ such that:
[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathbf{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathrm{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathrm{T}_{w}(\smile \varphi)$ where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $t \in Q V(u, \alpha)$ ', and ' $F_{u}(\alpha)$ ' as abbreviating ' $f \in Q V(u, \alpha)$ '.

Note that these are in principle non-deterministic!

## Cut-elimination and analyticity, almost for free

A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
$Q V: W \times \mathcal{L} \rightarrow\{\{f\},\{t\},\{f, t\}\}$ such that:
[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathrm{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathrm{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $T_{u}(\alpha)$ ' as abbreviating ' $t \in Q V(u, \alpha)$ ', and ' $F_{u}(\alpha)$ ' as abbreviating ' $f \in Q V(u, \alpha)$ '.

Step 2. Show that the existence of a countermodel in the form of a strengthened differentiated quasi model implies the existence of an ordinary countermodel.
Let an instance of a quasi model $\mathcal{Q} \mathcal{M}=\langle\langle W, R\rangle, Q V\rangle$ be any model $\mathcal{M}=\left\langle\left\langle W, R^{\prime}\right\rangle, V\right\rangle$ such that $\mathbf{X}_{w}^{Q}(\varphi)$ whenever $\mathbf{X}_{w}(\varphi)$, for every $\mathbf{X} \in\{\mathbf{T}, \mathbf{F}\}$, every $w \in W$ and every $\varphi \in \mathcal{L}$.

## Cut-elimination and analyticity, almost for free

A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
$Q V: W \times \mathcal{L} \rightarrow\{\{f\},\{t\},\{f, t\}\}$ such that:
[ $\mathbf{F} \smile$ ] if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that $w R v$, then $\mathrm{F}_{w}(\smile \varphi)$
[ $\mathbf{T} \smile$ ] if $\mathrm{F}_{v}(\varphi)$ for some $v \in W$ such that $w R v$, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $T_{u}(\alpha)$ ' as abbreviating ' $t \in Q V(u, \alpha)$ ', and ' $F_{u}(\alpha)$ ' as abbreviating ' $f \in Q V(u, \alpha)$ '.

Step 2. Show that the existence of a countermodel in the form of a strengthened differentiated quasi model implies the existence of an ordinary countermodel.
Let an instance of a quasi model $\mathcal{Q} \mathcal{M}=\langle\langle W, R\rangle, Q V\rangle$ be any model $\mathcal{M}=\left\langle\left\langle W, R^{\prime}\right\rangle, V\right\rangle$ such that $\mathbf{X}_{w}^{Q}(\varphi)$ whenever $\mathbf{X}_{w}(\varphi)$, for every $\mathbf{X} \in\{\mathbf{T}, \mathbf{F}\}$, every $w \in W$ and every $\varphi \in \mathcal{L}$.

## Theorem.

Every quasi model has an instance.

## Cut-elimination and analyticity, almost for free

## Cut-elimination and analyticity, almost for free

Consider the well-founded relation $\ll$ on $\mathcal{L}$ such that $\alpha \ll \beta$ iff either:
(i) $\alpha$ is a proper subformula of $\beta$, or
(ii) $\alpha=\smile \gamma$ and $\beta=\ominus \gamma$ for some $\gamma \in \mathcal{L}$, or
(iii) $\alpha=\frown \gamma$ and $\beta=\partial \gamma$ for some $\gamma \in \mathcal{L}$.

Since the class of all quasi models contains the strengthened differentiated quasi models, it follows that:

## Corollary

PK enjoys cut-admissibility.

## Corollary

PK is <<-analytic:
If a sequent $s$ is derivable from a set $S$ of sequents in PK , then there is a derivation of $s$ from $S$ such that every formula $\varphi$ that occurs in the derivation satisfies $\varphi \ll \psi$ for some $\psi$ in $S \cup s$.

## Seriality, Reflexivity, Functionality, Symmetry

## Seriality, Reflexivity, Functionality, Symmetry

 sequent system : frames : some distinguishing features $P K D ~: ~ s e r i a l ~: ~ \frown p \models \smile p$ PKT : reflexive : $p, \frown p \models q$ and $q \vDash \cup p, p$ PKF : total functional : $\smile p \equiv \frown p$ $P K B:$ symmetric : $\smile \smile p \models p$ and $p \models \frown \frown p$$$
\begin{aligned}
& \text { [D] } \frac{\Gamma \Rightarrow \Delta}{\frown \Delta \Rightarrow \smile \Gamma} \\
& {\left[\mathbf{T}_{1}\right] \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \smile \varphi, \Delta} \quad\left[\mathbf{T}_{2}\right] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma, \frown \varphi \Rightarrow \Delta}} \\
& \text { [Fun] } \quad \begin{array}{l}
\ulcorner\Rightarrow \Delta \\
\smile \Delta \Rightarrow \smile \Gamma
\end{array} \\
& {\left[\mathbf{B}_{1}\right] \quad \frac{\Gamma, \smile \Gamma^{\prime}, \varphi \Rightarrow \Delta, \frown \Delta^{\prime}}{\frown \Delta, \Delta^{\prime} \Rightarrow \frown \varphi, \smile \Gamma, \Gamma^{\prime}}} \\
& {\left[B_{2}\right] \quad \frac{\Gamma, \smile \Gamma^{\prime} \Rightarrow \varphi, \Delta, \frown \Delta^{\prime}}{\frown \Delta, \Delta^{\prime}, \smile \varphi \Rightarrow \smile \Gamma, \Gamma^{\prime}}}
\end{aligned}
$$

## Seriality, Reflexivity, Functionality, Symmetry

 sequent system : frames : some distinguishing features$P K D$ : serial : $\frown p \models \smile p$
PKT : reflexive : $p, \frown p \models q$ and $q \vDash \cup p, p$
PKF : total functional : $\smile p \equiv \frown p$
$P K B:$ symmetric : $\smile \smile p \models p$ and $p \models \frown \frown p$

$$
\begin{aligned}
& \text { [D] } \frac{\Gamma \Rightarrow \Delta}{\cap \Delta \Rightarrow \smile \Gamma} \\
& {\left[\mathbf{T}_{1}\right] \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \vee \varphi, \Delta}} \\
& {\left[\mathbf{T}_{2}\right] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma, \frown \varphi \Rightarrow \Delta}} \\
& \text { [Fun] } \quad \begin{array}{l}
\Gamma \Rightarrow \Delta \\
\smile \Delta \Rightarrow \smile \Gamma
\end{array}
\end{aligned}
$$

$$
\left[\mathbf{B}_{1}\right] \frac{\Gamma, \smile \Gamma^{\prime}, \varphi \Rightarrow \Delta, \frown \Delta^{\prime}}{\frown \Delta, \Delta^{\prime} \Rightarrow \frown \varphi, \smile \Gamma, \Gamma^{\prime}} \quad\left[\mathbf{B}_{2}\right] \quad \frac{\Gamma, \smile \Gamma^{\prime} \Rightarrow \varphi, \Delta, \frown \Delta^{\prime}}{\frown \Delta, \Delta^{\prime}, \smile \varphi \Rightarrow \smile \Gamma, \Gamma^{\prime}}
$$

The full story may be checked in the paper

## On the definability of classical negation

## On the definability of classical negation

When $\sim$ is not a primitive connective

## On the definability of classical negation

When $\sim$ is not a primitive connective
(1) Classical negation is definable in the logics:

PKT-\{ $\smile, \theta\}$,

$$
P K T-\{\frown, \partial\}
$$

$$
P K D \text {, and } P K F \text {. }
$$

$$
\begin{array}{r}
(\text { set } \sim \varphi:=\frown \varphi \vee \partial \varphi) \\
(\text { set } \sim \varphi:=\smile \varphi \wedge \theta \varphi) \\
(\text { set } \sim \varphi:=(\neg \varphi \wedge \ominus \varphi) \vee \partial \varphi)
\end{array}
$$

## On the definability of classical negation

## When $\sim$ is not a primitive connective

(1) Classical negation is definable in the logics:

PKT-\{ $\smile, \theta\}$,

$$
P K T-\{\cap, \partial\},
$$

$$
P K D \text {, and } P K F \text {. }
$$

$$
\begin{aligned}
(\text { set } \sim \varphi & :=\cap \varphi \vee \partial \varphi) \\
(\text { set } \sim \varphi & :=\smile \varphi \wedge \theta \varphi) \\
(\text { set } \sim \varphi & :=(\neg \varphi \wedge \theta \varphi) \vee \partial \varphi)
\end{aligned}
$$

(2) Classical negation is not definable in the logics:

PK, PKB,
PKT- $\{\theta, \partial\}$,
PKD- $\{\theta\}, \operatorname{PKF}-\{\theta\}$,
$P K D-\{\theta\}$, and $P K F-\{\theta\}$.

## This is possibly not the end!

## This is possibly not the end!

More on the study of negative modalities:

## This is possibly not the end!

More on the study of negative modalities:

- Studying properties of negation through other classes of frames Examples:
Church-Rosser : $\smile \smile p \models \frown \frown p$
transitive $\quad: \quad \smile p, \smile(\smile p) \vDash q$ and $q \vDash \frown(\neg p), \frown p$
euclidean $\quad: \quad \frown p, \smile(\neg p) \vDash q$ and $q \vDash \frown(\smile p), \smile p$


## This is possibly not the end!

More on the study of negative modalities:

- Studying properties of negation through other classes of frames Examples:
Church-Rosser
transitive

$$
\begin{aligned}
& \smile \smile p \models \frown \frown p \\
& \smile p, \smile(\smile p) \mid=q \text { and } q \models \frown(\frown p), \frown p \\
& \frown p, \smile(\frown p) \mid=q \text { and } q \models \frown(\smile p), \smile p
\end{aligned}
$$

- Studying combinations of negations of the same type.

Examples: add the backward-looking modalities $\left[S \checkmark^{-1}\right] \mathcal{M}, w \Vdash \cup^{-1} \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R^{-1} v$ $\left[S \wedge^{-1}\right] \mathcal{M}, w \Vdash \frown^{-1} \varphi$ iff $\mathcal{M}, v \Vdash \varphi$ for some $v \in W$ such that $w R^{-1} v$ Note the validity in PK of pure consecutions such as:
$\smile^{-1} \smile p \models p$ and $\smile \smile^{-1} p \models p$
(as well as $p \models \frown^{-1} \frown p$ and $p \models \frown \frown^{-1} p$ )
and the validity in PKB of mixed consecutions such as
$\frown^{-1} \smile p \models p$ and $\frown \smile^{-1} p \models p$
(as well as $p \models \smile^{-1} \frown p$ and $p \models \smile \frown^{-1} p$ )

