It ain't necessarily so! Basic sequent systems for negative modalities

João Marcos

(joint work with Ori Lahav and Yoni Zohar)

UFRN (BR)

AiML 2016

Budapest, 30.08-02.09 2016

Frame: $\mathcal{F} = \langle W, R \rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$ Model: $\mathcal{M} = \langle \mathcal{F}, V \rangle$, where \mathcal{F} is a frame,
and $V : W \times \mathcal{L} \rightarrow \{f, t\}$ respects(we use $\mathcal{M}, z \Vdash \alpha$ to denote $V(z, \alpha) = t$)

 $[\mathbb{S}_{\supset}] \quad \mathcal{M}, w \Vdash \varphi \supset \psi \quad \text{iff} \quad \mathcal{M}, w \nvDash \varphi \text{ or } \mathcal{M}, w \Vdash \psi$

 $[S \smile] \quad \mathcal{M}, w \Vdash \smile \varphi \qquad \text{iff} \quad \mathcal{M}, v \not\Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv$

Frame:
$$\mathcal{F} = \langle W, R \rangle$$
, where $W \neq \emptyset$ and $R \subseteq W \times W$ Model: $\mathcal{M} = \langle \mathcal{F}, V \rangle$, where \mathcal{F} is a frame,
and $V : W \times \mathcal{L} \rightarrow \{f, t\}$ respects $[S \supset]$ $\mathcal{M}, w \Vdash \varphi \supset \psi$ iff $[S \supset]$ $\mathcal{M}, w \Vdash \varphi \supset \psi$ iff $[S \cup]$ $\mathcal{M}, w \Vdash \varphi \bigcirc \psi$ iff $\mathcal{M}, v \nvDash \varphi$ for some $v \in W$ such that wRv Recovering the (now standard) basic modal languages

$$\sim \alpha := \alpha \supset \smile (\alpha \supset \alpha)$$
 behaves as the classical negation

and

 $\Box \alpha := \sim \neg \alpha$ behaves as the usual (positive) modality box

Frame:
$$\mathcal{F} = \langle W, R \rangle$$
, where $W \neq \emptyset$ and $R \subseteq W \times W$
Model: $\mathcal{M} = \langle \mathcal{F}, V \rangle$, where \mathcal{F} is a frame,
and $V : W \times \mathcal{L} \to \{f, t\}$ respects (we use $\mathcal{M}, z \Vdash \alpha$ to denote $V(z, \alpha) = t$)
 $[S \supset] \quad \mathcal{M}, w \Vdash \varphi \supset \psi$ iff $\mathcal{M}, w \nvDash \varphi$ or $\mathcal{M}, w \Vdash \psi$
 $[S \supset] \quad \mathcal{M}, w \Vdash \neg \varphi$ iff $\mathcal{M}, v \nvDash \varphi$ for some $v \in W$ such that wRv
Recovering the (now standard) basic modal languages
 $\neg \alpha := \alpha \supset \neg (\alpha \supset \alpha)$ behaves as the classical negation

 $\Box \alpha := \sim \sim \alpha$ behaves as the usual (positive) modality box

<u>Note 0</u>. Conversely, the (paraconsistent) negation \sim might be recovered through $\sim \square$.

<u>Note 1</u>. It is reasonable to expect \sim to be, in general, weaker than \sim , i.e.:

 $\sim \alpha \models \smile \alpha, \text{ yet } \smile \alpha \not\models \sim \alpha$

Note 2. Our minimal language, in what follows, will be:

 $\mathcal{L}_{\wedge\vee\top\perp}$, classically interpreted

The **classical** case:

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

A shared property: congruentiality [cong] if $\alpha \equiv \beta$, then $\#(\alpha) \equiv \#(\beta)$ (where $\varphi \equiv \psi$ means that both $\varphi \succ \psi$ and $\psi \succ \varphi$)

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

A shared property: congruentiality [cong] if $\alpha \equiv \beta$, then $\#(\alpha) \equiv \#(\beta)$ (where $\varphi \equiv \psi$ means that both $\varphi \succ \psi$ and $\psi \succ \varphi$)

Some stronger properties: \succ -preservation and \succ -reversal [prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$ (satisfied by all, but -) [rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$ (satisfied by all, but +)

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

A shared property: congruentiality [cong] if $\alpha \equiv \beta$, then $\#(\alpha) \equiv \#(\beta)$ (where $\varphi \equiv \psi$ means that both $\varphi \succ \psi$ and $\psi \succ \varphi$)

 $\begin{array}{ll} \text{Some stronger properties:} \succ \text{-preservation and} \succ \text{-reversal} \\ [\text{prs]} & \text{if } \alpha \succ \beta \text{, then } \#(\alpha) \succ \#(\beta) & (\text{satisfied by all, but } -) \\ [\text{rev]} & \text{if } \alpha \succ \beta \text{, then } \#(\beta) \succ \#(\alpha) & (\text{satisfied by all, but } +) \end{array}$

Interactions with \land and \lor :

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

A shared property: congruentiality [cong] if $\alpha \equiv \beta$, then $\#(\alpha) \equiv \#(\beta)$ (where $\varphi \equiv \psi$ means that both $\varphi \succ \psi$ and $\psi \succ \varphi$)

Some stronger properties: \succ -preservation and \succ -reversal [prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$ (satisfied by all, but -) [rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$ (satisfied by all, but +)

Interactions with \land and \lor : [PM1.1+] $+(\varphi \land \psi) \succ +\varphi \land +\psi$ [PM2.1+] $+\varphi \lor +\psi \succ +(\varphi \lor \psi)$

	Ŷ	+	-	人
1	1	1	0	0
0	1	0	1	0

A shared property: congruentiality [cong] if $\alpha \equiv \beta$, then $\#(\alpha) \equiv \#(\beta)$ (where $\varphi \equiv \psi$ means that both $\varphi \succ \psi$ and $\psi \succ \varphi$)

Some stronger properties: \succ -preservation and \succ -reversal [prs] if $\alpha \succ \beta$, then $\#(\alpha) \succ \#(\beta)$ (satisfied by all, but –) [rev] if $\alpha \succ \beta$, then $\#(\beta) \succ \#(\alpha)$ (satisfied by all, but +)

Interactions with \land and \lor : $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{DM1.1-}] - (\varphi \lor \psi) \succ - \varphi \land - \psi$ $[\mathsf{DM2.1-}] - \varphi \lor - \psi \succ - (\varphi \land \psi)$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$

Case of [prs]:

 $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \lor \psi) \succ + \varphi \lor + \psi$

Case of [prs]: type [+]

 $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM1.2+}] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM2.2+}] + (\varphi \lor \psi) \succ + \varphi \lor + \psi$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ type [+]

type <+>

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] $[PT+] \succ +\top$

type <+>

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi \qquad [\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] $[PT+] \succ +T$

full type <+> $[PB+] + \perp \succ$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM2.1+}] + \varphi \lor + \psi \succ + (\varphi \lor \psi)$ $[\mathsf{PM1.2+}] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi)$ full type [+] [PT+] > +T

Case of [rev]: $[\mathsf{DM}1.1-] -(\varphi \lor \psi) \succ -\varphi \land -\psi \qquad [\mathsf{DM}2.1-] -\varphi \lor -\psi \succ -(\varphi \land \psi)$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] [PT+] > +T

Case of [rev]: $[\mathsf{DM1.1-}] - (\varphi \lor \psi) \succ -\varphi \land -\psi$ $[\mathsf{DM}1.2-] -\varphi \wedge -\psi \succ -(\varphi \lor \psi)$

$$\begin{bmatrix} \mathsf{DM2.1-} \end{bmatrix} -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ \begin{bmatrix} \mathsf{DM2.2-} \end{bmatrix} -(\varphi \lor \psi) \succ -\varphi \land -\psi \end{bmatrix}$$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] [PT+] > +T

Case of [rev]: $[\mathsf{DM1.1-}] - (\varphi \lor \psi) \succ -\varphi \land -\psi$ $[\mathsf{DM1.2-}] \quad -\varphi \land -\psi \succ -(\varphi \lor \psi)$ type [-]

$$\begin{bmatrix} \mathsf{DM2.1-} \end{bmatrix} -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ \begin{bmatrix} \mathsf{DM2.2-} \end{bmatrix} -(\varphi \lor \psi) \succ -\varphi \land -\psi \\ \end{bmatrix}$$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] [PT+] > +T

Case of [rev]: $[\mathsf{DM1.1-}] - (\varphi \lor \psi) \succ -\varphi \land -\psi$ $[\mathsf{DM}1.2-] -\varphi \wedge -\psi \succ -(\varphi \lor \psi)$ type [-]

$$\begin{array}{ll} [\mathsf{DM2.1-}] & -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ \\ [\mathsf{DM2.2-}] & -(\varphi \lor \psi) \succ -\varphi \land -\psi \\ & \mathbf{type} <- \end{array}$$

Case of [prs]: $[\mathsf{PM1.1+}] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[\mathsf{PM}1.2+] + \varphi \wedge + \psi \succ + (\varphi \wedge \psi) \qquad [\mathsf{PM}2.2+] + (\varphi \vee \psi) \succ + \varphi \vee + \psi$ full type [+] [PT+] > +T

Case of [rev]: $[\mathsf{DM1.1-}] - (\varphi \lor \psi) \succ -\varphi \land -\psi$ $[DM1.2-] -\varphi \wedge -\psi \succ -(\varphi \lor \psi)$ full type [-] $[PT-] \succ -\perp$

$$\begin{array}{ll} [\mathsf{DM2.1-}] & -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ [\mathsf{DM2.2-}] & -(\varphi \lor \psi) \succ -\varphi \land -\psi \\ & \mathbf{type} <- \end{array}$$

Case of [prs]: $[PM1.1+] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[PM1.2+] + \varphi \land + \psi \succ + (\varphi \land \psi)$ full type [+] $[PT+] \succ + \top$

Case of [rev]: $[DM1.1-] -(\varphi \lor \psi) \succ -\varphi \land -\psi$ $[DM1.2-] -\varphi \land -\psi \succ -(\varphi \lor \psi)$ full type [-] $[PT-] \succ -\bot$ $\begin{bmatrix} \mathsf{DM2.1-} & -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ \\ \begin{bmatrix} \mathsf{DM2.2-} \end{bmatrix} & -(\varphi \lor \psi) \succ -\varphi \land -\psi \\ \\ & \text{full type <->} \\ \\ \begin{bmatrix} \mathsf{PB-} \end{bmatrix} & -\top \succ \\ \end{bmatrix}$

Case of [prs]: $[PM1.1+] + (\varphi \land \psi) \succ + \varphi \land + \psi$ $[PM1.2+] + \varphi \land + \psi \succ + (\varphi \land \psi)$ full type [+] $[PT+] \succ + \top$

Case of [rev]: $[DM1.1-] -(\varphi \lor \psi) \succ -\varphi \land -\psi$ $[DM1.2-] -\varphi \land -\psi \succ -(\varphi \lor \psi)$ full type [-] $[PT-] \succ -\bot$

 $[PM2.1+] +\varphi \lor +\psi \succ +(\varphi \lor \psi)$ $[PM2.2+] +(\varphi \lor \psi) \succ +\varphi \lor +\psi$ full type <+> $[PB+] +\bot \succ$

$$\begin{bmatrix} \mathsf{DM2.1-} \end{bmatrix} -\varphi \lor -\psi \succ -(\varphi \land \psi) \\ \begin{bmatrix} \mathsf{DM2.2-} \end{bmatrix} -(\varphi \lor \psi) \succ -\varphi \land -\psi \\ & \text{full type } <-> \\ \begin{bmatrix} \mathsf{PB-} \end{bmatrix} -\top \succ \\ \end{bmatrix}$$

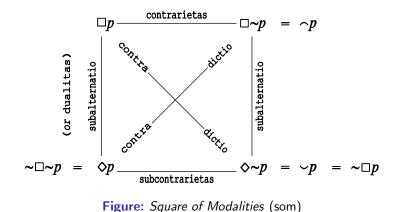
Negations? [*falsificatio*] $\forall k \exists p \#^k p \neq \#^{k+1} p$

[J.M., J Appl Log 2005] $[verificatio]] \quad \forall_{k \exists p} \#^{k+1}p \not\succ \#^k p$

Let \sim represent classical negation. Then:

 $[+] \sim \alpha \equiv \sim <+>\alpha \qquad <+>\sim \alpha \equiv \sim [+] \alpha$ $[-] \sim \alpha \equiv \sim <->\alpha \qquad <->\sim \alpha \equiv \sim [-] \alpha$

Let ~ represent classical negation. Then: $[+] \sim \alpha \equiv \sim <+>\alpha \qquad <+>\sim \alpha \equiv \sim [+] \alpha$ $[-] \sim \alpha \equiv \sim <->\alpha \qquad <->\sim \alpha \equiv \sim [-] \alpha$



[J.M., Log Anal 2005]

J. Marcos (UFRN)

The two sides of **negation**:

 $\llbracket \# ext{-explosion}
rbrace p, \#p \succ q$

[#-implosion] $q \succ \#p, p$

The two sides of **negation**, and their *failures*:

 $[\![\#-explosion]\!] \quad p, \#p \not\succ q \qquad [\![\#-implosion]\!] \quad q \succ \#p, p$

The two sides of **negation**, and their *failures*:

[#-explosion] $p, \#p \neq q$ [#-implosion] $q \neq \#p, p$ paraconsistency paracompleteness

The two sides of **negation**, and their *failures*:

$$\label{eq:product} \begin{split} \llbracket \# \text{-explosion} \rrbracket & p, \# p \not\succ q & \llbracket \# \text{-implosion} \rrbracket & q \not\succ \# p, p \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$$

Some (strong) gentler versions:

> When you encounter difficulties and contradictions, do not try to break them, but bend them with gentleness and time. — Saint Francis de Sales

The two sides of **negation**, and their *failures*:

$$\label{eq:product} \begin{split} \llbracket \# - \exp[\operatorname{osion}] & p, \# p \not\succ q & \llbracket \# - \operatorname{implosion}] & q \not\succ \# p, p \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$$

Some (strong) gentler versions:

 $[C1#] \oplus p, p, \#p \succ$ $[C2#] \succ p, \oplus p$ $[C3#] \succ \#p, \oplus p$ $[D1#] \succ \#p, p, \oplus p$ $[D2#] \oplus p, p \succ$ $[D3#] \oplus p, \#p \succ$

When you encounter difficulties and contradictions, do not try to break them, but bend them with gentleness and time. — Saint Francis de Sales

Enriching the object language through adjustment connectives The [Cn#] clauses (strongly) internalize the 'consistency assumption', and the [Dn#] clauses (strongly) internalize the 'determinacy assumption'.

This defines (strong versions of) the so-called $\ensuremath{\mathsf{LFI}}\xspace$ s and $\ensuremath{\mathsf{LFU}}\xspace$ s.

Modal semantics: it ain't necessarily so!

Modal semantics: it ain't necessarily so!

Consider the following *negative modalities*:

 $\begin{array}{ll} [\mathbb{S} \smile] & \mathcal{M}, w \Vdash \smile \varphi & \text{iff} & \mathcal{M}, v \not \nvDash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \\ [\mathbb{S} \frown] & \mathcal{M}, w \not \nvDash \frown \varphi & \text{iff} & \mathcal{M}, v \Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \\ equivalently: \end{array}$

 $\mathcal{M}, w \Vdash \neg \varphi \quad \text{iff} \quad \mathcal{M}, v \not\Vdash \varphi \text{ for } \underline{\text{every}} \ v \in W \text{ such that } w R v$

Modal semantics: it ain't necessarily so!

Consider the following *negative modalities*:

 $\begin{bmatrix} S & \\ \end{bmatrix} \quad \mathcal{M}, w \Vdash & \varphi \quad \text{iff} \quad \mathcal{M}, v \not\vDash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \\ \begin{bmatrix} S & \\ \end{bmatrix} \quad \mathcal{M}, w \not\vDash \neg \varphi \quad \text{iff} \quad \mathcal{M}, v \Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv$

It should be noted that, for non-degenerate classes of frames:

 is a paraconsistent negation, and a full type <-> connective
 is a paracomplete negation, and a full type [-] connective

Modal semantics: it ain't necessarily so!

Consider the following *negative modalities*:

$$\begin{split} [\mathsf{S} \smile] \quad \mathcal{M}, w \Vdash \smile \varphi \quad \text{iff} \quad \mathcal{M}, v \not\vDash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \\ [\mathsf{S} \frown] \quad \mathcal{M}, w \not\vDash \frown \varphi \quad \text{iff} \quad \mathcal{M}, v \Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \end{split}$$

It should be noted that, for non-degenerate classes of frames:

 is a paraconsistent negation, and a full type <-> connective
 is a paracomplete negation, and a full type [-] connective

Consider also the following *adjustment connectives*:

 $\begin{bmatrix} \mathsf{SC} \ominus \end{bmatrix} \quad \mathcal{M}, w \Vdash \ominus \varphi \quad \text{iff} \quad \mathcal{M}, w \nvDash \varphi \text{ or } \mathcal{M}, w \nvDash \neg \varphi \\ \begin{bmatrix} \mathsf{SD} \ominus \end{bmatrix} \quad \mathcal{M}, w \nvDash \ominus \varphi \quad \text{iff} \quad \mathcal{M}, w \Vdash \varphi \text{ or } \mathcal{M}, w \Vdash \neg \varphi \\ \end{bmatrix}$

Modal semantics: it ain't necessarily so!

Consider the following *negative modalities*:

$$\begin{split} [\mathsf{S} \smile] \quad \mathcal{M}, w \Vdash \smile \varphi \quad \text{iff} \quad \mathcal{M}, v \not\vDash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \\ [\mathsf{S} \frown] \quad \mathcal{M}, w \not\vDash \frown \varphi \quad \text{iff} \quad \mathcal{M}, v \Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv \end{split}$$

It should be noted that, for <u>non-degenerate</u> classes of frames:

 is a paraconsistent negation, and a full type <-> connective
 is a paracomplete negation, and a full type [-] connective

Consider also the following *adjustment connectives*:

 $\begin{array}{lll} [\mathsf{SC} \ominus] & \mathcal{M}, w \Vdash \ominus \varphi & \text{iff} & \mathcal{M}, w \nvDash \varphi \text{ or } \mathcal{M}, w \nvDash \neg \varphi \\ [\mathsf{SD} \ominus] & \mathcal{M}, w \nvDash \ominus \varphi & \text{iff} & \mathcal{M}, w \Vdash \varphi \text{ or } \mathcal{M}, w \Vdash \neg \varphi \end{array}$

It should be noted that:

⊖ expresses ~-consistency,

and allows for \sim -explosiveness to be recovered

 \odot expresses \frown -determinacy,

and allows for $\frown\mbox{-implosiveness}$ to be recovered

In modal terms, **classical negation** has a *local* character:

 $[\mathbb{S}\sim] \quad \mathcal{M}, w \Vdash \sim \varphi \quad \text{iff} \quad \mathcal{M}, w \not \Vdash \varphi$

In modal terms, **classical negation** has a *local* character:

 $[\mathbb{S}\sim] \quad \mathcal{M}, w \Vdash \sim \varphi \quad \text{iff} \quad \mathcal{M}, w \not \Vdash \varphi$

Intuition: $|\sim = -+ -$

Note indeed that \sim would be at once full type [-] and full type <->.

In modal terms, **classical negation** has a *local* character:

 $[\mathbb{S}\sim] \quad \mathcal{M}, \mathbf{w} \Vdash \sim \varphi \quad \text{iff} \quad \mathcal{M}, \mathbf{w} \not \Vdash \varphi$

Intuition: $|\sim = - + - |$

Note indeed that \sim would be at once full type [-] and full type <->.

How does classical negation relate to the non-classical ones? Recall that: $[-] \sim \alpha \equiv \sim <->\alpha \qquad <->\sim \alpha \equiv \sim [-] \alpha$ In other words: $\sim \sim \alpha \equiv \sim \sim \alpha \qquad \qquad \sim \sim \alpha \equiv \sim \sim \alpha$ *Moreover, in general:* $\sim \alpha \succ \sim \alpha \qquad \qquad \sim \alpha \succ \sim \alpha$ but the converses fail

In modal terms, **classical negation** has a *local* character:

 $[\mathbb{S}\sim] \quad \mathcal{M}, w \Vdash \sim \varphi \quad \text{iff} \quad \mathcal{M}, w \not \Vdash \varphi$

Intuition: $|\sim = - + -$

Note indeed that \sim would be at once full type [-] and full type <->.

How does classical negation relate to the non-classical ones? Recall that: $[-] \sim \alpha \equiv \sim <-> \alpha \qquad <-> \sim \alpha \equiv \sim [-] \alpha$ In other words: $\sim \sim \alpha \equiv \sim \sim \alpha \qquad \qquad \sim \sim \alpha \equiv \sim \sim \alpha$ *Moreover, in general:* $\sim \alpha \succ \sim \alpha \qquad \qquad \sim \alpha \succ \sim \alpha$ but <u>the converses fail</u>

What if classical negation is *not* taken as a primitive connective? <u>To investigate</u>: In which situations is it even *definable* in $\mathcal{L}_{\land\lor\top\perp\multimap\bigcirc\bigcirc?}$ (we'll answer this later on!)

A sequent calculus for $\mathrm{P}\mathrm{K}$

A sequent calculus for PK

A sequent calculus for the weakest normal modal logic over $\mathcal{L}_{\text{AVT} \perp \cup \neg \bigcirc \bigcirc}$: [A. Dodó & J.M., ENTCS 2014]

$$\begin{bmatrix} id \end{bmatrix} \quad \overleftarrow{\varphi \Rightarrow \varphi} \qquad \begin{bmatrix} cut \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma \Rightarrow \varphi, \Delta} \\ \hline{\Gamma \Rightarrow \Delta} \\ \begin{bmatrix} W \Rightarrow \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \Delta} \qquad \begin{bmatrix} eut \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \Delta} \\ \hline{\Gamma \Rightarrow \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow W \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \Delta} \\ \hline{\Gamma \Rightarrow \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow W \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \Delta} \\ \hline{\Gamma \Rightarrow \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow T \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow T, \Delta} \\ \begin{bmatrix} \Rightarrow T \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow T, \Delta} \\ \begin{bmatrix} \Rightarrow T \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow T \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow V \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow \varphi \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \varphi, \varphi, \Delta} \\ \hline{\Gamma, \varphi \land \psi \Rightarrow \Delta} \\ \begin{bmatrix} \Rightarrow V \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \psi, \Delta} \\ \begin{bmatrix} \Rightarrow \varphi \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \varphi, \varphi, \Delta} \\ \hline{\Gamma, \varphi \lor \psi \Rightarrow \Delta} \\ \begin{bmatrix} \Rightarrow V \end{bmatrix} \quad \overleftarrow{\Gamma \Rightarrow \varphi, \psi, \Delta} \\ \hline{\Gamma \Rightarrow \varphi \lor \psi, \Delta} \\ \begin{bmatrix} \Rightarrow \varphi \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \Delta} \\ \hline{\Gamma, \varphi \Rightarrow \varphi \frown \nabla} \\ \hline{\Gamma \Rightarrow \varphi, \varphi, \varphi, \Delta} \\ \begin{bmatrix} \Rightarrow \varphi \end{bmatrix} \quad \overleftarrow{\Gamma, \varphi \Rightarrow \Delta} \\ \hline{\Gamma \Rightarrow \varphi, \varphi, \Box} \\ \hline{\Gamma$$

J. Marcos (UFRN)

A basic rule: main sequent + context sequent [O. Lahav & A. Avron 2013]

A basic rule: *main* sequent + *context* sequent [O. Lahav & A. Avron 2013] *Examples:*

$$[\land \Rightarrow] \quad \frac{ \Gamma, \varphi, \psi \Rightarrow \Delta }{ \Gamma, \varphi \land \psi \Rightarrow \Delta } \qquad [\Rightarrow \land] \quad \frac{ \Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta }{ \Gamma \Rightarrow \varphi \land \psi, \Delta }$$

are described as:

$$\begin{split} & [\wedge \Rightarrow] \quad \langle p_1, p_2 \Rightarrow ; \pi_0 \rangle \ / \ p_1 \land p_2 \Rightarrow \qquad [\Rightarrow \wedge] \quad \langle \Rightarrow p_1 \ ; \ \pi_0 \rangle \ , \langle \Rightarrow p_2 \ ; \ \pi_0 \rangle \ / \ \Rightarrow p_1 \land p_2 \\ & \text{where} \ \pi_0 = \{ \langle q_1 \Rightarrow ; \ q_1 \Rightarrow \rangle \ , \langle \Rightarrow q_1 \ ; \ \Rightarrow q_1 \rangle \}. \end{split}$$

A basic rule: *main* sequent + *context* sequent [O. Lahav & A. Avron 2013] *Examples:*

$$[\land \Rightarrow] \quad \frac{ \Gamma, \varphi, \psi \Rightarrow \Delta }{ \Gamma, \varphi \land \psi \Rightarrow \Delta } \qquad [\Rightarrow \land] \quad \frac{ \Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta }{ \Gamma \Rightarrow \varphi \land \psi, \Delta }$$

are described as:

$$\begin{split} & [\wedge \Rightarrow] \quad \langle p_1, p_2 \Rightarrow ; \pi_0 \rangle \ / \ p_1 \land p_2 \Rightarrow \qquad [\Rightarrow \wedge] \quad \langle \Rightarrow p_1 \ ; \ \pi_0 \rangle \ , \langle \Rightarrow p_2 \ ; \ \pi_0 \rangle \ / \ \Rightarrow p_1 \land p_2 \\ & \text{where } \pi_0 = \{ \langle q_1 \Rightarrow ; \ q_1 \Rightarrow \rangle \ , \langle \Rightarrow q_1 \ ; \ \Rightarrow q_1 \rangle \}. \end{split}$$

while

$$[\lor \Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$$

are described as:

$$[\lor\Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

A basic rule: *main* sequent + *context* sequent *Examples:*

$$[\lor\Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$$

are described as:

$$[\lor\Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

A basic rule: main sequent + context sequent [O. Lahav & A. Avron 2013] Examples:

$$[\lor\Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$$

are described as:

$$[\lor \Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

The **main sequent** is made to match an appropriate *semantic condition*. For instance, $[\lor \Rightarrow]$ induces:

"if $\mathcal{M}, v \Vdash \Rightarrow \varphi$ for every world v such that wRv, then $\mathcal{M}, w \Vdash \neg \varphi \Rightarrow$ "

and the **context sequent** is also made to match a *semantic condition*. For instance, π_1 induces:

"if wRv then $\mathcal{M}, w \Vdash \Rightarrow \neg \varphi$ whenever $\mathcal{M}, v \Vdash \varphi \Rightarrow$ "

A basic rule: *main* sequent + *context* sequent [O. Lahav & A. Avron 2013] *Examples:*

$$[\lor\Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$$

are described as:

$$[\lor \Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

The **main sequent** is made to match an appropriate *semantic condition*. For instance, $[\lor \Rightarrow]$ induces:

"if $\mathcal{M}, v \Vdash \Rightarrow \varphi$ for every world v such that wRv, then $\mathcal{M}, w \Vdash \neg \varphi \Rightarrow$ "

and the **context sequent** is also made to match a *semantic condition*. For instance, π_1 induces:

"if wRv then $\mathcal{M}, w \Vdash \Rightarrow \neg \varphi$ whenever $\mathcal{M}, v \Vdash \varphi \Rightarrow$ "

Together, these correspond precisely to:

 $[\mathbb{S} {\smile}] \quad \mathcal{M}, w \Vdash {\smile} \varphi \quad \text{iff} \quad \mathcal{M}, v \not\Vdash \varphi \text{ for } \underline{\text{some}} \ v \in W \text{ such that } wRv$

A **basic rule**: *main* sequent + *context* sequent *Examples:*

 $[\lor \Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$

are described as:

$$[\lor\Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \, \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

[O. Lahav & A. Avron 2013]

A **basic rule**: *main* sequent + *context* sequent *Examples:*

$$[\lor \Rightarrow] \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\neg \Delta, \lor \varphi \Rightarrow \lor \Gamma}$$

are described as:

$$[\lor \Rightarrow] \quad \langle \Rightarrow p_1; \pi_1 \rangle \ / \, \lor p_1 \Rightarrow$$

where $\pi_1 = \{ \langle q_1 \Rightarrow ; \Rightarrow \neg q_1 \rangle, \langle \Rightarrow q_1 ; \neg q_1 \Rightarrow \rangle \}.$

Together, these correspond precisely to: $\begin{bmatrix} S \\ - \end{bmatrix} \quad \mathcal{M}, w \Vdash \neg \varphi \quad \text{iff} \quad \mathcal{M}, v \nvDash \varphi \text{ for some } v \in W \text{ such that } wRv$ For our convenience, we rewrite this as: $\begin{bmatrix} F \\ - \end{bmatrix} \quad \text{if } T_v(\varphi) \text{ for every } v \in W \text{ such that } wRv, \text{ then } F_w(\neg \varphi)$ $\begin{bmatrix} T \\ - \end{bmatrix} \quad \text{if } F_v(\varphi) \text{ for some } v \in W \text{ such that } wRv, \text{ then } T_w(\neg \varphi)$ where we take 'T_u(\alpha)' as abbreviating 'V(u, \alpha) = t', and 'F_u(\alpha)' as abbreviating 'V(u, \alpha) = t'.

[O. Lahav & A. Avron 2013]

 $[\mathbf{F} \sim]$ if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that wRv, then $\mathbf{F}_{w}(\sim \varphi)$

 $[\mathsf{T} \sim]$ if $\mathsf{F}_{v}(\varphi)$ for some $v \in W$ such that wRv, then $\mathsf{T}_{w}(\sim \varphi)$

where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha) = t$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $V(u, \alpha) = t$ '.

 $\begin{array}{l} [\mathsf{F}{\smile}] & \text{if } \mathsf{T}_{v}(\varphi) \text{ for every } v \in W \text{ such that } wRv, \text{ then } \mathsf{F}_{w}({\smile}\varphi) \\ [\mathsf{T}{\smile}] & \text{if } \mathsf{F}_{v}(\varphi) \text{ for some } v \in W \text{ such that } wRv, \text{ then } \mathsf{T}_{w}({\smile}\varphi) \\ \text{where we take '}\mathsf{T}_{u}(\alpha)' \text{ as abbreviating '} \vee (u, \alpha) = t', \text{ and '}\mathsf{F}_{u}(\alpha)' \text{ as abbreviating '} \vee (u, \alpha) = t'. \end{array}$

- Say that $w, v \in W$ agree with respect to the formula α , according to V, if either $(\mathbf{T}_w(\alpha) \text{ and } \mathbf{T}_v(\alpha))$ or $(\mathbf{F}_w(\alpha) \text{ and } \mathbf{F}_v(\alpha))$.
- Call \mathcal{M} a differentiated model

if w = v whenever w and v agree with respect to every $\alpha \in \mathcal{L}$, according to V.

Call \mathcal{M} a **strengthened** model iff wRv

if $(\mathbf{T}_{v}(\alpha) \text{ implies } \mathbf{F}_{w}(\neg \alpha))$ and $(\mathbf{F}_{v}(\alpha) \text{ implies } \mathbf{T}_{w}(\neg \alpha))$, for every $\alpha \in \mathcal{L}$.

 $\begin{array}{l} [\mathsf{F}{\smile}] & \text{if } \mathsf{T}_{v}(\varphi) \text{ for every } v \in W \text{ such that } wRv, \text{ then } \mathsf{F}_{w}({\smile}\varphi) \\ [\mathsf{T}{\smile}] & \text{if } \mathsf{F}_{v}(\varphi) \text{ for some } v \in W \text{ such that } wRv, \text{ then } \mathsf{T}_{w}({\smile}\varphi) \\ \text{where we take '}\mathsf{T}_{u}(\alpha)' \text{ as abbreviating '} V(u, \alpha) = t', \text{ and '}\mathsf{F}_{u}(\alpha)' \text{ as abbreviating '} V(u, \alpha) = t'. \end{array}$

Say that $w, v \in W$ agree with respect to the formula α , according to V, if either $(\mathbf{T}_w(\alpha) \text{ and } \mathbf{T}_v(\alpha))$ or $(\mathbf{F}_w(\alpha) \text{ and } \mathbf{F}_v(\alpha))$.

Call ${\mathcal M}$ a differentiated model

if w = v whenever w and v agree with respect to every $\alpha \in \mathcal{L}$, according to V.

Call \mathcal{M} a strengthened model iff wRv

if $(\mathsf{T}_{v}(\alpha) \text{ implies } \mathsf{F}_{w}(\neg \alpha))$ and $(\mathsf{F}_{v}(\alpha) \text{ implies } \mathsf{T}_{w}(\neg \alpha))$, for every $\alpha \in \mathcal{L}$.

Adequacy Theorem.

(corollary of [O. Lahav & A. Avron 2013])

PK is *sound* and *complete* with respect to any class of Kripke models that: (*i*) contains only models that satisfy all the appropriate [T#] and [F#] conditions; and (*ii*) contains all strengthened differentiated models that satisfy all the appropriate [T#] and [F#] conditions.

A strategy in two steps:

A strategy in two steps:

Step 1. Present an adequate semantics for the cut-free fragment of PK.

A strategy in two steps:

Step 1. Present an adequate semantics for the cut-free fragment of PK. We now build models with **quasi valuations**

 $QV: W imes \mathcal{L}
ightarrow \{\{f\}, \{t\}, \{f, t\}\}$ such that:

 $[\mathbf{F} {\sim}] \quad \text{if } \mathbf{T}_v(\varphi) \text{ for every } v \in W \text{ such that } wRv \text{, then } \mathbf{F}_w({\sim}\varphi)$

 $[\mathbf{T} \smile]$ if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that wRv, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $t \in QV(u, \alpha)$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $f \in QV(u, \alpha)$ '.

A strategy in two steps:

Step 1. Present an adequate semantics for the cut-free fragment of PK. We now build models with **quasi valuations**

 $QV: W \times \mathcal{L} \rightarrow \{\{f\}, \{t\}, \{f, t\}\}$ such that:

 $[\mathbf{F} \sim]$ if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that wRv, then $\mathbf{F}_{w}(\sim \varphi)$

 $[\mathbf{T} \smile]$ if $\mathbf{F}_{\mathbf{v}}(\varphi)$ for some $\mathbf{v} \in W$ such that $wR\mathbf{v}$, then $\mathbf{T}_{\mathbf{w}}(\smile \varphi)$

where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $t \in QV(u, \alpha)$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $f \in QV(u, \alpha)$ '.

Note that these are in principle non-deterministic!

A strategy in two steps:

Step 1. Present an adequate semantics for the cut-free fragment of PK. We now build models with **quasi valuations**

 $\mathit{QV}: \mathit{W} imes \mathit{\mathcal{L}}
ightarrow \{\{f\}, \{t\}, \{f, t\}\}$ such that:

 $[\mathbf{F} \sim]$ if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that wRv, then $\mathbf{F}_{w}(\sim \varphi)$

 $[\mathbf{T} \smile]$ if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that wRv, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $t \in QV(u, \alpha)$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $f \in QV(u, \alpha)$ '.

Step 2. Show that the existence of a **countermodel in the form of a strengthened differentiated quasi model** implies the existence of an ordinary countermodel.

Let an **instance** of a quasi model $\mathcal{QM} = \langle \langle W, R \rangle, QV \rangle$ be any model $\mathcal{M} = \langle \langle W, R' \rangle, V \rangle$ such that $\mathbf{X}_{w}^{Q}(\varphi)$ whenever $\mathbf{X}_{w}(\varphi)$, for every $\mathbf{X} \in \{\mathbf{T}, \mathbf{F}\}$, every $w \in W$ and every $\varphi \in \mathcal{L}$.

A strategy in two steps:

Step 1. Present an adequate semantics for the cut-free fragment of PK. We now build models with **quasi valuations**

 $\mathit{QV}: \mathit{W} imes \mathit{\mathcal{L}}
ightarrow \{\{f\}, \{t\}, \{f, t\}\}$ such that:

 $[\mathbf{F} \sim]$ if $\mathbf{T}_{v}(\varphi)$ for every $v \in W$ such that wRv, then $\mathbf{F}_{w}(\sim \varphi)$

 $[\mathbf{T} \smile]$ if $\mathbf{F}_{v}(\varphi)$ for some $v \in W$ such that wRv, then $\mathbf{T}_{w}(\smile \varphi)$ where we take ' $\mathbf{T}_{u}(\alpha)$ ' as abbreviating ' $t \in QV(u, \alpha)$ ', and ' $\mathbf{F}_{u}(\alpha)$ ' as abbreviating ' $f \in QV(u, \alpha)$ '.

Step 2. Show that the existence of a **countermodel in the form of a strengthened differentiated quasi model** implies the existence of an ordinary countermodel.

Let an **instance** of a quasi model $\mathcal{QM} = \langle \langle W, R \rangle, QV \rangle$ be any model $\mathcal{M} = \langle \langle W, R' \rangle, V \rangle$ such that $\mathbf{X}_{w}^{Q}(\varphi)$ whenever $\mathbf{X}_{w}(\varphi)$, for every $\mathbf{X} \in \{\mathbf{T}, \mathbf{F}\}$, every $w \in W$ and every $\varphi \in \mathcal{L}$.

Theorem.

Every quasi model has an instance.

Consider the well-founded relation \ll on \mathcal{L} such that $\alpha \ll \beta$ iff either:

(*i*) α is a proper subformula of β , or

(ii) $\alpha = -\gamma$ and $\beta = \ominus \gamma$ for some $\gamma \in \mathcal{L}$, or

(iii) $\alpha = \neg \gamma$ and $\beta = \ominus \gamma$ for some $\gamma \in \mathcal{L}$.

Since the class of all quasi models contains the strengthened differentiated quasi models, it follows that:

Corollary

```
PK enjoys cut-admissibility.
```

Corollary

```
PK is \ll-analytic:
```

If a sequent s is derivable from a set S of sequents in PK, then there is a derivation of s from S such that every formula φ that occurs in the derivation satisfies $\varphi \ll \psi$ for some ψ in $S \cup s$.

Seriality, Reflexivity, Functionality, Symmetry

Seriality, Reflexivity, Functionality, Symmetry

sequent system	:	frames	:	some distinguishing features		
PKD	:	serial	:	$\frown p \models \lnot p$		
PKT	:	reflexive	:	$p, \frown p \models q \text{ and } q \models \lnot p, p$		
PKF	:	total functional	:	$\smile p \equiv \frown p$		
PKB	:	symmetric	:	${\sim}{\sim}p\models p ext{ and }p\models{\frown}{\frown}p$		
$\begin{bmatrix} \mathbf{D} \end{bmatrix} \frac{\Gamma \Rightarrow \Delta}{\neg \Delta \Rightarrow \neg \Gamma}$ $\begin{bmatrix} \mathbf{T}_1 \end{bmatrix} \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \varphi, \Delta} \qquad \begin{bmatrix} \mathbf{T}_2 \end{bmatrix} \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma, \neg \varphi \Rightarrow \Delta}$ $\begin{bmatrix} \mathbf{Fun} \end{bmatrix} \frac{\Gamma \Rightarrow \Delta}{\neg \Delta \Rightarrow \neg \Gamma}$						
$[\mathbf{B}_1] \frac{\Gamma, \smile \Gamma', \varphi}{\neg \Delta, \Delta'} =$	$\Rightarrow \rightarrow \rightarrow$	$rac{\Delta, \frown \Delta'}{arphi, \smile \Gamma, \Gamma'}$		$[\mathbf{B}_2] \frac{\Gamma, \smile \Gamma' \Rightarrow \varphi, \Delta, \frown \Delta'}{\neg \Delta, \Delta', \smile \varphi \Rightarrow \smile \Gamma, \Gamma'}$		

Seriality, Reflexivity, Functionality, Symmetry

sequent system	:	frames	:	some distinguishing features	
PKD	:	serial	:	$\frown p \models \lnot p$	
PKT	:	reflexive	:	$p, \frown p \models q$ and $q \models \smile p, p$	
PKF	:	total functional	:	$\smile p \equiv \frown p$	
PKB	:	symmetric	:	${\sim}{\sim}p\models p ext{ and }p\models{\frown}{\frown}p$	
$\begin{bmatrix} \mathbf{D} \end{bmatrix} \frac{\Gamma \Rightarrow \Delta}{\neg \Delta \Rightarrow \neg \Gamma}$ $\begin{bmatrix} \mathbf{T}_1 \end{bmatrix} \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \varphi, \Delta} \qquad \begin{bmatrix} \mathbf{T}_2 \end{bmatrix} \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma, \neg \varphi \Rightarrow \Delta}$ $\begin{bmatrix} \mathbf{Fun} \end{bmatrix} \frac{\Gamma \Rightarrow \Delta}{\neg \Delta \Rightarrow \neg \Gamma}$					
$[\mathbf{B}_1] \frac{\Gamma, \smile \Gamma', \varphi}{\neg \Delta, \Delta'} =$	$\Rightarrow \Rightarrow $	$\frac{\Delta, \frown \Delta'}{\varphi, \lnot \Gamma, \Gamma'}$		$ [\mathbf{B}_2] \frac{\Gamma, \smile \Gamma' \Rightarrow \varphi, \Delta, \frown \Delta'}{\neg \Delta, \Delta', \smile \varphi \Rightarrow \smile \Gamma, \Gamma'} $	
		The full sto	ry m	ay be checked in the paper !	

When \sim is not a primitive connective

When \sim is not a primitive connective

 Classical negation *is definable* in the logics: *PKT*-{~, ⊖}, *PKT*-{~, ⊖}, *PKD*, and *PKF*.

(set $\sim \varphi := \neg \varphi \lor \ominus \varphi$)

(set $\sim \varphi := \lor \varphi \land \ominus \varphi$)

(set $\sim \varphi := (\neg \varphi \land \ominus \varphi) \lor \ominus \varphi$)

When \sim is not a primitive connective

- Classical negation is definable in the logics: $PKT-\{\smile,\ominus\},$ $PKT \{ \land, \ominus \}.$ PKD, and PKF. (set $\sim \varphi := (\neg \varphi \land \Theta \varphi) \lor \Theta \varphi$)
- Olassical negation is not definable in the logics: PK, PKB, $PKT - \{ \Theta, \Theta \},\$ $PKD-\{\Theta\}, PKF-\{\Theta\}, P$ $PKD-\{\ominus\}$, and $PKF-\{\ominus\}$.

(set $\sim \varphi := \neg \varphi \lor \Theta \varphi$)

(set $\sim \varphi := \lor \varphi \land \Theta \varphi$)

More on the study of *negative modalities*:

More on the study of *negative modalities*:

• Studying **properties of negation** through other classes of frames *Examples:*

Church-Rosser	:	$\sim \sim p \models \frown \frown p$
transitive	:	${}^{\smile}p,{}^{\smile}({}^{\smile}p)\models q ext{ and } q\models {}^{\frown}({}^{\frown}p),{}^{\frown}p$
euclidean	:	$\frown p, \lnot (\frown p) \models q$ and $q \models \frown (\lnot p), \lnot p$

More on the study of *negative modalities*:

• Studying **properties of negation** through other classes of frames *Examples:*

Church-Rosser	:	$\sim \sim p \models \frown \frown p$
transitive	:	${\sim} p, {\sim} ({\sim} p) \models q ext{ and } q \models {\sim} ({\frown} p), {\frown} p$
euclidean	:	$\frown p, \smile (\frown p) \models q$ and $q \models \frown (\smile p), \smile p$

• Studying combinations of negations of the same type. Examples: add the backward-looking modalities $[S^{-1}] \quad \mathcal{M}, w \Vdash {}^{-1}\varphi \quad \text{iff} \quad \mathcal{M}, v \nvDash \varphi \text{ for some } v \in W \text{ such that } wR^{-1}v$ $[S^{-1}] \quad \mathcal{M}, w \nvDash {}^{-1}\varphi \quad \text{iff} \quad \mathcal{M}, v \Vdash \varphi \text{ for some } v \in W \text{ such that } wR^{-1}v$ Note the validity in *PK* of pure consecutions such as: ${}^{-1} {}^{-1}\varphi \models p \text{ and } {}^{-1}p \models p$ (as well as $p \models {}^{-1} {}^{-1}\varphi \text{ and } p \models {}^{-1}\rho)$ and the validity in *PKB* of mixed consecutions such as ${}^{-1} {}^{-1}\varphi \models p \text{ and } {}^{-1}p \models p$ (as well as $p \models {}^{-1} {}^{-1}\rho \text{ and } p \models {}^{-1}\rho)$