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A parsimonious modal (interpreted) language
Frame: F = 〈W ,R〉, where W 6= ∅ and R ⊆W ×W

Model: M = 〈F ,V 〉, where F is a frame,
and V : W × L → {f , t} respects (we useM, z  α to denote V (z, α) = t)

[S⊃] M,w  ϕ ⊃ ψ iff M,w 6 ϕ orM,w  ψ

[S`] M,w  `ϕ iff M, v 6 ϕ for some v ∈W such that wRv
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Recovering the (now standard) basic modal languages

∼α := α ⊃ `(α ⊃ α) behaves as the classical negation
and

2α := ∼`α behaves as the usual (positive) modality box

Note 0. Conversely, the (paraconsistent) negation ` might be recovered through ∼2.

Note 1. It is reasonable to expect ` to be, in general, weaker than ∼, i.e.:

∼α |= `α, yet `α 6|= ∼α

Note 2. Our minimal language, in what follows, will be:

L∧∨>⊥, classically interpreted
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The classical case:
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0 1 0 1 0
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[Boxes] and <Diamonds>
Case of [prs]:
[PM1.1+] +(ϕ ∧ ψ) � +ϕ ∧+ψ [PM2.1+] +ϕ ∨+ψ � +(ϕ ∨ ψ)

[PM1.2+] +ϕ ∧+ψ � +(ϕ ∧ ψ) [PM2.2+] +(ϕ ∨ ψ) � +ϕ ∨+ψ

full type [+] full type <+>
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Negations? [J.M., J Appl Log 2005]

JfalsificatioK ∀k∃p #kp 6� #k+1p JverificatioK ∀k∃p #k+1p 6� #kp
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[Boxes] and <Diamonds>
Let ∼ represent classical negation. Then:
[+]∼α ≡ ∼<+>α <+>∼α ≡ ∼[+]α

[−]∼α ≡ ∼<−>α <−>∼α ≡ ∼[−]α
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Let ∼ represent classical negation. Then:
[+]∼α ≡ ∼<+>α <+>∼α ≡ ∼[+]α

[−]∼α ≡ ∼<−>α <−>∼α ≡ ∼[−]α

Figure: Square of Modalities (som)
[J.M., Log Anal 2005]
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Non-classical behavior and derivability adjustment
The two sides of negation:
J#-explosionK p,#p � q J#-implosionK q � #p, p

paraconsistency paracompleteness
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Non-classical behavior and derivability adjustment
The two sides of negation, and their failures:
J#-explosionK p,#p 6� q J#-implosionK q 6� #p, p
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Some (strong) gentler versions:
[C1#] #©p, p,#p � [C2#] � p, #©p [C3#] � #p, #©p

[D1#] � #p, p, #©p [D2#] #©p, p � [D3#] #©p,#p �
When you encounter difficulties and con-
tradictions, do not try to break them, but
bend them with gentleness and time.
— Saint Francis de Sales
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[D1#] � #p, p, #©p [D2#] #©p, p � [D3#] #©p,#p �
When you encounter difficulties and con-
tradictions, do not try to break them, but
bend them with gentleness and time.
— Saint Francis de Sales

Enriching the object language through adjustment connectives
The [Cn#] clauses (strongly) internalize the ‘consistency assumption’, and
the [Dn#] clauses (strongly) internalize the ‘determinacy assumption’.

This defines (strong versions of) the so-called LFIs and LFUs.
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Modal semantics: it ain’t necessarily so!
Consider the following negative modalities:
[S`] M,w  `ϕ iff M, v 6 ϕ for some v ∈W such that wRv
[Sa] M,w 6 aϕ iff M, v  ϕ for some v ∈W such that wRv

equivalently:
M,w  aϕ iff M, v 6 ϕ for every v ∈W such that wRv
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Consider also the following adjustment connectives:
[SC#̀] M,w  #̀ϕ iff M,w 6 ϕ orM,w 6 `ϕ
[SD#a] M,w 6 #aϕ iff M,w  ϕ orM,w  aϕ

It should be noted that:
#̀ expresses `-consistency,

and allows for `-explosiveness to be recovered
#a expresses a-determinacy,

and allows for a-implosiveness to be recovered
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Classical negation: interactions, and definability
In modal terms, classical negation has a local character:
[S∼] M,w  ∼ϕ iff M,w 6 ϕ

Intuition: ∼ = a+`

Note indeed that ∼ would be at once full type [-] and full type <->.
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Note indeed that ∼ would be at once full type [-] and full type <->.

How does classical negation relate to the non-classical ones?

Recall that: [−]∼α ≡ ∼<−>α <−>∼α ≡ ∼[−]α
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Classical negation: interactions, and definability
In modal terms, classical negation has a local character:
[S∼] M,w  ∼ϕ iff M,w 6 ϕ

Intuition: ∼ = a+`

Note indeed that ∼ would be at once full type [-] and full type <->.

How does classical negation relate to the non-classical ones?

Recall that: [−]∼α ≡ ∼<−>α <−>∼α ≡ ∼[−]α
In other words: a∼α ≡ ∼`α `∼α ≡ ∼aα

Moreover, in general: aα � ∼α ∼α � `α
but the converses fail

What if classical negation is not taken as a primitive connective?
To investigate: In which situations is it even definable in L∧∨>⊥`a#̀#a?

(we’ll answer this later on!)
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A sequent calculus for PK
A sequent calculus for the weakest normal modal logic over L∧∨>⊥`a#̀#a:

[A. Dodó & J.M., ENTCS 2014]

[id ]
ϕ⇒ ϕ

[cut]
Γ, ϕ⇒ ∆ Γ⇒ ϕ,∆

Γ⇒ ∆

[W⇒]
Γ⇒ ∆

Γ, ϕ⇒ ∆
[⇒W ]

Γ⇒ ∆

Γ⇒ ϕ,∆

[⊥⇒]
Γ,⊥ ⇒ ∆

[⇒>]
Γ⇒ >,∆

[∧⇒]
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
[⇒∧]

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∧ ψ,∆

[∨⇒]
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
[⇒∨]

Γ⇒ ϕ,ψ,∆

Γ⇒ ϕ ∨ ψ,∆

[`⇒]
Γ⇒ ϕ,∆

a∆,`ϕ⇒ `Γ
[⇒a]

Γ, ϕ⇒ ∆

a∆⇒ aϕ,`Γ

[#̀⇒]
Γ⇒ ϕ,∆ Γ⇒ `ϕ,∆

Γ, #̀ϕ⇒ ∆
[⇒#̀]

Γ, ϕ,`ϕ⇒ ∆

Γ⇒ #̀ϕ,∆

[#a⇒]
Γ⇒ ϕ,aϕ,∆

Γ,#aϕ⇒ ∆
[⇒#a]

Γ, ϕ⇒ ∆ Γ,aϕ⇒ ∆

Γ⇒ #aϕ,∆
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The technology of Basic Sequents
A basic rule: main sequent + context sequent [O. Lahav & A. Avron 2013]

Examples:

[∧⇒]
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
[⇒∧]

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∧ ψ,∆

are described as:

[∧⇒] 〈p1, p2 ⇒ ;π0〉 / p1 ∧ p2 ⇒ [⇒∧] 〈⇒ p1 ; π0〉 , 〈⇒ p2 ; π0〉 / ⇒ p1 ∧ p2

where π0 = {〈q1 ⇒ ; q1 ⇒〉 , 〈⇒ q1 ; ⇒ q1〉}.
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while

[`⇒]
Γ⇒ ϕ,∆

a∆,`ϕ⇒ `Γ
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[`⇒] 〈⇒ p1;π1〉 /`p1 ⇒

where π1 = {〈q1 ⇒ ; ⇒ `q1〉 , 〈⇒ q1 ; aq1 ⇒〉}.
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are described as:
[`⇒] 〈⇒ p1;π1〉 /`p1 ⇒

where π1 = {〈q1 ⇒ ; ⇒ `q1〉 , 〈⇒ q1 ; aq1 ⇒〉}.

The main sequent is made to match an appropriate semantic condition.
For instance, [`⇒] induces:

“ifM, v ⇒ ϕ for every world v such that wRv , thenM,w  `ϕ⇒”

and the context sequent is also made to match a semantic condition.
For instance, π1 induces:

“if wRv thenM,w ⇒ `ϕ wheneverM, v  ϕ⇒”
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and the context sequent is also made to match a semantic condition.
For instance, π1 induces:

“if wRv thenM,w ⇒ `ϕ wheneverM, v  ϕ⇒”

Together, these correspond precisely to:
[S`] M,w  `ϕ iff M, v 6 ϕ for some v ∈W such that wRv
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The technology of Basic Sequents
A basic rule: main sequent + context sequent [O. Lahav & A. Avron 2013]

Examples:

[`⇒]
Γ⇒ ϕ,∆

a∆,`ϕ⇒ `Γ

are described as:
[`⇒] 〈⇒ p1;π1〉 /`p1 ⇒

where π1 = {〈q1 ⇒ ; ⇒ `q1〉 , 〈⇒ q1 ; aq1 ⇒〉}.

Together, these correspond precisely to:
[S`] M,w  `ϕ iff M, v 6 ϕ for some v ∈W such that wRv

For our convenience, we rewrite this as:
[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘V (u, α) = t’, and ‘Fu(α)’ as abbreviating ‘V (u, α) = f ’.
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[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘V (u, α) = t’, and ‘Fu(α)’ as abbreviating ‘V (u, α) = f ’.

Say that w , v ∈W agree with respect to the formula α, according to V ,
if either (Tw (α) and Tv (α)) or (Fw (α) and Fv (α)).

CallM a differentiated model
if w = v whenever w and v agree with respect to every α ∈ L, according to V .

CallM a strengthened model iff wRv

if (Tv (α) implies Fw (aα)) and (Fv (α) implies Tw (`α)), for every α ∈ L.
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Say that w , v ∈W agree with respect to the formula α, according to V ,
if either (Tw (α) and Tv (α)) or (Fw (α) and Fv (α)).

CallM a differentiated model
if w = v whenever w and v agree with respect to every α ∈ L, according to V .

CallM a strengthened model iff wRv

if (Tv (α) implies Fw (aα)) and (Fv (α) implies Tw (`α)), for every α ∈ L.

Adequacy Theorem. (corollary of [O. Lahav & A. Avron 2013])

PK is sound and complete with respect to any class of Kripke models that:
(i) contains only models that satisfy all the appropriate [T#] and [F#]
conditions; and (ii) contains all strengthened differentiated models that
satisfy all the appropriate [T#] and [F#] conditions.
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A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
QV : W × L → {{f } , {t} , {f , t}} such that:
[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘t ∈ QV (u, α)’, and ‘Fu(α)’ as abbreviating ‘f ∈ QV (u, α)’.
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Cut-elimination and analyticity, almost for free
A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
QV : W × L → {{f } , {t} , {f , t}} such that:
[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘t ∈ QV (u, α)’, and ‘Fu(α)’ as abbreviating ‘f ∈ QV (u, α)’.

Note that these are in principle non-deterministic!

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 10 / 13



Cut-elimination and analyticity, almost for free
A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
QV : W × L → {{f } , {t} , {f , t}} such that:
[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘t ∈ QV (u, α)’, and ‘Fu(α)’ as abbreviating ‘f ∈ QV (u, α)’.

Step 2. Show that the existence of a countermodel in the form of a
strengthened differentiated quasi model implies the existence of an
ordinary countermodel.
Let an instance of a quasi model QM = 〈〈W ,R〉 ,QV 〉 be any modelM = 〈〈W ,R′〉 ,V 〉
such that XQ

w (ϕ) whenever Xw (ϕ), for every X ∈ {T,F}, every w ∈W and every ϕ ∈ L.

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 10 / 13



Cut-elimination and analyticity, almost for free
A strategy in two steps:
Step 1. Present an adequate semantics for the cut-free fragment of PK.
We now build models with quasi valuations
QV : W × L → {{f } , {t} , {f , t}} such that:
[F`] if Tv (ϕ) for every v ∈W such that wRv , then Fw (`ϕ)

[T`] if Fv (ϕ) for some v ∈W such that wRv , then Tw (`ϕ)
where we take ‘Tu(α)’ as abbreviating ‘t ∈ QV (u, α)’, and ‘Fu(α)’ as abbreviating ‘f ∈ QV (u, α)’.

Step 2. Show that the existence of a countermodel in the form of a
strengthened differentiated quasi model implies the existence of an
ordinary countermodel.
Let an instance of a quasi model QM = 〈〈W ,R〉 ,QV 〉 be any modelM = 〈〈W ,R′〉 ,V 〉
such that XQ

w (ϕ) whenever Xw (ϕ), for every X ∈ {T,F}, every w ∈W and every ϕ ∈ L.

Theorem.
Every quasi model has an instance.
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Cut-elimination and analyticity, almost for free
Consider the well-founded relation � on L such that α� β iff either:
(i) α is a proper subformula of β, or
(ii) α = `γ and β = #̀γ for some γ ∈ L, or
(iii) α = aγ and β = #aγ for some γ ∈ L.
Since the class of all quasi models contains the strengthened differentiated quasi models,
it follows that:

Corollary
PK enjoys cut-admissibility.

Corollary
PK is �-analytic:
If a sequent s is derivable from a set S of sequents in PK, then there is a
derivation of s from S such that every formula ϕ that occurs in the
derivation satisfies ϕ� ψ for some ψ in S ∪ s.
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Seriality, Reflexivity, Functionality, Symmetry
sequent system : frames : some distinguishing features

PKD : serial : ap |= `p
PKT : reflexive : p,ap |= q and q |= `p, p
PKF : total functional : `p ≡ ap
PKB : symmetric : ``p |= p and p |= aap

[D]
Γ⇒ ∆

a∆⇒ `Γ

[T1]
Γ, ϕ⇒ ∆

Γ⇒ `ϕ,∆
[T2]

Γ⇒ ϕ,∆

Γ,aϕ⇒ ∆

[Fun]
Γ⇒ ∆

`∆⇒ `Γ

[B1]
Γ,`Γ′, ϕ⇒ ∆,a∆′

a∆,∆′ ⇒ aϕ,`Γ, Γ′ [B2]
Γ,`Γ′ ⇒ ϕ,∆,a∆′

a∆,∆′,`ϕ⇒ `Γ, Γ′
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sequent system : frames : some distinguishing features

PKD : serial : ap |= `p
PKT : reflexive : p,ap |= q and q |= `p, p
PKF : total functional : `p ≡ ap
PKB : symmetric : ``p |= p and p |= aap

[D]
Γ⇒ ∆

a∆⇒ `Γ

[T1]
Γ, ϕ⇒ ∆

Γ⇒ `ϕ,∆
[T2]

Γ⇒ ϕ,∆

Γ,aϕ⇒ ∆

[Fun]
Γ⇒ ∆

`∆⇒ `Γ

[B1]
Γ,`Γ′, ϕ⇒ ∆,a∆′

a∆,∆′ ⇒ aϕ,`Γ, Γ′ [B2]
Γ,`Γ′ ⇒ ϕ,∆,a∆′

a∆,∆′,`ϕ⇒ `Γ, Γ′

The full story may be checked in the paper !
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On the definability of classical negation

When ∼ is not a primitive connective

1 Classical negation is definable in the logics:
PKT -{`, #̀}, (set ∼ϕ := aϕ ∨ #aϕ)

PKT -{a,#a}, (set ∼ϕ := `ϕ ∧ #̀ϕ)

PKD, and PKF . (set ∼ϕ := (aϕ ∧ #̀ϕ) ∨ #aϕ)

2 Classical negation is not definable in the logics:
PK , PKB ,
PKT -{#̀,#a},
PKD-{#̀}, PKF -{#̀},
PKD-{#a}, and PKF -{#a}.

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 12 / 13



On the definability of classical negation

When ∼ is not a primitive connective
1 Classical negation is definable in the logics:

PKT -{`, #̀}, (set ∼ϕ := aϕ ∨ #aϕ)

PKT -{a,#a}, (set ∼ϕ := `ϕ ∧ #̀ϕ)

PKD, and PKF . (set ∼ϕ := (aϕ ∧ #̀ϕ) ∨ #aϕ)

2 Classical negation is not definable in the logics:
PK , PKB ,
PKT -{#̀,#a},
PKD-{#̀}, PKF -{#̀},
PKD-{#a}, and PKF -{#a}.

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 12 / 13



On the definability of classical negation

When ∼ is not a primitive connective
1 Classical negation is definable in the logics:

PKT -{`, #̀}, (set ∼ϕ := aϕ ∨ #aϕ)

PKT -{a,#a}, (set ∼ϕ := `ϕ ∧ #̀ϕ)

PKD, and PKF . (set ∼ϕ := (aϕ ∧ #̀ϕ) ∨ #aϕ)

2 Classical negation is not definable in the logics:
PK , PKB ,
PKT -{#̀,#a},
PKD-{#̀}, PKF -{#̀},
PKD-{#a}, and PKF -{#a}.

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 12 / 13



This is possibly not the end!

J. Marcos (UFRN) It ain’t necessarily so AiML 2016 13 / 13



This is possibly not the end!
More on the study of negative modalities:

Studying properties of negation through other classes of frames
Examples:
Church-Rosser : ``p |= aap
transitive : `p,`(`p) |= q and q |= a(ap),ap

euclidean : ap,`(ap) |= q and q |= a(`p),`p

Studying combinations of negations of the same type.
Examples: add the backward-looking modalities
[S −̀1] M,w  −̀1ϕ iff M, v 6 ϕ for some v ∈W such that wR−1v
[Sa−1] M,w 6 a−1ϕ iff M, v  ϕ for some v ∈W such that wR−1v

Note the validity in PK of pure consecutions such as:
−̀1`p |= p and ` −̀1p |= p (as well as p |= a−1ap and p |= aa−1p)

and the validity in PKB of mixed consecutions such as
a−1`p |= p and a −̀1p |= p (as well as p |= −̀1ap and p |= `a−1p)
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