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 Lukasiewicz Modal Logics

Hansoul and Teheux (2013) consider a  Lukasiewicz modal logic with

standard “crisp” Kripke frames

connectives defined on the real unit interval [0, 1]

x → y = min(1, 1− x + y) ¬x = 1− x

x ⊕ y = min(1, x + y) x � y = max(0, x + y − 1)

� and ♦ interpreted as infima and suprema of accessible values.

 Lukasiewicz multi-modal logics can also be viewed as fragments of
continuous logic and have been studied as fuzzy description logics.
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An Axiomatization Problem

Hansoul and Teheux (2013) obtain an axiomatization of  Lukasiewicz
modal logic by extending an axiomatization of  Lukasiewicz logic with

�(ϕ→ ψ)→ (�ϕ→ �ψ)

�(ϕ⊕ ϕ)→ (�ϕ⊕�ϕ)

�(ϕ� ϕ)→ (�ϕ��ϕ)

ϕ

�ϕ

and a rule with infinitely many premises

ϕ⊕ ϕ ϕ⊕ ϕ2 ϕ⊕ ϕ3 . . .
ϕ

But is this infinitary rule really necessary?
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Towards a Solution. . .

We provide a finitary axiomatizion of a real-valued modal logic that
extends the multiplicative fragment of Abelian logic.

Extending this system with the additive (lattice) connectives would provide
the basis for a finitary axiomatizion for  Lukasiewicz modal logic.
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The Multiplicative Fragment of Abelian Logic

The multiplicative fragment of Abelian logic is axiomatized by

(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

( I ) ϕ→ ϕ

(A) ((ϕ→ ψ)→ ψ)→ ϕ

ϕ ϕ→ ψ

ψ
(mp)

and is complete with respect to the logical matrix

〈R,R≥0, {→}〉 where x → y = y − x .
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A Modal Language

We define further connectives (for a fixed variable p0)

0 := p0 → p0

¬ϕ := ϕ→ 0

ϕ+ ψ := ¬ϕ→ ψ.

For our modal language, we add a unary connective �, and define

♦ϕ := ¬�¬ϕ.

The set of formulas Fm for this language is defined inductively as usual
over a countably infinite set of variables Var.
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Frames and Models

A frame F = 〈W ,R〉 consists of

a non-empty set of worlds W

an accessibility relation R ⊆W ×W .

F is called serial if for all x ∈W , there exists y ∈W such that Rxy .
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Models

A K(R)-model 〈W ,R,V 〉 consists of

a serial frame 〈W ,R〉
an evaluation map V : Var×W → [−r , r ] for some r > 0.

The evaluation map is extended to V : Fm×W → R by

V (ϕ→ ψ, x) = V (ψ, x)− V (ϕ, x)

V (�ϕ, x) = inf{V (ϕ, y) : Rxy}.

It follows also that

V (0, x) = 0 V (ϕ+ ψ, x) = V (ϕ, x) + V (ψ, x)

V (¬ϕ, x) = −V (ϕ, x) V (♦ϕ, x) = sup{V (ϕ, y) : Rxy}.
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Validity

A formula ϕ is

valid in a K(R)-model 〈W ,R,V 〉 if V (ϕ, x) ≥ 0 for all x ∈W

K(R)-valid if it is valid in all K(R)-models.

Lemma

The following are equivalent for any formula ϕ:

(1) ϕ is K(R)-valid.

(2) ϕ is valid in all finite K(R)-models.
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The Axiom System K(R)

(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

( I ) ϕ→ ϕ

(A) ((ϕ→ ψ)→ ψ)→ ϕ

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(P) �(ϕ+ · · ·+ ϕ)→ (�ϕ+ · · ·+ �ϕ)

ϕ ϕ→ ψ

ψ
(mp)

ϕ

�ϕ
(nec) ϕ+ · · ·+ ϕ

ϕ (con)
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The Sequent Calculus GK(R)

∆⇒ ∆
(id)

Γ, ϕ⇒ ∆ Π⇒ ϕ,Σ

Γ,Π⇒ Σ,∆
(cut)

Γ⇒ ∆ Π⇒ Σ
Γ,Π⇒ Σ,∆

(mix)
Γ, . . . ,Γ⇒ ∆, . . . ,∆

Γ⇒ ∆
(sc)

Γ, ψ ⇒ ϕ,∆

Γ, ϕ→ ψ ⇒ ∆
(→⇒)

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
(⇒→)

Γ⇒ ϕ, . . . , ϕ

�Γ⇒ �ϕ, . . . ,�ϕ
(�)
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Equivalence of Proof Systems

We interpret sequents by

(ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm)I := (ϕ1 + · · ·+ ϕn)→ (ψ1 + . . .+ ψm),

where ϕ1 + · · ·+ ϕn := 0 for n = 0.

Theorem

The following are equivalent:

(1) Γ⇒ ∆ is derivable in GK(R).

(2) (Γ⇒ ∆)I is derivable in K(R).

Theorem

GK(R) admits cut elimination.
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The Main Result

Theorem

The following are equivalent for any formula ϕ:

(1) ϕ is derivable in K(R).

(2) ϕ is K(R)-valid.

(3) ⇒ϕ is derivable in GK(R).
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Proof Idea for (2)⇒ (3)

We prove by induction on the complexity of a sequent S that

SI is K(R)-valid =⇒ S is derivable in GK(R).

The base case where S contains no boxes is easy and the cases where S
contains an implication follow using the invertibility of (→⇒) and (⇒→).

If S contains only boxed formulas and variables, then the multisets of
variables on the left and right must coincide, and can be cancelled.
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Proof Idea for (2)⇒ (3) Continued

Suppose then that S is �Γ⇒ �ϕ1, . . . ,�ϕn. We apply the following
GK(R)-derivable rule for some k > 0 and kΓ = Γ0,Γ1, . . . ,Γn:

Γ0 ⇒ Γ1 ⇒ k[ϕ1] . . . Γn ⇒ k[ϕn]

�Γ⇒ �ϕ1, . . . ,�ϕn

Using the K(R)-validity of S , we generate (via labelled tableau rules) an
inconsistent set of linear inequations. This inconsistency is witnessed by a
linear combination of sequents where k is the coefficient of S . Eliminating
variables we get the K(R)-validity of Γ0 ⇒, Γ1 ⇒ k[ϕ1], . . . ,Γn ⇒ k[ϕn].
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Complexity

Using our labelled tableau rules, we also obtain:

Theorem

Checking K(R)-validity of formulas is in EXPTIME.
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Concluding Remarks

There remain many issues to resolve:

Can we add extend our axiomatization to an “Abelian modal logic”
with lattice connectives? Do we obtain a  Lukasiewicz modal logic?

Can we develop useful algebraic semantics for these logics?

Is the complexity of checking K(R)-validity EXPTIME-complete?
What is the complexity of validity in  Lukasiewicz modal logic?
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