Axiomatizing a Real-Valued Modal Logic

George Metcalfe

Mathematical Institute University of Bern

Joint work with Denisa Diaconescu and Laura Schnüriger

AiML 2016, Budapest, 30. August - 2. September 2016

Hansoul and Teheux (2013) consider a Łukasiewicz modal logic with

- standard "crisp" Kripke frames
- connectives defined on the real unit interval [0,1]

$$x \to y = \min(1, 1 - x + y)$$
 $\neg x = 1 - x$
 $x \oplus y = \min(1, x + y)$ $x \odot y = \max(0, x + y - 1)$

ullet and \Diamond interpreted as infima and suprema of accessible values.

Hansoul and Teheux (2013) consider a Łukasiewicz modal logic with

- standard "crisp" Kripke frames
- connectives defined on the real unit interval [0,1]

$$x \to y = \min(1, 1 - x + y)$$
 $\neg x = 1 - x$
 $x \oplus y = \min(1, x + y)$ $x \odot y = \max(0, x + y - 1)$

ullet and \Diamond interpreted as infima and suprema of accessible values.

Hansoul and Teheux (2013) consider a Łukasiewicz modal logic with

- standard "crisp" Kripke frames
- ullet connectives defined on the real unit interval [0,1]

$$x \rightarrow y = \min(1, 1 - x + y)$$
 $\neg x = 1 - x$
 $x \oplus y = \min(1, x + y)$ $x \odot y = \max(0, x + y - 1)$

ullet and \Diamond interpreted as infima and suprema of accessible values.

Hansoul and Teheux (2013) consider a Łukasiewicz modal logic with

- standard "crisp" Kripke frames
- ullet connectives defined on the real unit interval [0,1]

$$x \rightarrow y = \min(1, 1 - x + y)$$
 $\neg x = 1 - x$
 $x \oplus y = \min(1, x + y)$ $x \odot y = \max(0, x + y - 1)$

ullet and \Diamond interpreted as infima and suprema of accessible values.

Hansoul and Teheux (2013) consider a Łukasiewicz modal logic with

- standard "crisp" Kripke frames
- connectives defined on the real unit interval [0,1]

$$x \rightarrow y = \min(1, 1 - x + y)$$
 $\neg x = 1 - x$
 $x \oplus y = \min(1, x + y)$ $x \odot y = \max(0, x + y - 1)$

ullet and \Diamond interpreted as infima and suprema of accessible values.

An Axiomatization Problem

Hansoul and Teheux (2013) obtain an axiomatization of Łukasiewicz modal logic by extending an axiomatization of Łukasiewicz logic with

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box \varphi \oplus \Box \varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box \varphi \odot \Box \varphi)$$
$$\frac{\varphi}{\Box \varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

An Axiomatization Problem

Hansoul and Teheux (2013) obtain an axiomatization of Łukasiewicz modal logic by extending an axiomatization of Łukasiewicz logic with

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box \varphi \oplus \Box \varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box \varphi \odot \Box \varphi)$$
$$\frac{\varphi}{\Box \varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

An Axiomatization Problem

Hansoul and Teheux (2013) obtain an axiomatization of Łukasiewicz modal logic by extending an axiomatization of Łukasiewicz logic with

$$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$$
$$\Box(\varphi \oplus \varphi) \to (\Box\varphi \oplus \Box\varphi)$$
$$\Box(\varphi \odot \varphi) \to (\Box\varphi \odot \Box\varphi)$$
$$\frac{\varphi}{\Box\varphi}$$

and a rule with infinitely many premises

$$\frac{\varphi \oplus \varphi \quad \varphi \oplus \varphi^2 \quad \varphi \oplus \varphi^3 \quad \dots}{\varphi}$$

But is this infinitary rule really necessary?

Towards a Solution...

We provide a finitary axiomatizion of a **real-valued modal logic** that extends the multiplicative fragment of Abelian logic.

Extending this system with the additive (lattice) connectives would provide the basis for a finitary axiomatizion for Łukasiewicz modal logic.

Towards a Solution...

We provide a finitary axiomatizion of a **real-valued modal logic** that extends the multiplicative fragment of Abelian logic.

Extending this system with the additive (lattice) connectives would provide the basis for a finitary axiomatizion for Łukasiewicz modal logic.

The Multiplicative Fragment of Abelian Logic

The multiplicative fragment of Abelian logic is axiomatized by

(B)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(C)
$$(\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

(I)
$$\varphi \to \varphi$$

(A)
$$((\varphi \to \psi) \to \psi) \to \varphi$$

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ (mp)}$$

and is complete with respect to the logical matrix

$$\langle \mathbb{R}, \mathbb{R}_{\geq 0}, \{ \rightarrow \} \rangle$$
 where $x \to y = y - x$.

The Multiplicative Fragment of Abelian Logic

The multiplicative fragment of Abelian logic is axiomatized by

(B)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(C)
$$(\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

(I)
$$\varphi \to \varphi$$

(A)
$$((\varphi \to \psi) \to \psi) \to \varphi$$

 $\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ (mp)}$

and is complete with respect to the logical matrix

$$\langle \mathbb{R}, \mathbb{R}_{\geq 0}, \{ \rightarrow \} \rangle$$
 where $x \to y = y - x$.

A Modal Language

We define further connectives (for a fixed variable p_0)

$$\overline{0} := p_0 \to p_0
\neg \varphi := \varphi \to \overline{0}
\varphi + \psi := \neg \varphi \to \psi.$$

For our modal language, we add a unary connective \square , and define

$$\Diamond \varphi := \neg \Box \neg \varphi.$$

The set of formulas ${\rm Fm}$ for this language is defined inductively as usual over a countably infinite set of variables ${\rm Var}.$

A Modal Language

We define further connectives (for a fixed variable p_0)

$$\overline{0} := p_0 \to p_0
\neg \varphi := \varphi \to \overline{0}
\varphi + \psi := \neg \varphi \to \psi.$$

For our modal language, we add a unary connective \square , and define

$$\Diamond \varphi := \neg \Box \neg \varphi.$$

The set of formulas ${\rm Fm}$ for this language is defined inductively as usual over a countably infinite set of variables ${\rm Var}.$

Frames and Models

A frame $\mathfrak{F} = \langle W, R \rangle$ consists of

- ullet a non-empty set of worlds W
- an accessibility relation $R \subseteq W \times W$.

 \mathfrak{F} is called **serial** if for all $x \in W$, there exists $y \in W$ such that Rxy.

Models

A K(\mathbb{R})-model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an evaluation map $V: \operatorname{Var} \times W \to [-r, r]$ for some r > 0.

The evaluation map is extended to $V \colon \operatorname{Fm} \times W \to \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$
$$V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$
 $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}$

Models

A K(\mathbb{R})-model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an evaluation map $V: \operatorname{Var} \times W \to [-r, r]$ for some r > 0.

The evaluation map is extended to $V \colon \operatorname{Fm} \times W \to \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$

 $V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$
 $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}$

Models

A K(\mathbb{R})-model $\langle W, R, V \rangle$ consists of

- a serial frame $\langle W, R \rangle$
- an evaluation map $V: \operatorname{Var} \times W \to [-r, r]$ for some r > 0.

The evaluation map is extended to $V \colon \mathrm{Fm} imes W o \mathbb{R}$ by

$$V(\varphi \to \psi, x) = V(\psi, x) - V(\varphi, x)$$

 $V(\Box \varphi, x) = \inf\{V(\varphi, y) : Rxy\}.$

It follows also that

$$V(\overline{0},x) = 0$$
 $V(\varphi + \psi,x) = V(\varphi,x) + V(\psi,x)$ $V(\neg \varphi,x) = -V(\varphi,x)$ $V(\Diamond \varphi,x) = \sup\{V(\varphi,y) : Rxy\}.$

Validity

A formula φ is

- valid in a $K(\mathbb{R})$ -model $\langle W, R, V \rangle$ if $V(\varphi, x) \geq 0$ for all $x \in W$
- $K(\mathbb{R})$ -valid if it is valid in all $K(\mathbb{R})$ -models.

Lemma

The following are equivalent for any formula φ :

- (1) φ is $K(\mathbb{R})$ -valid
- (2) φ is valid in all finite $K(\mathbb{R})$ -models.

Validity

A formula φ is

- valid in a $K(\mathbb{R})$ -model $\langle W, R, V \rangle$ if $V(\varphi, x) \geq 0$ for all $x \in W$
- $K(\mathbb{R})$ -valid if it is valid in all $K(\mathbb{R})$ -models.

Lemma

The following are equivalent for any formula φ :

- (1) φ is $K(\mathbb{R})$ -valid.
- (2) φ is valid in all finite $K(\mathbb{R})$ -models.

The Axiom System $K(\mathbb{R})$

(B)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(C)
$$(\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi))$$

(I)
$$\varphi \rightarrow \varphi$$

(A)
$$((\varphi \to \psi) \to \psi) \to \varphi$$

(K)
$$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$$

(P)
$$\Box(\varphi + \cdots + \varphi) \rightarrow (\Box\varphi + \cdots + \Box\varphi)$$

$$\frac{\varphi \quad \varphi \to \psi}{\psi} \text{ (mp)} \qquad \frac{\varphi}{\Box \varphi} \text{ (nec)} \qquad \frac{\varphi + \dots + \varphi}{\varphi} \text{ (con)}$$

The Sequent Calculus $GK(\mathbb{R})$

$$\frac{\Gamma}{\Delta \Rightarrow \Delta} \text{ (ID)} \qquad \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \Pi \Rightarrow \Sigma, \Delta} \qquad \text{(CUT)}$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, \Pi \Rightarrow \Sigma, \Delta} \qquad \text{(MIX)} \qquad \frac{\Gamma, \dots, \Gamma \Rightarrow \Delta, \dots, \Delta}{\Gamma \Rightarrow \Delta} \qquad \text{(SC)}$$

$$\frac{\Gamma, \psi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \rightarrow \psi \Rightarrow \Delta} \qquad \text{(\rightarrow\Rightarrow$)} \qquad \frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \qquad \text{(\Rightarrow\rightarrow$)}$$

$$\frac{\Gamma \Rightarrow \varphi, \dots, \varphi}{\Box \Gamma \Rightarrow \Box \varphi, \dots, \Box \varphi} \qquad \text{(\Box)}$$

Equivalence of Proof Systems

We interpret sequents by

$$(\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m)^{\mathcal{I}}:=(\varphi_1+\cdots+\varphi_n)\rightarrow(\psi_1+\ldots+\psi_m),$$

where $\varphi_1 + \cdots + \varphi_n := \overline{0}$ for n = 0.

Theorem

The following are equivalent

- (1) $\Gamma \Rightarrow \Delta$ is derivable in $GK(\mathbb{R})$
- (2) $(\Gamma \Rightarrow \Delta)^{\mathcal{I}}$ is derivable in $K(\mathbb{R})$.

Theorem

 $\mathrm{GK}(\mathbb{R})$ admits cut elimination



Equivalence of Proof Systems

We interpret sequents by

$$(\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m)^{\mathcal{I}}:=(\varphi_1+\cdots+\varphi_n)\rightarrow(\psi_1+\ldots+\psi_m),$$

where $\varphi_1 + \cdots + \varphi_n := \overline{0}$ for n = 0.

Theorem

The following are equivalent:

- (1) $\Gamma \Rightarrow \Delta$ is derivable in $GK(\mathbb{R})$.
- (2) $(\Gamma \Rightarrow \Delta)^{\mathcal{I}}$ is derivable in $K(\mathbb{R})$.

Theorem

 $\mathrm{GK}(\mathbb{R})$ admits cut elimination

Equivalence of Proof Systems

We interpret sequents by

$$(\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m)^{\mathcal{I}}:=(\varphi_1+\cdots+\varphi_n)\rightarrow(\psi_1+\ldots+\psi_m),$$

where $\varphi_1 + \cdots + \varphi_n := \overline{0}$ for n = 0.

Theorem

The following are equivalent:

- (1) $\Gamma \Rightarrow \Delta$ is derivable in $GK(\mathbb{R})$.
- (2) $(\Gamma \Rightarrow \Delta)^{\mathcal{I}}$ is derivable in $K(\mathbb{R})$.

Theorem

 $GK(\mathbb{R})$ admits cut elimination.



The Main Result

Theorem

The following are equivalent for any formula φ :

- (1) φ is derivable in $K(\mathbb{R})$.
- (2) φ is $K(\mathbb{R})$ -valid.
- (3) $\Rightarrow \varphi$ is derivable in $GK(\mathbb{R})$.

Proof Idea for $(2) \Rightarrow (3)$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $K(\mathbb{R})$ -valid \Longrightarrow S is derivable in $GK(\mathbb{R})$.

The base case where S contains no boxes is easy and the cases where S contains an implication follow using the invertibility of $(\rightarrow \Rightarrow)$ and $(\Rightarrow \rightarrow)$.

If S contains only boxed formulas and variables, then the multisets of variables on the left and right must coincide, and can be cancelled.

Proof Idea for $(2) \Rightarrow (3)$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $\mathrm{K}(\mathbb{R})$ -valid \Longrightarrow S is derivable in $\mathrm{GK}(\mathbb{R})$.

The base case where S contains no boxes is easy and the cases where S contains an implication follow using the invertibility of $(\rightarrow \Rightarrow)$ and $(\Rightarrow \rightarrow)$.

If S contains only boxed formulas and variables, then the multisets of variables on the left and right must coincide, and can be cancelled.

Proof Idea for $(2) \Rightarrow (3)$

We prove by induction on the complexity of a sequent S that

$$S^{\mathcal{I}}$$
 is $K(\mathbb{R})$ -valid \Longrightarrow S is derivable in $GK(\mathbb{R})$.

The base case where S contains no boxes is easy and the cases where S contains an implication follow using the invertibility of $(\rightarrow \Rightarrow)$ and $(\Rightarrow \rightarrow)$.

If S contains only boxed formulas and variables, then the multisets of variables on the left and right must coincide, and can be cancelled.

Suppose then that S is $\Box \Gamma \Rightarrow \Box \varphi_1, \ldots, \Box \varphi_n$. We apply the following $GK(\mathbb{R})$ -derivable rule for some k > 0 and $k\Gamma = \Gamma_0, \Gamma_1, \ldots, \Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Suppose then that S is $\Box\Gamma\Rightarrow\Box\varphi_1,\ldots,\Box\varphi_n$. We apply the following $\mathrm{GK}(\mathbb{R})$ -derivable rule for some k>0 and $k\Gamma=\Gamma_0,\Gamma_1,\ldots,\Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Suppose then that S is $\Box\Gamma\Rightarrow\Box\varphi_1,\ldots,\Box\varphi_n$. We apply the following $\mathrm{GK}(\mathbb{R})$ -derivable rule for some k>0 and $k\Gamma=\Gamma_0,\Gamma_1,\ldots,\Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Suppose then that S is $\Box\Gamma\Rightarrow\Box\varphi_1,\ldots,\Box\varphi_n$. We apply the following $\mathrm{GK}(\mathbb{R})$ -derivable rule for some k>0 and $k\Gamma=\Gamma_0,\Gamma_1,\ldots,\Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Suppose then that S is $\Box\Gamma\Rightarrow\Box\varphi_1,\ldots,\Box\varphi_n$. We apply the following $\mathrm{GK}(\mathbb{R})$ -derivable rule for some k>0 and $k\Gamma=\Gamma_0,\Gamma_1,\ldots,\Gamma_n$:

$$\frac{\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow k[\varphi_1] \dots \Gamma_n \Rightarrow k[\varphi_n]}{\Box \Gamma \Rightarrow \Box \varphi_1, \dots, \Box \varphi_n}$$

Complexity

Using our labelled tableau rules, we also obtain:

Theorem

Checking $K(\mathbb{R})$ -validity of formulas is in EXPTIME.

Concluding Remarks

There remain many issues to resolve:

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Do we obtain a Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of checking $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?

Concluding Remarks

There remain many issues to resolve:

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Do we obtain a Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of checking $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?

Concluding Remarks

There remain many issues to resolve:

- Can we add extend our axiomatization to an "Abelian modal logic" with lattice connectives? Do we obtain a Łukasiewicz modal logic?
- Can we develop useful algebraic semantics for these logics?
- Is the complexity of checking $K(\mathbb{R})$ -validity EXPTIME-complete? What is the complexity of validity in Łukasiewicz modal logic?