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Ingredients of this research

(1) The class Irr of all irreflexive (general) frames which
consist of only irreflexive points (◦)

(2) Cyclic axioms (Cycl(n) := p → 2n3p for n ≥ 0)

(3) A criterion for a modal algebra to be s.i.

(4) Well-known facts on the logic L(◦)

(5) Splitting of a lattice of normal modal logics
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Two one-point frames and their algebras

The frame of one reflexive point • =⇒ algebra 2r

The frame of one irreflexive point ◦ =⇒ algebra 2i
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Irreflexive frames

F := ⟨W,R, P ⟩: a (general) frame

(1) A point a ∈ W is irreflexive if aRa does not hold.

(2) A frame F is irreflexive if every point in F is
irreflexive.

(3) Every irreflexive point is drawn by a circle (◦).

(4) Irr is the class of all irreflexive (general) frames.
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Cyclic axioms

Cycl(n):=p → 2n3p for n ≥ 0

For a frame F ,

F |= Cycl(n)

⇔ F |≡ ∀x0, x1, . . . , xn

(
x0Rx1Rx2 · · ·Rxn ⇒ xnRx0

)
⇔ F is n-cyclic.

== Note ==

Cycl(0) = T, Cycl(1) = B.
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Subdirectly Irreducible Modal algebra

For a non-trivial modal algebra A = ⟨A,∩,∪,−,2, 0, 1⟩,

A is subdirectly irreducible

⇔ ∃d(̸= 1) ∈ A, ∀x(̸= 1) ∈ A, ∃n ∈ ω s.t.

x ∩2x ∩22x ∩ · · · ∩2nx ≤ d
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The logic of a single irreflexive point

Two famous facts on the logic L(◦)

.
Theorem (D. Makinson (1971))
..

......

For any consistent modal logic L, either L ⊆ L(•) or
L ⊆ L(◦) holds. 2

.
Proposition
..
......(KD,L(◦)) is a splitting pair of the lattice NExt(K). 2

∗ D := 3⊤
F |= D ⇔ F |≡ ∀x∃y(xRy) (seriality).
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Splitting

= Definition =

L := ⟨L,∧,∨, 0, 1⟩:
a complete lattice
a ∈ L splits L if there exists
b ∈ L s.t. for any x ∈ L,
either x ≤ a or b ≤ x, but
not both.
Such a pair (b, a) is called a
splitting pair of L.

a

b

1

0

Figure: A splitting of a
complete lattice L
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Our original question (1)

.
Question
..

......

What kind of modal logics are located under L(◦) in
NExt(K) ?

= A consideration =

(Case 1) If ◦ is a p-morphic image of F , then L(F) ⊆ L(◦).
(Case 2) If ◦ is isomorphic to a generated subframe of some

points in F , then L(F) ⊆ L(◦).
(Case 3) If ◦ is contained as a disjoint component in F ,

then L(F) ⊆ L(◦).
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Our original question (2)

Then,

.
Question
..

......

What kind of modal logics are located under L(◦) in
NExt(KB) ?

∗ ◦ is an irreflexive frame for B

= A consideration =

(Case 1) If ◦ is a p-morphic image of F , then L(F) ⊆ L(◦).
(Case 2) If ◦ is isomorphic to a generated subframe of some

points in F , then L(F) ⊆ L(◦).
(Case 3) If ◦ is contained as a disjoint component in F ,

then L(F) ⊆ L(◦).
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Situation over KB is like that?

KB

L(◦)

Φ · · · the INCONSIS

L(◦) ∩M
with some logic M above KB?

Logics here are of the form:

Figure: NExt(KB)
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A remark on the algebra 2i

.
Fact
..

......

Let A be a non-trivial s.i. modal algebra. Suppose 20 = 1
in A. Then for any x ∈ A, if x ̸= 1, then x = 0.

Proof:

Since 0 ≤ y for any y ∈ A, 1 = 20 ≤ 2y.
Take any x(̸= 1) ∈ A. Because A is s.i., there is
d(̸= 1) ∈ A, for this x, there is a number n s.t.
x ∩2x ∩22x ∩ · · · ∩2nx ≤ d holds. Thus x ≤ d.
Suppose −d ̸= 1. Then for some number m,
−d ∩2− d ∩ · · · ∩2m− d ≤ d, and so, −d ≤ d.
But 1 = d ∪ −d ≤ d ∪ d = d. Contradiction.
Hence x = 0. 2
.
Fact
..
......2
i is the only s.i. algebra which satisfies 20 = 1. 2
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Situation over KB

.
Theorem
..

......

Let A be a non-trivial s.i. algebra for Cycl(1)= B. Suppose
31 ̸= 1 in A. Then 20 = 1.

Proof:

Since A is s.i., there is d(̸= 1) ∈ A, for the 31, there
is a number n s.t.
31 ∩231 ∩2231 ∩ · · · ∩2n31 ≤ d holds.
Because of B, 31 ≤ d.
Suppose 20 ̸= 1. Then for some number m,
20 ∩220 ∩ · · · ∩2m0 ≤ d, and so, 20 ≤ d.
−d ≤ −20 = 31 ≤ d. Contradiction.
Hence 20 = 1. 2

This means that (KDB,L(◦)) is a splitting pair over KB!
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Lattice-Mapping

Define maps σ and τ in the following:

σ : NExt(KDB) →
[
KB,L(◦)

]
σ(L) := L ∩ L(◦)

τ :
[
KB,L(◦)

]
→ NExt(KDB)

τ(M) := M ∨KDB

Show that σ is an isomorphism!
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Lattice-homomorphism

.
Lemma
..
......σ is a lattice-homomorphism.

Proof: For logics L1,L2 ∈ NExt(KDB),

σ(L1 ∩ L2) = L1 ∩ L2 ∩ L(◦)
= L1 ∩ L(◦) ∩ L2 ∩ L(◦)
= σ(L1) ∩ σ(L2)

σ(L1 ∨ L2) =
(
L1 ∨ L2

)
∩ L(◦)

= (L1 ∩ L(◦)) ∨ (L2 ∩ L(◦))
= σ(L1) ∨ σ(L2)

2
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σ is onto

.
Fact
..
......KB = KDB ∩ L(◦)

Proof:

KB ⊆ KDB ∩ L(◦) is obvious.
Suppose φ ̸∈ KB for some formula φ. Then there is a
frame F for B, a valuation V on F and a point a in F s.t.
⟨F , V ⟩ ̸|=a φ.
If this F is for D (serial), then φ ̸∈ KDB.
Otherwise, F must have some endpoints.
But, due to B, any endpoint in F is isolated!
If the point a is an endpoint, φ ̸∈ L(◦).
If a is not an endpoint, the subframe F ′ of F generated by
a is serial, so φ ̸∈ KDB.
Hence φ ̸∈ KDB ∩ L(◦), and so, KB ⊇ KDB ∩ L(◦) 2
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. . . . . .

σ is onto

.
Lemma
..
......σ is onto.

Proof: For any M ∈
[
KB,L(◦)

]
,

σ(τ(M)) =
(
M ∨KDB

)
∩ L(◦)

= (M ∩ L(◦)) ∨ (KDB ∩ L(◦))
= M ∨KB

= M

Hence σ is onto. 2
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. . . . . .

σ is one to one

.
Lemma
..
......σ is one to one.

Proof:

Suppose L1 ̸⊆ L2 for L1,L2 ∈ NExt(KDB).
Then, φ ∈ L1, φ ̸∈ L2 for some φ.
Then, there is a frame F = ⟨W,R, P ⟩ for L2, a valuation V
on F , and a point a ∈ W s.t. ⟨F , V ⟩ ̸|=a φ.
Now, F is serial and symmetric, there exists a point b ∈ W ,
s.t. aRb and bRa.
Then, in this model, a ̸|= φ and also, a ̸|= 22φ.
Thus ⟨F , V ⟩ ̸|=a φ ∨22φ.
Hence φ ∨22φ ̸∈ L2 ∩ L(◦).
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. . . . . .

On the other hand,

2⊥ → 22φ ∈ K ⊆ L(◦). So, 22φ ∈ L(◦).
Therefore, φ ∨22φ ∈ L1 ∩ L(◦).
Thus, σ(L1) = L1 ∩ L(◦) ̸⊆= L2 ∩ L(◦) = σ(L2).
This means that σ is one to one. 2
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. . . . . .

A Result on NExt(KB)

We have shown the following:

.
Theorem
..

......
[
KB,L(◦)

]
is isomorphic to NExt(KDB). 2

The “onto” lemma says that for any M ∈
[
KB,L(◦)

]
,

there exists L ∈ NExt(KDB), s.t. M = L ∩ L(◦).

This answers the original question.
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. . . . . .

L(∅) = Φ

KCycl(1)

L(I0)

KD0Cycl(1)

Figure: The structure of NExt(KCycl(1))

NExt(KB) looks like a two-story building!
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. . . . . .

Generalization to NExt(KCycl(2))

I0 I1 I2 I3

· · · · · ·

Ik

· · · · · ·
· · · · · ·

I∞

1 2 3 k 1 2 3 k

· · · · · · · · · ·

Figure: Irreflexive frames for KCycl(2)

.
Proposition
..
......L(I0) ⊋ L(I1) ⊋ L(I2) ⊋ · · · ⊋ L(I∞).
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. . . . . .

Serial axioms

Dn := 2n3⊤ for n ≥ 0

For a frame F ,

F |= Dn

⇔ F |≡ ∀x0, x1, . . . , xn

(
x0Rx1Rx2 · · ·Rxn ⇒ (∃y s.t. xnRy)

)
⇔ F is n-serial.

== Note ==

D0 = D.
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. . . . . .

A splitting theorem in NExt(KCycl(2))

.
Theorem
..

......

For any k ≥ 1, (KD0Cycl(2) ∩ L(Ik−1),L(Ik)) is a
splitting pair in NExt(KCycl(2)). 2

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics with Cyclic Axioms



. . . . . .

Isomorphism Theorem in NExt(KCycl(2))

.
Theorem
..

......

NExt(KD0Cycl(2)) is isomorphic to the interval
[KD0Cycl(2) ∩ L(Ik),L(Ik)] for each k ≥ 0. 2
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L(∅) = Φ

L(I0)

L(Ik)

L(Ik+1)

L(I∞)

KD0Cycl(2)

L(I1)KD1Cycl(2)
= KD0Cycl(2) ∩ L(I0)

KD0Cycl(2) ∩ L(I1)

KD0Cycl(2) ∩ L(Ik−1)

KD0Cycl(2) ∩ L(Ik)

KD0Cycl(2) ∩ L(Ik+1)

KCycl(2) = KD0Cycl(2) ∩ L(I∞)

L(Ik−1)

Figure: The structure of NExt(KCycl(2))
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. . . . . .

Facts on NExt(KCycl(1)) and NExt(KCycl(2))

(1) There is an essential lattice structure of logics at the
top-most part of NExt(KCycl(1)) and
NExt(KCycl(2)).

(2) That rest part has a repeated structure of the essential
part.
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. . . . . .

Conjecture on NExt(KCycl(n)) for n ≥ 1

Bn: an essential lattice sturucture of logics in
NExt(KCycl(n))

Irrn := {L(C) ∈ NExt(KCycl(n)) |
C is a class of some irreflexive frames}

NExt(KCycl(n)) ∼= Bn × Irrn
for every n ≥ 1?
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. . . . . .

A spliting over KCycl(n): (n ≥ 1)

.
Theorem
..

......

Let A be a non-trivial s.i. algebra for Cycl(n) = p → 2n3p.
Suppose 2n−131 ̸= 1 in A. Then 2n0 = 1. 2

.
Theorem
..

......

(KCycl(n)Dn−1,L(Chn)) is a splitting pair in
NExt(KCycl(n)). 2

b0 b1 b2 b3
· · · · · ·

bn−2 bn−1

Figure: Frames Chn
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