The Structure of the Lattice of Normal Modal Logics with Cyclic Axioms

Yutaka Miyazaki

Osaka University of Economics and Law (OUEL)

September 2, 2016

CEU, in Budapest, Hungary

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

INGREDIENTS OF THIS RESEARCH

- (1) The class Irr of all irreflexive (general) frames which consist of only irreflexive points (\circ)
- (2) Cyclic axioms $(Cycl(n) := p \to \Box^n \Diamond p \text{ for } n \ge 0)$
- (3) A criterion for a modal algebra to be s.i.
- (4) Well-known facts on the logic $\mathbf{L}(\circ)$
- (5) Splitting of a lattice of normal modal logics

The frame of one reflexive point $\bullet \Longrightarrow$ algebra 2^r

The frame of one irreflexive point $\circ \Longrightarrow$ algebra 2^i

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

IRREFLEXIVE FRAMES

$$\mathcal{F} := \langle W, R, P \rangle$$
: a (general) frame

- (1) A point $a \in W$ is irreflexive if aRa does not hold.
- (2) A frame \mathcal{F} is irreflexive if every point in \mathcal{F} is irreflexive.
- (3) Every irreflexive point is drawn by a circle (\circ) .
- (4) *Irr* is the class of all irreflexive (general) frames.

CYCLIC AXIOMS

$$\operatorname{Cycl}(n) := p \to \Box^n \Diamond p \text{ for } n \ge 0$$

For a frame \mathcal{F} ,

 $\mathcal{F} \models \operatorname{Cycl}(n)$ $\Leftrightarrow \mathcal{F} \models \forall x_0, x_1, \dots, x_n \big(_{x_0} R_{x_1} R_{x_2} \cdots R_{x_n} \Rightarrow _{x_n} R_{x_0} \big)$ $\Leftrightarrow \mathcal{F} \text{ is } \operatorname{\textit{n-cyclic.}}$

== Note ==

$$\operatorname{Cycl}(0) = \mathbf{T}, \operatorname{Cycl}(1) = \mathbf{B}.$$

SUBDIRECTLY IRREDUCIBLE MODAL ALGEBRA

For a non-trivial modal algebra $\mathfrak{A} = \langle A, \cap, \cup, -, \Box, 0, 1 \rangle$,

 ${\mathfrak A}$ is subdirectly irreducible

$$\Leftrightarrow \exists d (\neq 1) \in A, \forall x (\neq 1) \in A, \exists n \in \omega \text{ s.t.}$$

 $x \cap \Box x \cap \Box^2 x \cap \dots \cap \Box^n x \le d$

The logic of a single irreflexive point

Two famous facts on the logic $\mathbf{L}(\circ)$

The logic of a single irreflexive point

Two famous facts on the logic $\mathbf{L}(\circ)$

Theorem (D. Makinson (1971))

For any consistent modal logic \mathbf{L} , either $\mathbf{L} \subseteq \mathbf{L}(\bullet)$ or $\mathbf{L} \subseteq \mathbf{L}(\circ)$ holds.

The logic of a single irreflexive point

Two famous facts on the logic $\mathbf{L}(\circ)$

Theorem (D. Makinson (1971))

For any consistent modal logic \mathbf{L} , either $\mathbf{L} \subseteq \mathbf{L}(\bullet)$ or $\mathbf{L} \subseteq \mathbf{L}(\circ)$ holds.

Proposition

 $(\mathbf{KD}, \mathbf{L}(\circ))$ is a splitting pair of the lattice $NEXT(\mathbf{K})$.

*
$$\mathbf{D} := \Diamond \top$$

 $\mathcal{F} \models \mathbf{D} \iff \mathcal{F} \models \forall x \exists y(xRy) \text{ (seriality)}.$

Splitting

= Definition =

 $\mathcal{L} := \langle L, \wedge, \vee, 0, 1 \rangle:$ a complete lattice $a \in L$ splits \mathcal{L} if there exists $b \in L$ s.t. for any $x \in L$, either $x \leq a$ or $b \leq x$, but not both. Such a pair (b, a) is called a splitting pair of \mathcal{L} .

Figure: A splitting of a complete lattice \mathcal{L}

Our original question (1)

Question

What kind of modal logics are located under $\mathbf{L}(\circ)$ in $\operatorname{NExt}(\mathbf{K})$?

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

A B + A B +

Our original question (1)

Question

What kind of modal logics are located under $\mathbf{L}(\circ)$ in $\operatorname{NExt}(\mathbf{K})$?

- = A consideration =
- (Case 1) If \circ is a p-morphic image of \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.
- (Case 2) If \circ is isomorphic to a generated subframe of some points in \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.
- (Case 3) If \circ is contained as a disjoint component in \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.

OUR ORIGINAL QUESTION (2)

Then,

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

∃ ⊳

OUR ORIGINAL QUESTION (2)

Then,

Question

What kind of modal logics are located under $\mathbf{L}(\circ)$ in $\operatorname{NExt}(\mathbf{KB})$?

 $* \circ$ is an irreflexive frame for **B**

Our original question (2)

Then,

Question

What kind of modal logics are located under $\mathbf{L}(\circ)$ in $\operatorname{NExt}(\mathbf{KB})$?

 $* \, \circ$ is an irreflexive frame for ${\bf B}$

- = A consideration =
- (Case 1) If \circ is a **p-morphic image** of \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.
- (Case 2) If \circ is isomorphic to a generated subframe of some points in \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.
- (Case 3) If \circ is contained as a disjoint component in \mathcal{F} , then $\mathbf{L}(\mathcal{F}) \subseteq \mathbf{L}(\circ)$.

SITUATION OVER **KB** IS LIKE THAT?

Figure: NExt(KB)

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

A REMARK ON THE ALGEBRA 2^i

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof:

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \le y$ for any $y \in A$, $1 = \Box 0 \le \Box y$.

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \le y$ for any $y \in A$, $1 = \Box 0 \le \Box y$. Take any $x(\ne 1) \in A$. Because \mathfrak{A} is s.i., there is $d(\ne 1) \in A$, for this x, there is a number n s.t. $x \cap \Box x \cap \Box^2 x \cap \cdots \cap \Box^n x \le d$ holds. Thus $x \le d$.

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \leq y$ for any $y \in A$, $1 = \Box 0 \leq \Box y$. Take any $x \neq 1 \in A$. Because \mathfrak{A} is s.i., there is $d \neq 1 \in A$, for this x, there is a number n s.t. $x \cap \Box x \cap \Box^2 x \cap \cdots \cap \Box^n x \leq d$ holds. Thus $x \leq d$. Suppose $-d \neq 1$. Then for some number m, $-d \cap \Box - d \cap \cdots \cap \Box^m - d \leq d$, and so, $-d \leq d$.

A REMARK ON THE ALGEBRA 2^i

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \le y$ for any $y \in A$, $1 = \Box 0 \le \Box y$. Take any $x(\ne 1) \in A$. Because \mathfrak{A} is s.i., there is $d(\ne 1) \in A$, for this x, there is a number n s.t. $x \cap \Box x \cap \Box^2 x \cap \cdots \cap \Box^n x \le d$ holds. Thus $x \le d$. Suppose $-d \ne 1$. Then for some number m, $-d \cap \Box - d \cap \cdots \cap \Box^m - d \le d$, and so, $-d \le d$. But $1 = d \cup -d \le d \cup d = d$. Contradiction.

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \leq y$ for any $y \in A$, $1 = \Box 0 \leq \Box y$. Take any $x(\neq 1) \in A$. Because \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for this x, there is a number n s.t. $x \cap \Box x \cap \Box^2 x \cap \cdots \cap \Box^n x \leq d$ holds. Thus $x \leq d$. Suppose $-d \neq 1$. Then for some number m, $-d \cap \Box - d \cap \cdots \cap \Box^m - d \leq d$, and so, $-d \leq d$. But $1 = d \cup -d \leq d \cup d = d$. Contradiction. Hence x = 0.

A REMARK ON THE ALGEBRA 2^i

Fact

Let \mathfrak{A} be a non-trivial s.i. modal algebra. Suppose $\Box 0 = 1$ in \mathfrak{A} . Then for any $x \in A$, if $x \neq 1$, then x = 0.

Proof: Since $0 \le y$ for any $y \in A$, $1 = \Box 0 \le \Box y$. Take any $x(\ne 1) \in A$. Because \mathfrak{A} is s.i., there is $d(\ne 1) \in A$, for this x, there is a number n s.t. $x \cap \Box x \cap \Box^2 x \cap \cdots \cap \Box^n x \le d$ holds. Thus $x \le d$. Suppose $-d \ne 1$. Then for some number m, $-d \cap \Box - d \cap \cdots \cap \Box^m - d \le d$, and so, $-d \le d$. But $1 = d \cup -d \le d \cup d = d$. Contradiction. Hence x = 0.

Fact

 $\mathbf{2}^i$ is the only s.i. algebra which satisfies $\Box 0 = 1$.

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof:

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\diamond 1$, there is a number n s.t. $\diamond 1 \cap \Box \diamond 1 \cap \Box^2 \diamond 1 \cap \cdots \cap \Box^n \diamond 1 \leq d$ holds.

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\Diamond 1$, there is a number n s.t. $\Diamond 1 \cap \Box \Diamond 1 \cap \Box^2 \Diamond 1 \cap \cdots \cap \Box^n \Diamond 1 \leq d$ holds. Because of \mathbf{B} , $\Diamond 1 \leq d$.

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\diamond 1$, there is a number n s.t. $\diamond 1 \cap \Box \diamond 1 \cap \Box^2 \diamond 1 \cap \cdots \cap \Box^n \diamond 1 \leq d$ holds. Because of $\mathbf{B}, \diamond 1 \leq d$. Suppose $\Box 0 \neq 1$. Then for some number m, $\Box 0 \cap \Box^2 0 \cap \cdots \cap \Box^m 0 \leq d$, and so, $\Box 0 \leq d$.

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\Diamond 1$, there is a number n s.t. $\Diamond 1 \cap \Box \Diamond 1 \cap \Box^2 \Diamond 1 \cap \cdots \cap \Box^n \Diamond 1 \leq d$ holds. Because of \mathbf{B} , $\Diamond 1 \leq d$. Suppose $\Box 0 \neq 1$. Then for some number m, $\Box 0 \cap \Box^2 0 \cap \cdots \cap \Box^m 0 \leq d$, and so, $\Box 0 \leq d$. $-d < -\Box 0 = \Diamond 1 \leq d$. Contradiction.

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\diamond 1$, there is a number n s.t. $\diamond 1 \cap \Box \diamond 1 \cap \Box^2 \diamond 1 \cap \cdots \cap \Box^n \diamond 1 \leq d$ holds. Because of \mathbf{B} , $\diamond 1 \leq d$. Suppose $\Box 0 \neq 1$. Then for some number m, $\Box 0 \cap \Box^2 0 \cap \cdots \cap \Box^m 0 \leq d$, and so, $\Box 0 \leq d$. $-d \leq -\Box 0 = \diamond 1 \leq d$. Contradiction. Hence $\Box 0 = 1$.

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(1) = \mathbf{B}$. Suppose $\diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box 0 = 1$.

Proof: Since \mathfrak{A} is s.i., there is $d(\neq 1) \in A$, for the $\diamond 1$, there is a number n s.t. $\diamond 1 \cap \Box \diamond 1 \cap \Box^2 \diamond 1 \cap \cdots \cap \Box^n \diamond 1 \leq d$ holds. Because of \mathbf{B} , $\diamond 1 \leq d$. Suppose $\Box 0 \neq 1$. Then for some number m, $\Box 0 \cap \Box^2 0 \cap \cdots \cap \Box^m 0 \leq d$, and so, $\Box 0 \leq d$. $-d \leq -\Box 0 = \diamond 1 \leq d$. Contradiction. Hence $\Box 0 = 1$.

This means that $(\mathbf{KDB}, \mathbf{L}(\circ))$ is a splitting pair over \mathbf{KB} !

(*) *) *) *)

LATTICE-MAPPING

Define maps σ and τ in the following:

$$\sigma: \operatorname{NExt}(\mathbf{KDB}) \to \big[\mathbf{KB}, \mathbf{L}(\circ)\big]$$

$$\sigma(\mathbf{L}) := \mathbf{L} \cap \mathbf{L}(\circ)$$

$$\tau : [\mathbf{KB}, \mathbf{L}(\circ)] \to \mathrm{NExt}(\mathbf{KDB})$$

$$\tau(\mathbf{M}) := \mathbf{M} \lor \mathbf{KDB}$$

LATTICE-MAPPING

Define maps σ and τ in the following:

$$\sigma: \operatorname{NExt}(\mathbf{KDB}) \to \big[\mathbf{KB}, \mathbf{L}(\circ)\big]$$

$$\sigma(\mathbf{L}) := \mathbf{L} \cap \mathbf{L}(\circ)$$

$$\tau : [\mathbf{KB}, \mathbf{L}(\circ)] \to \mathrm{NExt}(\mathbf{KDB})$$

 $\tau(\mathbf{M}) := \mathbf{M} \vee \mathbf{KDB}$

Show that σ is an isomorphism!

LATTICE-HOMOMORPHISM

Lemma

 σ is a lattice-homomorphism.

Proof: For logics $\mathbf{L}_1, \mathbf{L}_2 \in NEXT(\mathbf{KDB})$,

$$\begin{aligned} \sigma(\mathbf{L}_1 \cap \mathbf{L}_2) &= \mathbf{L}_1 \cap \mathbf{L}_2 \cap \mathbf{L}(\circ) \\ &= \mathbf{L}_1 \cap \mathbf{L}(\circ) \cap \mathbf{L}_2 \cap \mathbf{L}(\circ) \\ &= \sigma(\mathbf{L}_1) \cap \sigma(\mathbf{L}_2) \end{aligned}$$

$$\sigma(\mathbf{L}_1 \lor \mathbf{L}_2) = (\mathbf{L}_1 \lor \mathbf{L}_2) \cap \mathbf{L}(\circ)$$

= $(\mathbf{L}_1 \cap \mathbf{L}(\circ)) \lor (\mathbf{L}_2 \cap \mathbf{L}(\circ))$
= $\sigma(\mathbf{L}_1) \lor \sigma(\mathbf{L}_2)$

A 3 5 A 3 5

σ is onto

Fact

$\mathbf{KB}=\mathbf{KDB}\cap\mathbf{L}(\circ)$

Proof:

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

(신문) (신문)

E

σ is onto

Fact

$\mathbf{KB}=\mathbf{KDB}\cap\mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious.

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

σ is onto

Fact

$\mathbf{KB} = \mathbf{KDB} \cap \mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for \mathbf{B} , a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$.
Fact

$\mathbf{KB}=\mathbf{KDB}\cap\mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for \mathbf{B} , a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. If this \mathcal{F} is for \mathbf{D} (serial), then $\varphi \notin \mathbf{KDB}$.

Fact

$\mathbf{KB}=\mathbf{KDB}\cap\mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for \mathbf{B} , a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. If this \mathcal{F} is for \mathbf{D} (serial), then $\varphi \notin \mathbf{KDB}$. Otherwise, \mathcal{F} must have some endpoints.

Fact

$\mathbf{KB} = \mathbf{KDB} \cap \mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for \mathbf{B} , a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. If this \mathcal{F} is for \mathbf{D} (serial), then $\varphi \notin \mathbf{KDB}$. Otherwise, \mathcal{F} must have some endpoints. But, due to \mathbf{B} , any endpoint in \mathcal{F} is isolated!

Fact

$\mathbf{KB} = \mathbf{KDB} \cap \mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subseteq \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for \mathbf{B} , a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. If this \mathcal{F} is for \mathbf{D} (serial), then $\varphi \notin \mathbf{KDB}$. Otherwise, \mathcal{F} must have some endpoints. But, due to \mathbf{B} , any endpoint in \mathcal{F} is isolated! If the point a is an endpoint, $\varphi \notin \mathbf{L}(\circ)$.

Fact

$\mathbf{KB} = \mathbf{KDB} \cap \mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subset \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for **B**, a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi.$ If this \mathcal{F} is for **D** (serial), then $\varphi \notin \mathbf{KDB}$. Otherwise, \mathcal{F} must have some endpoints. But, due to **B**, any endpoint in \mathcal{F} is isolated! If the point a is an endpoint, $\varphi \notin \mathbf{L}(\circ)$. If a is not an endpoint, the subframe \mathcal{F}' of \mathcal{F} generated by a is serial, so $\varphi \notin \mathbf{KDB}$.

Fact

$\mathbf{KB} = \mathbf{KDB} \cap \mathbf{L}(\circ)$

Proof: $\mathbf{KB} \subset \mathbf{KDB} \cap \mathbf{L}(\circ)$ is obvious. Suppose $\varphi \notin \mathbf{KB}$ for some formula φ . Then there is a frame \mathcal{F} for **B**, a valuation V on \mathcal{F} and a point a in \mathcal{F} s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi.$ If this \mathcal{F} is for **D** (serial), then $\varphi \notin \mathbf{KDB}$. Otherwise, \mathcal{F} must have some endpoints. But, due to **B**, any endpoint in \mathcal{F} is isolated! If the point a is an endpoint, $\varphi \notin \mathbf{L}(\circ)$. If a is not an endpoint, the subframe \mathcal{F}' of \mathcal{F} generated by a is serial, so $\varphi \notin \mathbf{KDB}$. Hence $\varphi \notin \mathbf{KDB} \cap \mathbf{L}(\circ)$, and so, $\mathbf{KB} \supset \mathbf{KDB} \cap \mathbf{L}(\circ)$

Lemma

 σ is onto.

Proof: For any $\mathbf{M} \in [\mathbf{KB}, \mathbf{L}(\circ)]$,

$$\begin{aligned} \sigma(\tau(\mathbf{M})) &= (\mathbf{M} \lor \mathbf{KDB}) \cap \mathbf{L}(\circ) \\ &= (\mathbf{M} \cap \mathbf{L}(\circ)) \lor (\mathbf{KDB} \cap \mathbf{L}(\circ)) \\ &= \mathbf{M} \lor \mathbf{KB} \\ &= \mathbf{M} \end{aligned}$$

Hence σ is onto.

-

Lemma

 σ is one to one.

Proof:

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

(신문) (신문)

1

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in NEXT(\mathbf{KDB})$.

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

(B)

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \text{NExt}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ .

(B)

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \text{NEXT}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ . Then, there is a frame $\mathcal{F} = \langle W, R, P \rangle$ for \mathbf{L}_2 , a valuation V on \mathcal{F} , and a point $a \in W$ s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$.

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \text{NEXT}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ . Then, there is a frame $\mathcal{F} = \langle W, R, P \rangle$ for \mathbf{L}_2 , a valuation V on \mathcal{F} , and a point $a \in W$ s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. Now, \mathcal{F} is serial and symmetric, there exists a point $b \in W$, s.t. $_a R_b$ and $_b R_a$.

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \text{NEXT}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ . Then, there is a frame $\mathcal{F} = \langle W, R, P \rangle$ for \mathbf{L}_2 , a valuation V on \mathcal{F} , and a point $a \in W$ s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. Now, \mathcal{F} is serial and symmetric, there exists a point $b \in W$, s.t. ${}_aR_b$ and ${}_bR_a$. Then, in this model, $a \not\models \varphi$ and also, $a \not\models \Box \Box \varphi$.

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \operatorname{NEXT}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ . Then, there is a frame $\mathcal{F} = \langle W, R, P \rangle$ for \mathbf{L}_2 , a valuation Von \mathcal{F} , and a point $a \in W$ s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. Now, \mathcal{F} is serial and symmetric, there exists a point $b \in W$, s.t. $_aR_b$ and $_bR_a$. Then, in this model, $a \not\models \varphi$ and also, $a \not\models \Box \Box \varphi$. Thus $\langle \mathcal{F}, V \rangle \not\models_a \varphi \lor \Box \Box \varphi$.

Lemma

 σ is one to one.

Proof: Suppose $\mathbf{L}_1 \not\subseteq \mathbf{L}_2$ for $\mathbf{L}_1, \mathbf{L}_2 \in \operatorname{NExt}(\mathbf{KDB})$. Then, $\varphi \in \mathbf{L}_1, \varphi \notin \mathbf{L}_2$ for some φ . Then, there is a frame $\mathcal{F} = \langle W, R, P \rangle$ for \mathbf{L}_2 , a valuation Von \mathcal{F} , and a point $a \in W$ s.t. $\langle \mathcal{F}, V \rangle \not\models_a \varphi$. Now, \mathcal{F} is serial and symmetric, there exists a point $b \in W$, s.t. $_aR_b$ and $_bR_a$. Then, in this model, $a \not\models \varphi$ and also, $a \not\models \Box \Box \varphi$. Thus $\langle \mathcal{F}, V \rangle \not\models_a \varphi \lor \Box \Box \varphi$. Hence $\varphi \lor \Box \Box \varphi \notin \mathbf{L}_2 \cap \mathbf{L}(\circ)$.

On the other hand,

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

On the other hand, $\Box \bot \to \Box \Box \varphi \in \mathbf{K} \subseteq \mathbf{L}(\circ). \text{ So, } \Box \Box \varphi \in \mathbf{L}(\circ).$

On the other hand, $\Box \bot \to \Box \Box \varphi \in \mathbf{K} \subseteq \mathbf{L}(\circ). \text{ So, } \Box \Box \varphi \in \mathbf{L}(\circ).$ Therefore, $\varphi \lor \Box \Box \varphi \in \mathbf{L}_1 \cap \mathbf{L}(\circ).$ On the other hand, $\Box \bot \to \Box \Box \varphi \in \mathbf{K} \subseteq \mathbf{L}(\circ). \text{ So, } \Box \Box \varphi \in \mathbf{L}(\circ).$ Therefore, $\varphi \lor \Box \Box \varphi \in \mathbf{L}_1 \cap \mathbf{L}(\circ).$ Thus, $\sigma(\mathbf{L}_1) = \mathbf{L}_1 \cap \mathbf{L}(\circ) \not\subseteq = \mathbf{L}_2 \cap \mathbf{L}(\circ) = \sigma(\mathbf{L}_2).$ This means that σ is one to one.

We have shown the following:

We have shown the following:

Theorem $[KB, L(\circ)]$ is isomorphic to NEXT(KDB).

4 3 > 4 3

We have shown the following:

Theorem $[KB, L(\circ)]$ is isomorphic to NEXT(KDB).

The "onto" lemma says that for any $\mathbf{M} \in [\mathbf{KB}, \mathbf{L}(\circ)]$, there exists $\mathbf{L} \in NEXT(\mathbf{KDB})$, s.t. $\mathbf{M} = \mathbf{L} \cap \mathbf{L}(\circ)$.

We have shown the following:

Theorem $[KB, L(\circ)]$ is isomorphic to NEXT(KDB).

The "onto" lemma says that for any $\mathbf{M} \in [\mathbf{KB}, \mathbf{L}(\circ)]$, there exists $\mathbf{L} \in NEXT(\mathbf{KDB})$, s.t. $\mathbf{M} = \mathbf{L} \cap \mathbf{L}(\circ)$.

This answers the original question.

Figure: The structure of $NExt(\mathbf{KCycl}(1))$

Figure: The structure of NExt(KCycl(1))

NEXT(**KB**) looks like a two-story building!

GENERALIZATION TO $NExt(\mathbf{KCycl}(2))$

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

(B)

GENERALIZATION TO $NExt(\mathbf{KCycl}(2))$

Figure: Irreflexive frames for $\mathbf{KCycl}(2)$

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

GENERALIZATION TO $NExt(\mathbf{KCycl}(2))$

Figure: Irreflexive frames for $\mathbf{KCycl}(2)$

Proposition $\mathbf{L}(\mathcal{I}_0) \supseteq \mathbf{L}(\mathcal{I}_1) \supseteq \mathbf{L}(\mathcal{I}_2) \supseteq \cdots \supseteq \mathbf{L}(\mathcal{I}_\infty).$

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

SERIAL AXIOMS

$$\mathbf{D}_n := \Box^n \diamondsuit \top \text{ for } n \ge 0$$

For a frame \mathcal{F} ,

 $\mathcal{F} \models \mathbf{D}_n$

 $\Leftrightarrow \mathcal{F} \models \forall x_0, x_1, \dots, x_n \big(_{x_0} R_{x_1} R_{x_2} \cdots R_{x_n} \Rightarrow (\exists y \text{ s.t. } _{x_n} R_y) \big)$ $\Leftrightarrow \mathcal{F} \text{ is } n\text{-serial.}$

== Note ==

 $\mathbf{D}_0 = \mathbf{D}.$

▲■▶ ▲■▶ ■ のへで

A splitting theorem in $NExt(\mathbf{KCycl}(2))$

Theorem

For any $k \geq 1$, $(\mathbf{KD}_0\mathbf{Cycl}(2) \cap \mathbf{L}(\mathcal{I}_{k-1}), \mathbf{L}(\mathcal{I}_k))$ is a splitting pair in $\operatorname{NExt}(\mathbf{KCycl}(2))$.

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

4 B K 4 B K

Isomorphism Theorem in $NExt(\mathbf{KCycl}(2))$

Theorem

NEXT($\mathbf{KD}_0\mathbf{Cycl}(2)$) is isomorphic to the interval $[\mathbf{KD}_0\mathbf{Cycl}(2) \cap \mathbf{L}(\mathcal{I}_k), \mathbf{L}(\mathcal{I}_k)]$ for each $k \ge 0$.

Yutaka Miyazaki The Structure of the Lattice of Normal Modal Logics

A B K A B K

Figure: The structure of $NExt(\mathbf{KCycl}(2))$

Facts on $NExt(\mathbf{KCycl}(1))$ and $NExt(\mathbf{KCycl}(2))$

- There is an essential lattice structure of logics at the top-most part of NExt(KCycl(1)) and NExt(KCycl(2)).
- (2) That rest part has a repeated structure of the essential part.

Conjecture on NExt($\mathbf{KCycl}(n)$) for $n \ge 1$

\mathcal{B}_n : an essential lattice sturucture of logics in $\operatorname{NExt}(\mathbf{KCycl}(n))$

 $\mathcal{I}rr_n := \{ \mathbf{L}(\mathcal{C}) \in \operatorname{NExt}(\mathbf{KCycl}(n)) \mid \\ \mathcal{C} \text{ is a class of some irreflexive frames} \}$

Conjecture on NExt($\mathbf{KCycl}(n)$) for $n \ge 1$

\mathcal{B}_n : an essential lattice sturucture of logics in $\operatorname{NExt}(\mathbf{KCycl}(n))$

 $\mathcal{I}rr_n := \{ \mathbf{L}(\mathcal{C}) \in \operatorname{NExt}(\mathbf{KCycl}(n)) \mid \\ \mathcal{C} \text{ is a class of some irreflexive frames} \}$

$$\begin{split} \mathrm{NExt}(\mathbf{KCycl}(n)) &\cong \mathcal{B}_n \times \mathcal{I}rr_n \\ \text{for every } n \geq 1? \end{split}$$

A Spliting over $\mathbf{KCycl}(n)$: $(n \ge 1)$

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(n) = p \to \Box^n \Diamond p$. Suppose $\Box^{n-1} \Diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box^n 0 = 1$. \Box
A Spliting over $\mathbf{KCycl}(n)$: $(n \ge 1)$

Theorem

Let \mathfrak{A} be a non-trivial s.i. algebra for $Cycl(n) = p \to \Box^n \Diamond p$. Suppose $\Box^{n-1} \Diamond 1 \neq 1$ in \mathfrak{A} . Then $\Box^n 0 = 1$. \Box

Theorem

 $(\mathbf{KCycl}(n)\mathbf{D}_{n-1}, \mathbf{L}(\mathcal{C}h_n))$ is a splitting pair in $\operatorname{NExt}(\mathbf{KCycl}(n)).$

Figure: Frames Ch_n