Propositional Dynamic Logic With Belnapian Truth Values

Igor Sedlár

Institute of Computer Science, Czech Academy of Sciences, Prague

AiML 2016, Budapest, 31 August 2016

Overview

 $\ensuremath{\text{BPDL}}$, a four-valued paraconsistent version of propositional dynamic logic $\ensuremath{\text{PDL}}$

- 1. Motivation
- **2.** Belnapian truth values
- 3. BPDL and what it can do
- 4. Properties of BPDL

Motivation

Motivation

- **PDL** (Fischer and Ladner, 1979) is a (deductive) verification formalism used to prove correctness of programs, relations among programs etc.
- **PDL** models program states as complete and consistent possible worlds
- Programs understood more generally (e. g. database queries and transformations; algorithmic transformations of bodies of information) go beyond this; they require incomplete and inconsistent states
- Belnap (1977a, 1977b) and Dunn (1976) introduce such states
- We outline BPDL, a version of PDL built on an extension of the Belnap–Dunn logic studied by Odintsov and Wansing (2010)

Belnapian states

Classical and Belnapian states

Classical and Belnapian states

BK (Odintsov and Wansing, 2010)

Kripke L-models and BK

- $M = \langle S, R, v^L \rangle; v^L : (FRM \times W) \to L \text{ (respects } \circ^L \text{ for } \circ \in \{\bot, \sim, \land, \lor, \to\})$
- $v^{\mathsf{L}}(\Box\phi, w) = inf\{v^{\mathsf{L}}(\phi, w') \mid Rww'\}$
- $v^{\mathsf{L}}(\Diamond \phi, w) = \sup\{v^{\mathsf{L}}(\phi, w') \mid Rww'\}$
- $\Gamma \models^{\mathsf{L}} \phi$ iff $inf\{v^{\mathsf{L}}(\psi, w) \mid \psi \in \Gamma\} \in \mathcal{D}(\mathsf{L})$ only if $v^{\mathsf{L}}(\phi, w) \in \mathcal{D}(\mathsf{L})$ for all (M, w).
- K if L = 2; BK if L = 4

BK (Odintsov and Wansing, 2010)

Kripke L-models and BK

- $M = \langle S, R, v^L \rangle; v^L : (FRM \times W) \to L \text{ (respects } \circ^L \text{ for } \circ \in \{\bot, \sim, \land, \lor, \to\})$
- $v^{\mathsf{L}}(\Box\phi, w) = inf\{v^{\mathsf{L}}(\phi, w') \mid Rww'\}$
- $v^{\mathsf{L}}(\Diamond \phi, w) = \sup\{v^{\mathsf{L}}(\phi, w') \mid Rww'\}$
- $\Gamma \models^{\mathsf{L}} \phi$ iff $inf\{v^{\mathsf{L}}(\psi, w) \mid \psi \in \Gamma\} \in \mathcal{D}(\mathsf{L})$ only if $v^{\mathsf{L}}(\phi, w) \in \mathcal{D}(\mathsf{L})$ for all (M, w).
- K if L = 2; BK if L = 4

Example 1

BK (Odintsov and Wansing, 2010)

Theorem 2

The sound and complete axiomatization of BK is

- 1. CL in $\{AF, \bot, \rightarrow, \land, \lor\}$;
- 2. Strong negation axioms:

$$\sim \sim \phi \leftrightarrow \phi, \ \sim (\phi \land \psi) \leftrightarrow (\sim \phi \lor \sim \psi), \ \sim (\phi \lor \psi) \leftrightarrow (\sim \phi \land \sim \psi),$$

 $\sim (\phi \rightarrow \psi) \leftrightarrow (\phi \land \sim \psi), \ \top \leftrightarrow \sim \perp;$

- **3.** The K axiom $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$ and the Necessitation rule $\phi / \Box \phi$;
- 4. Modal interaction principles:

$$\begin{split} \neg \Box \phi \leftrightarrow \Diamond \neg \phi, \ \neg \Diamond \phi \leftrightarrow \Box \neg \phi, \\ \sim \Box \phi \leftrightarrow \Diamond \sim \phi, \ \Box \phi \leftrightarrow \sim \Diamond \sim \phi, \\ \sim \Diamond \phi \leftrightarrow \Box \sim \phi, \ \Diamond \phi \leftrightarrow \sim \Box \sim \phi. \end{split}$$

Belnapian PDL

BPDL

Language

$$\begin{array}{ll} (ACT) & \alpha ::= a \in ACT_0 \mid \alpha; \alpha \mid \alpha \cup \alpha \mid \alpha^* \mid \phi? \\ (FRM) & \phi ::= p \in FRM_0 \mid \bot \mid \sim \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid [\alpha]\phi \mid \langle \alpha \rangle \phi \end{array}$$

Semantics

 $\mathcal{M} = \langle S, R, v^4 \rangle$ where $R : ACT \mapsto \mathcal{P}(S^2)$ and v^4 is as in **BK**-models (for all $\alpha \in ACT$). Moreover:

- **1.** $R(\alpha; \beta) = R(\alpha) \circ R(\beta)$
- **2.** $R(\alpha \cup \beta) = R(\alpha) \cup R(\beta)$
- **3.** $R(\alpha^*) = R(\alpha)^*$
- **4.** $R(\phi?) = \{ \langle x, x \rangle \mid v^{4}(\phi, x) \in \mathcal{D}(4) \}$

Examples I

'Not false'

 $\neg \sim p$ means that p is not false. As a result, the four Belnapian truth values are expressible as

- $p \land \neg \sim p$ (t, 'true and not false')
- $p \wedge {\sim} p$ (b, 'true and false')
- $\neg p \land \sim p$ (f, 'false and not true')
- $\neg p \land \neg \sim p$ (n, 'neither true nor false')

Default rules

Every default rule *d* of the form $\frac{p:q}{r}$ can be represented by an atomic program a_d satisfying $(p \land \neg \sim q) \rightarrow [a_d]r$

Examples II

Inconsistency handling strategies

- If-then-else 'If there is inconsistent information about *p*, then do *a_p* (else *b_p*)', 'if there is inconsistent information about *q*, then do *a_q* (else *b_q*)': (*p* ∧ ~*p*)?; *a_p* ∪ ¬(*p* ∧ ~*p*)?; *b_p* and (*q* ∧ ~*q*)?; *a_q* ∪ ¬(*q* ∧ ~*q*)?; *b_q*
- While 'While there is inconsistent information about *p*, do *a_p*': ((*p* ∧ ~*p*)?; *a_p*)*; ¬(*p* ∧ ~*p*)?

Adding and removing information

Actions of adding or removing *p* to/from a database can be represented by atomic programs satisfying $[a^{+\rho}]p$ and $[a^{-\rho}]\neg p$.

Properties of **BPDL**

BPDL and PDL

Theorem 3

The PDL axioms

$$\begin{split} & [\alpha \cup \beta]\phi \leftrightarrow ([\alpha]\phi \wedge [\beta]\phi) \\ & [\alpha;\beta]\phi \leftrightarrow [\alpha][\beta]\phi \\ & [\psi?]\phi \leftrightarrow (\psi \to \phi) \\ & [\alpha^*]\phi \leftrightarrow (\phi \wedge [\alpha][\alpha^*]\phi) \\ & [\alpha^*]\phi \leftarrow (\phi \wedge [\alpha^*](\phi \to [\alpha]\phi)) \end{split}$$

are valid in BPDL (and so are their 'diamond versions').

Theorem 4

BPDL is not compact.

Deduction theorem and decidability

Theorem 5

For finite Γ with all atomic programs in $\{a_1, \ldots, a_n\}$:

1.
$$\Gamma \models \phi$$
 iff $\models \bigwedge \Gamma \rightarrow \phi$

2. $\Gamma \models^{g} \phi$ iff $\models [(a_1 \cup \ldots \cup a_n)^*] \land \Gamma \to \phi$

Deduction theorem and decidability

Theorem 5

For finite Γ with all atomic programs in $\{a_1, \ldots, a_n\}$:

1.
$$\Gamma \models \phi$$
 iff $\models \bigwedge \Gamma \rightarrow \phi$

2.
$$\Gamma \models^{g} \phi$$
 iff $\models [(a_1 \cup \ldots \cup a_n)^*] \land \Gamma \to \phi$

Theorem 6

 $\models \phi$ is decidable (but Γ $\models^{g} \phi$ for infinite Γ is (highly) undecidable).

Proof.

Standard filtration argument. The equivalence classes in the filtration are defined to coincide on all ϕ , $\sim \phi$ where $\phi \in FL(\psi)$.

Completeness

Theorem 7

A sound and weakly complete axiomatisation of **BPDL** extends the (ACT-dimensional) axiomatisation of **BK** by the standard **PDL** axioms and their diamond versions.

Proof.

Filtration of the canonical structure.

Summary and future work

In conclusion

Summary

- **PDL** with non-standard states is relevant to formal verification of 'information-modifying' programs (such as, e.g., database transformations)
- **BPDL** is a well-behaved decidable formalism that can be used

Future work

- Complexity of **BPDL**
- Other non-classical versions of **PDL**, for example: substructural **PDL**, fuzzy **PDL**
- Extensions to other program logics such as Dynamic Logic DL and Process Logic PL

Thank you!

References

- Belnap, N. (1977a). How a computer should think. In G. Ryle (Ed.), *Contemporary Aspects of Philosophy.* Oriel Press Ltd.
- Belnap, N. (1977b). A useful four-valued logic. In J. M. Dunn and G. Epstein (Eds.), *Modern Uses of Multiple-Valued Logic* (pp. 5–37). Dordrecht: Springer Netherlands.
- Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and "coupled trees". *Philosophical Studies*, *29*, 149–168.
- Fischer, M. J., and Ladner, R. E. (1979). Propositional dynamic logic of regular programs. *Journal of Computer and System Sciences*, *18*, 194–211.
- Odintsov, S., and Wansing, H. (2010). Modal logics with Belnapian truth values. Journal of Applied Non-Classical Logics, 20(3), 279–301.