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Overview

BPDL, a four-valued paraconsistent version of propositional dy-
namic logic PDL

1. Motivation
2. Belnapian truth values
3. BPDL and what it can do
4. Properties of BPDL
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Motivation



Motivation

• PDL (Fischer and Ladner, 1979) is a (deductive) verification
formalism used to prove correctness of programs, relations
among programs etc.

• PDL models program states as complete and consistent
possible worlds

• Programs understood more generally (e. g. database
queries and transformations; algorithmic transformations of
bodies of information) go beyond this; they require
incomplete and inconsistent states

• Belnap (1977a, 1977b) and Dunn (1976) introduce such
states

• We outline BPDL, a version of PDL built on an extension of
the Belnap–Dunn logic studied by Odintsov and Wansing
(2010)
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Belnapian states



Classical and Belnapian states
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⊥L = f

∼Le =


f if e = t
t if e = f
e otherwise

e ∧L e′ = inf{e,e′}
e ∨L e′ = sup{e,e′}

e→L e′ =

{
e′ if e ∈ D(L)
t otherwise

¬Le = e→L ⊥L
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BK (Odintsov and Wansing, 2010)
Kripke L-models and BK

• M = ⟨S,R, vL⟩; vL : (FRM ×W )→ L (respects ◦L for
◦ ∈ {⊥,∼,∧,∨,→})

• vL(2ϕ,w) = inf{vL(ϕ,w ′) | Rww ′}
• vL(3ϕ,w) = sup{vL(ϕ,w ′) | Rww ′}
• Γ |=L ϕ iff inf{vL(ψ,w) | ψ ∈ Γ} ∈ D(L) only if

vL(ϕ,w) ∈ D(L) for all (M,w).
• K if L = 2; BK if L = 4

Example 1

2p = f

p = b

p = n
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BK (Odintsov and Wansing, 2010)

Theorem 2
The sound and complete axiomatization of BK is
1. CL in {AF ,⊥,→,∧,∨};
2. Strong negation axioms:

∼∼ϕ↔ ϕ, ∼(ϕ ∧ ψ) ↔ (∼ϕ ∨ ∼ψ), ∼(ϕ ∨ ψ) ↔ (∼ϕ ∧ ∼ψ),
∼(ϕ→ ψ) ↔ (ϕ ∧ ∼ψ), ⊤ ↔ ∼⊥;

3. The K axiom 2(ϕ→ ψ) → (2ϕ→ 2ψ) and the Necessitation rule ϕ/2ϕ;
4. Modal interaction principles:

¬2ϕ↔ 3¬ϕ, ¬3ϕ↔ 2¬ϕ,
∼2ϕ↔ 3∼ϕ, 2ϕ↔ ∼3∼ϕ,
∼3ϕ↔ 2∼ϕ, 3ϕ↔ ∼2∼ϕ.
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Belnapian PDL



BPDL

Language
(ACT) α ::= a ∈ ACT0 | α;α | α ∪ α | α∗ | ϕ?
(FRM) ϕ ::= p ∈ FRM0 | ⊥ | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [α]ϕ | ⟨α⟩ϕ

Semantics
M = ⟨S,R, v4⟩ where R : ACT 7→ P(S2) and v4 is as in BK-models
(for all α ∈ ACT). Moreover:

1. R(α;β) = R(α) ◦ R(β)

2. R(α ∪ β) = R(α) ∪ R(β)

3. R(α∗) = R(α)∗

4. R(ϕ?) = {⟨x, x⟩ | v4(ϕ, x) ∈ D(4)}
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Examples I
‘Not false’
¬∼p means that p is not false. As a result, the four Belnapian
truth values are expressible as
• p ∧ ¬∼p (t, ‘true and not false’)
• p ∧ ∼p (b, ‘true and false’)
• ¬p ∧ ∼p (f, ‘false and not true’)
• ¬p ∧ ¬∼p (n, ‘neither true nor false’)

Default rules
Every default rule d of the form p : q

r can be represented by an
atomic program ad satisfying (p ∧ ¬∼q)→ [ad ]r
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Examples II

Inconsistency handling strategies

• If-then-else ‘If there is inconsistent information about p, then
do ap (else bp)’, ‘if there is inconsistent information about q,
then do aq (else bq)’: (p ∧ ∼p)?;ap ∪ ¬(p ∧ ∼p)?;bp and
(q ∧ ∼q)?;aq ∪ ¬(q ∧ ∼q)?;bq

• While ‘While there is inconsistent information about p, do
ap’: ((p ∧ ∼p)?;ap)∗;¬(p ∧ ∼p)?

Adding and removing information

Actions of adding or removing p to/from a database can be
represented by atomic programs satisfying [a+p]p and [a−p]¬p.
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Properties of BPDL



BPDL and PDL

Theorem 3
The PDL axioms

[α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

[α;β]ϕ↔ [α][β]ϕ

[ψ?]ϕ↔ (ψ → ϕ)

[α∗]ϕ↔ (ϕ ∧ [α][α∗]ϕ)

[α∗]ϕ← (ϕ ∧ [α∗](ϕ→ [α]ϕ))

are valid in BPDL (and so are their ‘diamond versions’).

Theorem 4
BPDL is not compact.
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Deduction theorem and decidability

Theorem 5
For finite Γ with all atomic programs in {a1, . . . , an}:
1. Γ |= ϕ iff |=

∧
Γ→ ϕ

2. Γ |=g ϕ iff |= [(a1 ∪ . . . ∪ an)∗]
∧
Γ→ ϕ

Theorem 6
|= ϕ is decidable (but Γ |=g ϕ for infinite Γ is (highly)
undecidable).

Proof.
Standard filtration argument. The equivalence classes in the filtration
are defined to coincide on all ϕ,∼ϕ where ϕ ∈ FL(ψ).

10 / 12



Deduction theorem and decidability

Theorem 5
For finite Γ with all atomic programs in {a1, . . . , an}:
1. Γ |= ϕ iff |=

∧
Γ→ ϕ

2. Γ |=g ϕ iff |= [(a1 ∪ . . . ∪ an)∗]
∧
Γ→ ϕ

Theorem 6
|= ϕ is decidable (but Γ |=g ϕ for infinite Γ is (highly)
undecidable).

Proof.
Standard filtration argument. The equivalence classes in the filtration
are defined to coincide on all ϕ,∼ϕ where ϕ ∈ FL(ψ).

10 / 12



Completeness

Theorem 7
A sound and weakly complete axiomatisation of BPDL extends
the (ACT-dimensional) axiomatisation of BK by the standard
PDL axioms and their diamond versions.

Proof.
Filtration of the canonical structure.
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Summary and future work



In conclusion
Summary

• PDL with non-standard states is relevant to formal
verification of ‘information-modifying’ programs (such as,
e.g., database transformations)

• BPDL is a well-behaved decidable formalism that can be
used

Future work

• Complexity of BPDL
• Other non-classical versions of PDL, for example:

substructural PDL, fuzzy PDL
• Extensions to other program logics such as Dynamic Logic

DL and Process Logic PL
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Thank you!
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