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A logic L is locally tabular if, for any finite n, there exist only finitely
many pairwise nonequivalent formulas in L built from the variables
p1, ..., pn.

Equivalently, a logic L is locally tabular if the variety of its algebras is
locally finite, i.e., every finitely generated L-algebra is finite.

If a logic is locally tabular, then
it has the finite model property (thus it is Kripke complete);
all its extensions are locally tabular.
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Segerberg-Maksimova criterion for extensions of K4

Formulas of finite height

B1 = p1 → �♦p1, Bi+1 = pi+1 → �(♦pi+1 ∨ Bi )

Theorem (Segerberg, Maksimova)

A logic L ⊇ K4 is locally tabular iff L contains Bh for some h > 0.



New results on local tabularity of normal unimodal logics

A necessary syntactic condition:
a logic is locally tabular, only if it is pretransitive and is of finite
height.
A semantic criterion:
Log(F) is locally tabular iff F is of uniformly finite height and has
the ripe cluster property.
Segerberg – Maksimova syntactic criterion for extensions of logics
much weaker than K4:
if m ≥ 1, ♦m+1p → ♦p ∨ p ∈ L, then L is locally tabular iff it is of
finite height.



Frames of finite height

A poset F is of finite height ≤ n if every its chain contains at most n
elements.

R∗ denotes the transitive reflexive closure of R.
∼R= R∗ ∩ R∗−1, an equivalence class modulo ∼R is a cluster in (W ,R) (so
clusters are maximal subsets where R∗ is universal).
The skeleton of (W ,R) is the poset (W /∼R ,≤R), where for clusters C , D,
C ≤R D iff xR∗y for some x ∈ C , y ∈ D.

Height of a frame is the height of its skeleton.



Transitive logics of finite height

For any transitive F,

F � Bh ⇐⇒ ht(F) ≤ h,

where
B1 = p1 → �♦p1, Bi+1 = pi+1 → �(♦pi+1 ∨ Bi ).

Theorem (Segerberg, Maksimova)

A logic L ⊇ K4 is locally tabular iff it contains Bh for some h ≥ 0.



Pretransitive relations and logics

R≤m =
⋃

0≤i≤m
R i .

R is m-transitive, if R≤m = R∗, or equivalently, Rm+1 ⊆ R≤m.
R is pretransitive, if it is m-transitive for some m ≥ 0.

♦0ϕ := ϕ, ♦i+1ϕ := ♦♦iϕ,
♦≤mϕ :=

∨m
i=0 ♦

iϕ.

Proposition

R is m-transitive iff (W ,R) � ♦m+1p → ♦≤mp.

A logic L is m-transitive, if (♦m+1p → ♦≤mp) ∈ L.
L is pretransitive, if it is m-transitive for some m ≥ 0. Pretransitive logics
are exactly those logics, where the transitive reflexive closure modality
(“master modality”) is expressible.



Pretransitive logics of finite height

ϕ[m] is obtained from ϕ by replacing ♦ with ♦≤m and � with �≤m.

Proposition

For an m-transitive frame F, F � B
[m]
h ⇐⇒ ht(F) ≤ h.

A pretransitive L is of finite height ≤ h, if L contains B [m]
h (here m is the

least such that L is m-transitive).



Necessary syntactic condition

Theorem
Every locally tabular logic is pretransitive of finite height:
L is locally tabular ⇒ L contains (♦m+1p → ♦≤mp) ∧ B

[m]
h for some m, h.

The converse is not true in general.

For m ≥ 2, pretransitive logics are much more complex than K4.
In particular, the FMP (and even the decidability) of the logics
K + (♦m+1p → ♦≤mp) is unknown for m ≥ 2.

All logics K + (♦m+1p → ♦≤mp) ∧ B
[m]
h have the FMP [Kudinov and Sh,

2015].

However, for m ≥ 2, none of them are locally tabular: all these logics
have Kripke incomplete extensions [Miyazaki, 2004], [Kostrzycka, 2008].
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Semantic criterion



Partitions, the finite model property, and local tabularity

The FMP is often proved via constructing partitions of Kripke frames and
models (filtrations).

Local tabularity in terms of partitions:

If F is an L-frame and A is a finite partition of F, then there exists a
finite refinement of A with special properties.

As usual, a partition A of a non-empty set W is a set of non-empty pairwise
disjoint sets such that W = ∪A. The corresponding equivalence relation is
denoted by ∼A, so A = W /∼A.
A partition B refines A, if each element of A is the union of some elements of
B, or equivalently, ∼B ⊆ ∼A.



Minimal filtrations

The minimal filtration of (W ,R) through A is the frame (A,RA), where
for U,V ∈ A

U RA V ⇐⇒ ∃u ∈ U ∃v ∈ V uRv .

Let M = (W ,R, θ) be a model, Γ a set of formulas. A partition A of M
respects Γ, if for all x , y ∈W

x ∼A y ⇒ ∀ϕ ∈ Γ(M, x � ϕ ⇐⇒ M, y � ϕ).

Filtration lemma (late 1960s)

Let Γ be a set of formulas closed under tanking subformulas, A respect
Γ. Then, for all x ∈W and all formulas ϕ ∈ Γ,

M, x � ϕ ⇐⇒ (A,RA, θA), [x ]A � ϕ.



Minimal filtrations

The minimal filtration of (W ,R) through A is the frame (A,RA), where
for U,V ∈ A

U RA V ⇐⇒ ∃u ∈ U ∃v ∈ V uRv .

Fact

Consider a Kripke complete logic L = Log(W ,R). If for every finite
partition A of W there exists a finite B such that B refines A and
(B,RB) � L, then L has the FMP.



Special minimal filtrations: tuned partitions

Definition

A partition A of F = (W ,R) is R-tuned, if for any U,V ∈ A

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

Fact (Franzen, early 1970s)

If A is R-tuned, then Log(W ,R) ⊆ Log(A,RA).
If for every finite partition A of W there exists a finite R-tuned
refinement B of A, then Log(W ,R) has the FMP.



First semantic criterion

Definition
A frame F is ripe, if there exists f : N→ N, such that for every finite
partition A of W there exists an R-tuned refinement B of A such that
|B| ≤ f (|A|).

A class of frames F is ripe if all frames F ∈ F are ripe for a fixed f .

Theorem (First criterion)

Log(F) is locally tabular iff F is ripe.

Corollary

The following conditions are equivalent:
a logic L is locally tabular;
L is the logic of a ripe class of frames;
L is Kripke complete and the class of all its frames is ripe.



Semantic criterion. Main result

Definition
A class F of frames has the ripe cluster property, if the class of clusters
in its frames {C | ∃F ∈ F s.t. C is a cluster in F} is ripe. A logic has
the ripe cluster property, if the class of its frames has.

Theorem

A logic Log(F) is locally tabular iff F is of uniformly finite height and
has the ripe cluster property.
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Semantic criterion. Main result

Definition
A class F of frames has the ripe cluster property, if the class of clusters
in its frames {C | ∃F ∈ F s.t. C is a cluster in F} is ripe. A logic has
the ripe cluster property, if the class of its frames has.

Theorem

A logic Log(F) is locally tabular iff F is of uniformly finite height and
has the ripe cluster property.

Theorem
Suppose L0 is a canonical pretransitive logic with the ripe cluster
property. Then for any logic L ⊇ L0:

L is locally tabular iff it is of finite height.



Syntactic criterion for some logics below K4

K4 ⊇ wK4 = K + ♦♦p → ♦p ∨ p ⊇ K + ♦♦♦p → ♦p ∨ p ⊇ . . .

Theorem
All the above logics have the ripe cluster property. Thus, if L contains
♦mp → ♦p ∨ p for some m, then

L is locally tabular iff it is of finite height.

Proof.
Recall that a partition A of F = (W ,R) is R-tuned, if for any U,V ∈ A
∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .
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K4 has the ripe cluster property:

If C is a cluster in a transitive frame, then C is either an irreflexive singleton, or
R = W ×W . Trivially, any partition of C is R-tuned.



Syntactic criterion for some logics below K4

K4 ⊇ wK4 = K + ♦♦p → ♦p ∨ p ⊇ K + ♦♦♦p → ♦p ∨ p ⊇ . . .

Theorem
All the above logics have the ripe cluster property. Thus, if L contains
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∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

wK4 has the ripe cluster property:

Let C = (W ,R) be a cluster in a wK4-frame. Then 6=W ⊆ R ⊆ W ×W .
Consider a partition A. Let x , y ∈ U, z ∈ V , xRz for some U,V ∈ A. Suppose
z 6= y ; then yRz . Suppose z = y ; in this case U = V , so x ∈ V ; since R is
symmetric, we have yRx . Thus, any partition of C is R-tuned.



Syntactic criterion for some logics below K4

K4 ⊇ wK4 = K + ♦♦p → ♦p ∨ p ⊇ K + ♦♦♦p → ♦p ∨ p ⊇ . . .

Theorem
All the above logics have the ripe cluster property. Thus, if L contains
♦mp → ♦p ∨ p for some m, then

L is locally tabular iff it is of finite height.

Proof.
Recall that a partition A of F = (W ,R) is R-tuned, if for any U,V ∈ A
∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

K + ♦m+1p → ♦p ∨ p has the ripe cluster property:

Let C = (W ,R) be a cluster in a frame validating this logic. If A is a finite
partition of C , then there exists an R-tuned refinement B of A such that
|B| ≤ m|A|. (The proof is a bit more tricky.)



Intuitionistic case

Log(N,≤) is not locally tabular: it is of infinite height.
However, ILog(N,≤) is known to be locally tabular.

In terms of partitions:

For every finite partition A of N there exists a finite ≤-tuned refinement
B of A. So Log(N,≤) have the fmp.

But (N,≤) is not ripe enough: for any natural n there exists a
two-element partition of N such that for every ≤-tuned refinement B of
A we have |B| > n. So Log(N,≤) is not locally tabular.

Still, if A is induced by upward-closed sets, then A consists of intervals,
so it is ≤-tuned already.

In the intuitionistic case, locally tabular logics are logics of ripe frames,
where partitions supposed to be generated by upward-closed sets.
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Two problems

Problem
A syntactic criterion for local tabularity over K.

Problem
A syntactic criterion for local tabularity of intermediate logics.



A few concluding remarks

Every locally tabular logic is pretransitive of finite height. But it is not a
sufficient condition.

If a logic contains ♦mp → ♦p ∨ p for some m and is of finite height, then
it is locally tabular. But it is not a necessary condition:

logics axiomatized by Chagrov’s formulas corresponding to the first-order
properties

∀x0, . . . , xm+1

x0Rx1 . . .Rxm+1 →
∨
i<j

xi = xj


are locally tabular [Shehtman, 2014].



A few concluding remarks

For m ∈ N, consider the first-order property

Pm = ∀x0, . . . , xm+1

(
x0Rx1 . . .Rxm+1 →

∨
i<j

xi = xj ∨
∨

i+1<j

xiRxj

)
.

Note that Pm implies m-transitivity.

These properties correspond to modal formulas
¬(A0 ∧ ♦(A1 ∧ ... ∧ Am+1)), where
Ai = p+

i ∧�qi ∧
∧

j<i−1 ¬qj (for i > 1), Ai = p+
i ∧�qi (for i = 0, 1).

Theorem

If F is a ripe class, then F satisfies Pm for some m.

Problem

Suppose that F is a class of clusters satisfying Pm for some m. Is F ripe?

The positive solution of the above problem will provide us with a syntactic
criterion of local tabularity over K.



Thank you!


