A survey on Kearns' modal semantics without possible worlds

Hitoshi Omori ¹ Daniel Skurt ²

¹Post-doctoral Fellow of Japan Society for the Promotion of Science Department of Philosophy, Kyoto University hitoshiomori@gmail.com

²Department of Philosophy II, Ruhr-Universität Bochum ResearchSchool Plus daniel.skurt@rub.de

Advances in Modal Logic 2016 The Central European University, Budapest, Hungary August 30, 2016

- John Kearns develops some semantics without possible worlds for modal logics T, S4 and S5.
- Motivation: "I do not think there are such things as possible worlds, or even that they constitute a useful fiction."
- Technically: (i) Non-deterministic semantics combined with (ii) additional hierarchy of valuations.

- John Kearns develops some semantics without possible worlds for modal logics T, S4 and S5.
- Motivation: "I do not think there are such things as possible worlds, or even that they constitute a useful fiction."
- Technically: (i) Non-deterministic semantics combined with (ii) additional hierarchy of valuations.

- John Kearns develops some semantics without possible worlds for modal logics T, S4 and S5.
- Motivation: "I do not think there are such things as possible worlds, or even that they constitute a useful fiction."
- Technically: (i) Non-deterministic semantics combined with (ii) additional hierarchy of valuations.



"Modal Semantics without Possible Worlds" (JSL, 1981)

- John Kearns develops some semantics without possible worlds for modal logics T, S4 and S5.
- Motivation: "I do not think there are such things as possible worlds, or even that they constitute a useful fiction."

• Technically: (i) Non-deterministic semantics combined with (ii) additional hierarchy of valuations.



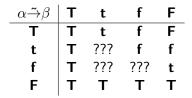
- John Kearns develops some semantics without possible worlds for modal logics T, S4 and S5.
- Motivation: "I do not think there are such things as possible worlds, or even that they constitute a useful fiction."
- Technically: (i) Non-deterministic semantics combined with (ii) additional hierarchy of valuations.

Read intuitively (through the canonical model construction)

$$\nu_{0}(\beta) := \begin{cases} \mathsf{T} & \text{if } \Sigma \vdash \Box \beta \text{ and } \Sigma \vdash \beta & \text{Necessarily true} \\ \mathsf{t} & \text{if } \Sigma \not\vdash \Box \beta \text{ and } \Sigma \vdash \beta & \text{Contingently true} \\ \mathsf{f} & \text{if } \Sigma \vdash \Diamond \beta \text{ and } \Sigma \not\vdash \beta & \text{Contingently false} \\ \mathsf{F} & \text{if } \Sigma \not\vdash \Diamond \beta \text{ and } \Sigma \not\vdash \beta & \text{Necessarily false} \end{cases}$$

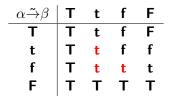
$\begin{array}{c|cccc} \alpha \xrightarrow{\sim} \beta & \mathsf{T} & \mathsf{t} & \mathsf{f} & \mathsf{F} \\ \hline \mathsf{T} & \mathsf{T} & \mathsf{t} & \mathsf{f} & \mathsf{F} \\ \mathsf{t} & \mathsf{T} & ??? & \mathsf{f} & \mathsf{f} \\ \mathsf{f} & \mathsf{T} & ??? & ??? & \mathsf{t} \\ \hline \mathsf{F} & \mathsf{T} & \mathsf{T} & \mathsf{T} & \mathsf{T} \end{array}$

э



Question

How shall we assign the values for the blanks?



Kearns' example

•
$$\alpha \to \beta$$

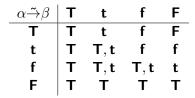
Omori & Skurt (Kyoto & Bochum) A survey on Kearns' modal semantics AiML2016, August 30, 2016 4 / 14

$$\begin{array}{c|cccc} \alpha \tilde{\rightarrow} \beta & T & t & f & F \\ \hline T & T & t & f & F \\ t & T & T, t & f & f \\ f & T & T, t & T, t & t \\ F & T & T & T & T \end{array}$$

Kearns' example

•
$$\alpha \to \alpha$$

•
$$(\alpha \rightarrow \beta) \rightarrow \alpha$$



Now...

How can we spell out this idea formally?

Non-deterministic Semantics

"Non-Deterministic Multiple-valued Structures" (JLC, 2005)

The first systematic presentation of non-deterministic semantics which generalizes the many-valued semantics very nicely. Since then, it has been applied to semantics for systems of paraconsistent logic and so on.

5/14

à la Avron

- A **S5**-*Nmatrix* for a propositional language $\{\neg, \Box, \Diamond, \rightarrow\}$ is a tuple $M = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where:
- (a) $\mathcal{V} = \{\mathbf{T}, \mathbf{t}, \mathbf{f}, \mathbf{F}\}$,
- (b) $\mathcal{D} = \{\mathbf{T}, \mathbf{t}\},\$
- (c) For every *n*-ary connective * of \mathcal{L} , \mathcal{O} includes a corresponding *n*-ary function $\tilde{*} : \mathcal{V}^n \to 2^{\mathcal{V}} \setminus \{\emptyset\}$ as follows (we omit the brackets for sets):

α	$\tilde{\neg}\alpha$	$\tilde{\Box}\alpha$	$ \tilde{\Diamond}\alpha$	$\alpha\tilde{\rightarrow}\beta$	T	t	f	F
Т	F	Т	Т	Т	Т	t	f	F
t	f	F	Т	t	Т	T , t	f	f
f	t	F	Т	f	Т	T , t	T , t	t
F	Т	F	F	T t f F	Т	Т	Т	Т

à la Avron

A **S4**-*Nmatrix* for a propositional language $\{\neg, \Box, \Diamond, \rightarrow\}$ is a tuple $M = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where:

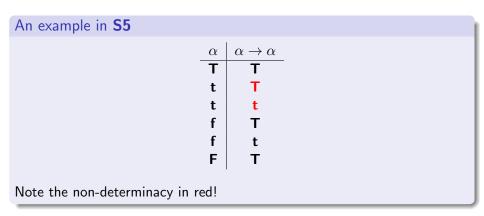
- (a) $\mathcal{V} = \{\mathbf{T}, \mathbf{t}, \mathbf{f}, \mathbf{F}\},\$
- (b) $\mathcal{D} = \{\mathbf{T}, \mathbf{t}\},\$
- (c) For every *n*-ary connective * of \mathcal{L} , \mathcal{O} includes a corresponding *n*-ary function $\tilde{*} : \mathcal{V}^n \to 2^{\mathcal{V}} \setminus \{\emptyset\}$ as follows (we omit the brackets for sets):

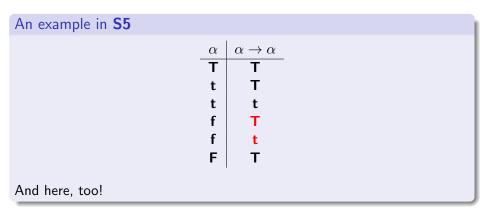
α	$\tilde{\neg}\alpha$	$\tilde{\Box}\alpha$	$ \tilde{\Diamond}\alpha$	$\alpha\tilde{\rightarrow}\beta$	T	t	f	F
Т	F	Т	Т	Т	Т	t	f	F
t	f	f , F	T,t	t	Т	\mathbf{T}, \mathbf{t}	f	f
f	t	f , F	T,t	f	Т	T , t	T , t	t
F	Т	F	F	t f F	Т	Т	Т	Т

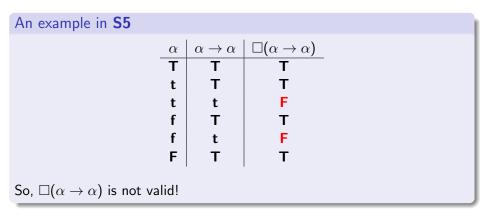
à la Avron

- A **T**-*Nmatrix* for a propositional language $\{\neg, \Box, \Diamond, \rightarrow\}$ is a tuple $M = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where:
- (a) $\mathcal{V} = \{\mathbf{T}, \mathbf{t}, \mathbf{f}, \mathbf{F}\}$,
- (b) $\mathcal{D} = \{\mathbf{T}, \mathbf{t}\},\$
- (c) For every *n*-ary connective * of \mathcal{L} , \mathcal{O} includes a corresponding *n*-ary function $\tilde{*} : \mathcal{V}^n \to 2^{\mathcal{V}} \setminus \{\emptyset\}$ as follows (we omit the brackets for sets):

α	$\neg \alpha$	$\tilde{\Box}\alpha$	$\tilde{\Diamond}\alpha$	$\alpha\tilde{\rightarrow}\beta$	Τ	t	f	F
Т	F	T , t	T,t	Т	Т	t	f	F
t	f	f , F	T,t	t	T	\mathbf{T}, \mathbf{t}	f	f
f	t	f , F	T,t	f	Т	T , t	T , t	t
F	Т	f , F	f , F	T t f F	Т	Т	Т	т







Hierarchy introduced

Definition

Let v be a function $v : L \rightarrow \mathcal{V}$. Then,

- v is a Oth-level-S5-valuation if v is a legal-S5-valuation.
- v is a m + 1st-level-S5-valuation iff v is a mth-level-S5-valuation and assigns value **T** to every sentence α if $v'(\alpha) \in D$ for any mth-level-S5-valuation v'.

Remark

The 'height' of the hierarchy might be very large!

Definition

Based on these, we define

- v to be a **S5**-valuation iff v is mth-level-**S5**-valuation for any $m \ge 0$.
- α is a **S5**-tautology ($\models_{S5} \alpha$) iff $v(\alpha) = T$ for any **S5**-valuation v.

Hierarchy introduced

Definition

Let v be a function $v : L \to \mathcal{V}$. Then,

- v is a Oth-level-S5-valuation if v is a legal-S5-valuation.
- v is a m + 1st-level-S5-valuation iff v is a mth-level-S5-valuation and assigns value **T** to every sentence α if $v'(\alpha) \in D$ for any mth-level-S5-valuation v'.

Remark

The 'height' of the hierarchy might be very large!

Definition

Based on these, we define

- v to be a **S5**-valuation iff v is mth-level-**S5**-valuation for any $m \ge 0$.
- α is a **S5**-tautology ($\models_{S5} \alpha$) iff $v(\alpha) = T$ for any **S5**-valuation v.

Hierarchy introduced

Definition

Let v be a function $v : L \rightarrow \mathcal{V}$. Then,

- v is a Oth-level-S5-valuation if v is a legal-S5-valuation.
- v is a m + 1st-level-S5-valuation iff v is a mth-level-S5-valuation and assigns value **T** to every sentence α if $v'(\alpha) \in D$ for any mth-level-S5-valuation v'.

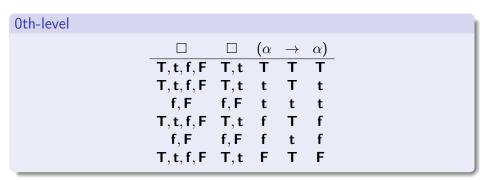
Remark

The 'height' of the hierarchy might be very large!

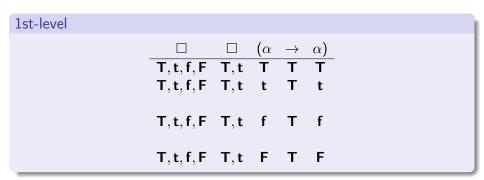
Definition

Based on these, we define

- v to be a **S5**-valuation iff v is mth-level-**S5**-valuation for any $m \ge 0$.
- α is a **S5**-tautology (\models **S5** α) iff $v(\alpha) = \mathbf{T}$ for any **S5**-valuation v.



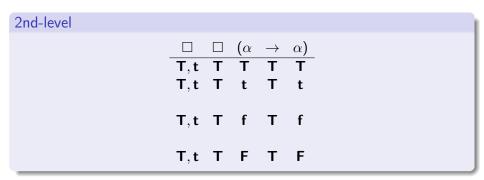
(B)



A B M A B M

Image: A matrix

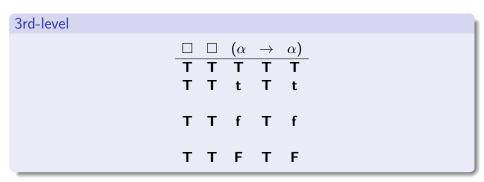
3



A B M A B M

Image: Image:

3



A B A A B A

Image: Image:

3

Proposition

In defining valuations, Kearns introduced a whole hierarchy of mth-level-valuations. But, it turns out that this is not necessary in the case for **S4** and **S5**. Here we only need to make use of 2 levels.

Remark

However, this is not possible for \mathbf{T} . Take for instance the following set formulas with iterated modalities:

 $(\alpha \to \alpha), \square(\alpha \to \alpha), \square\square(\alpha \to \alpha), \square\square\square(\alpha \to \alpha), \square\square\square(\alpha \to \alpha),$ $\square\square\square\square(\alpha \to \alpha), \square\square\square\square\square(\alpha \to \alpha), \square\square\square\square\square(\alpha \to \alpha), \dots$

Proposition

In defining valuations, Kearns introduced a whole hierarchy of mth-level-valuations. But, it turns out that this is not necessary in the case for **S4** and **S5**. Here we only need to make use of 2 levels.

Remark

However, this is not possible for T. Take for instance the following set formulas with iterated modalities:

$$(\alpha \to \alpha)$$
, $\Box(\alpha \to \alpha)$, $\Box\Box(\alpha \to \alpha)$, $\Box\Box\Box(\alpha \to \alpha)$, $\Box\Box\Box\Box(\alpha \to \alpha)$,
 $\Box\Box\Box\Box(\alpha \to \alpha)$, $\Box\Box\Box\Box\Box(\alpha \to \alpha)$, $\Box\Box\Box\Box\Box\Box(\alpha \to \alpha)$, ...

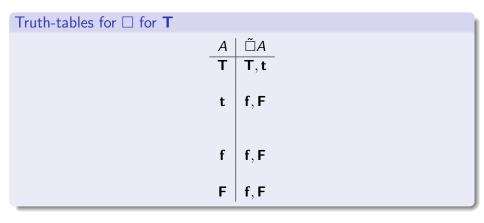
Read intuitively (through the canonical model construction for K)

$$\mathbf{f}_{0}(\beta) := \begin{cases} \mathbf{T} & \text{if } \Sigma \vdash \Box\beta \text{ and } \Sigma \vdash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{t}_{1} & \text{if } \Sigma \vdash \Box\beta \text{ and } \Sigma \vdash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{t} & \text{if } \Sigma \nvDash \Box\beta \text{ and } \Sigma \vdash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{t}_{2} & \text{if } \Sigma \nvDash \Box\beta \text{ and } \Sigma \vdash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{f}_{2} & \text{if } \Sigma \vdash \Box\beta \text{ and } \Sigma \vdash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{f}_{1} & \text{if } \Sigma \vdash \Box\beta \text{ and } \Sigma \nvDash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{f}_{1} & \text{if } \Sigma \vdash \Box\beta \text{ and } \Sigma \nvDash \beta \text{ and } \Sigma \vdash \Diamond\beta \\ \mathbf{F} & \text{if } \Sigma \nvDash \Box\beta \text{ and } \Sigma \nvDash \beta \text{ and } \Sigma \nvDash \Diamond\beta \\ \mathbf{F} & \text{if } \Sigma \nvDash \Box\beta \text{ and } \Sigma \nvDash \beta \text{ and } \Sigma \nvDash \Diamond\beta \end{cases}$$

Α	$ ilde{\Box} A$		
Т			
	T t ₁ t t ₂ f ₂ f f ₁	$\begin{array}{c c c} T & T, t_1, t, t_2 \\ t_1 & T, t_1, t, t_2 \\ t & f_2, f, f_1, F \\ t_2 & f_2, f, f_1, F \\ f_2 & T, t_1, t, t_2 \end{array}$	$\begin{array}{c c c} \hline T & T, t_1, t, t_2 \\ t_1 & T, t_1, t, t_2 \\ t & f_2, f, f_1, F \\ t_2 & f_2, f, f_1, F \\ f_2 & T, t_1, t, t_2 \\ f & f_2, f, f_1, F \\ f_1 & T, t_1, t, t_2 \end{array}$

Truth-tables for \Box for D	
	A
	Γ T, t, t ₂
t	$\mathbf{L} = \mathbf{I}_2, \mathbf{I}_1, \mathbf{F}$
f	$\frac{1}{2}$ T , t , t ₂
1	$ \begin{array}{c c} f_{2}, f, F \\ f_{2}, f, F \\ f_{2} \\ T, t, t_{2} \\ f \\ f_{2}, f, F \end{array} $
	F f ₂ , f, F

Kearns' semantics for modal logic ${\bf K}$ and beyond



Omori & Skurt (Kyoto & Bochum) A survey on Kearns' modal semantics AiML2016, August 30, 2016 11 / 14

э

Future avenues (I)

Analyticity

Any partial valuation which seems to refute a given formula can be extended to a full valuation (which necessarily refutes that formula too).

Question

In order to evaluate a formula in Kearns' semantic one has to take into account *every* formula.

Is it possible to simplify the requirement that we have to take every formula into account? E.g., in order to evaluate a formula only take a special set of formulas into account?

Future avenues (I)

Analyticity

Any partial valuation which seems to refute a given formula can be extended to a full valuation (which necessarily refutes that formula too).

Question

In order to evaluate a formula in Kearns' semantic one has to take into account *every* formula.

Is it possible to simplify the requirement that we have to take every formula into account? E.g., in order to evaluate a formula only take a special set of formulas into account?

Future avenues (I)

Analyticity

Any partial valuation which seems to refute a given formula can be extended to a full valuation (which necessarily refutes that formula too).

Question

In order to evaluate a formula in Kearns' semantic one has to take into account *every* formula.

Is it possible to simplify the requirement that we have to take every formula into account? E.g., in order to evaluate a formula only take a special set of formulas into account?

Future avenues (II)

Kearn's semantics for (sub)intuitionistic logics?

In view of the close connection between the modal logic S4 and intuitionistic logic, one may also ask if we can devise a Kearns-style semantics for intuitionistic logic. To this end, one may introduce an Nmatrix for the intuitionistic conditional based on the translation between S4 with the persistence condition and intuitionistic logic.

Difficulty

We require further consideration since it is not clear at all how to rule out valuations to include, for example, $\alpha \rightarrow_{\Box} \alpha$ as a tautology.

Future avenues (II)

Kearn's semantics for (sub)intuitionistic logics?

In view of the close connection between the modal logic S4 and intuitionistic logic, one may also ask if we can devise a Kearns-style semantics for intuitionistic logic. To this end, one may introduce an Nmatrix for the intuitionistic conditional based on the translation between S4 with the persistence condition and intuitionistic logic.

Difficulty

We require further consideration since it is not clear at all how to rule out valuations to include, for example, $\alpha \rightarrow_{\Box} \alpha$ as a tautology.

The details of the talk are available at:

https://sites.google.com/site/hitoshiomori/home/publications

http://www.ruhr-uni-bochum.de/philosophy/logic/team/skurt.html.en