Free Boolean extensions of Heyting algebras

Michał Stronkowski

Warsaw University of Technology

Advances in Modal Logic September 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

closure algebras = modal algebras satisfying $p \ge \Box p = \Box \Box p$

 ${\bm M}$ - closure algebas $O({\bm M}) = \{ \Box p \mid p \in M \} \text{ - Heyting algebras of open elements of } {\bm M}$

Theorem (McKinsey, Tarski '46)

For a Heyting algebra ${\boldsymbol{\mathsf{H}}}$ there exists a closure algebra ${\boldsymbol{\mathsf{B}}}({\boldsymbol{\mathsf{H}}})$ s. t.

- $OB(\mathbf{H}) = \mathbf{H};$
- if $\mathbf{H} \leqslant O(\mathbf{M})$, then $B(\mathbf{H}) \cong \langle H \rangle_{\mathbf{M}}$

B(H) is called a *free Boolean extension* of H

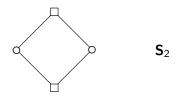
free boolean extensions

Corollary

A closure algebra is a free Boolean extension iff it is generated by its open elements

Example

A simple closure algebra \mathbf{S}_2 is not a free Boolean extension



Example

P - closure algebra with the Boolean reduct $\mathcal{P}(\mathbb{N})$ and initial segments of \mathbb{N} as its open elements. P is not a free Boolean extension

stable homomorphisms

 $\boldsymbol{\mathsf{M}},\,\boldsymbol{\mathsf{N}}$ - closure algebra

 $f: N \to M$ is a stable homomorphism if

it is a Boolean homomorphism

•
$$\forall a \in N \quad f(\Box a) \leqslant \Box f(a).$$

Example

 ${\bf P}$ admits a stable homomorphism onto ${\bf S}_2$ but does not admit a modal homomorphism onto ${\bf S}_2$

Theorem (Esakia '79)

A closure algebra is a free Boolean extension of a Heyting algebra iff it does not admit a stable homomorphism onto S_2 .

Theorem (Esakia '79)

A closure algebra is a free Boolean extension of a Heyting algebra iff it does not admit a stable homomorphism onto \mathbf{S}_2 .

Result Easy proof (without topology)

relevance: Blok-Esakia theorem '76

Ext Int \cong NExt Grz, i.e.,

relevance: Blok-Esakia theorem '76

 Ext $Int\cong\operatorname{NExt}$ Grz, i.e., there mappings

$$\begin{split} \rho \colon \mathsf{L}_{\mathsf{V}}(\mathcal{G}rz) \to \mathsf{L}_{\mathsf{V}}(\mathcal{H}ey); \quad \mathcal{V} \mapsto \{\mathsf{O}(\mathsf{M}) \mid \mathsf{M} \in \mathcal{V}\}\\ \sigma \colon \mathsf{L}_{\mathsf{V}}(\mathcal{H}ey) \to \mathsf{L}_{\mathsf{V}}(\mathcal{G}rz); \quad \mathcal{Y} \mapsto \mathsf{HSP}\{\mathsf{B}(\mathsf{M}) \mid \mathsf{M} \in \mathcal{Y}\} \end{split}$$

are mutually inverse lattice isomorphisms

 $\mathcal{H}ey$ - variety of all Heyting algebras $L_V(\mathcal{H}ey)$ - lattice of its subvarieties

Grz - variety of all Grzegorczyk algebras $L_V(Grz)$ - lattice of its subvarieties

ingredients of the proof

\mathbf{S}_2 lemma

- ${\bf M}$ closure algebra, $f\colon M\to S_2$ Boolean homomorphism
- f is a stable homomorphism into \mathbf{S}_2 iff $\forall a \in M \ f(\Box a) \in \{0,1\}$

kite lemma (Dwinger, Yaqub, Makinson '63)

A, **B** - Boolean algebras, **B** a proper subalgebra of **A** There exist ultrafilters U_1, U_2 of **A** s.t.

- $U_1 \neq U_2$
- $\blacktriangleright U_1 \cap B = U_2 \cap B$

proof: **M** is a fBe \Leftrightarrow **M** $\not\rightarrow$ stab **S**₂

 $\begin{array}{ll} \Leftarrow & \textbf{A} - \text{Boolean reduct of } \textbf{M} \\ & \textbf{B} \text{ Boolean algebra generated by O(M), } & \textbf{B} < \textbf{A} \\ & \text{take } U_1, U_2 \text{ from the kite lemma} \\ & \textbf{S} : \text{ with the Boolean reduct } \textbf{A}/\textbf{U}_1 \times \textbf{A}/\textbf{U}_1 \text{ and } 0, 1 \text{ open} \\ & (\textbf{S} \cong \textbf{S}_2) \\ & a \mapsto (a/U_1, a/U_2) \text{ is a surjective stable homomorphism onto } \textbf{S} \end{array}$

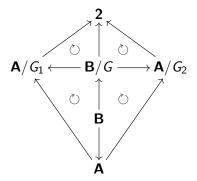
proof: **M** is a fBe \Leftrightarrow **M** $\not\rightarrow$ stab **S**₂

← A - Boolean reduct of M B Boolean algebra generated by O(M), B < A take U₁, U₂ from the kite lemma S: with the Boolean reduct A/U₁ × A/U₁ and 0, 1 open (S ≅ S₂) $a \mapsto (a/U_1, a/U_2)$ is a surjective stable homomorphism onto S

⇒ **M** - generated by open elements

$$f: \mathbf{M} \rightarrow \mathbf{S}_2$$
 - stable homomorphism.
By \mathbf{S}_2 lemma, $f(O(M)) = \{0, 1\}$
M is Boolean generated by $O(M)$
hence $f(M) = \{0, 1\} \neq S_2$

proof of kite lemma



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The end

This is all

Thank you!