Temporal hybrid logics with the modalities «tomorrow» and «yesterday»

Polina Vakhrusheva

Department of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University

Outline

2 The case of discrete time

Syntax and semantics

Definition. Hybrid temporal formulas HTF are built from 1) $PROP = \{p_1, p_2, ...\}$ — a countable set of propositional variables and 2) $N = \{i_1, i_2, ...\}$ — a countable set of nominals, such that $PROP \cap N = \emptyset$

using the classical connectives \rightarrow , \perp and the unary modal connectives \bigcirc^+ («tomorrow») and \bigcirc^- («yesterday»).

Syntax and semantics

Definition. Hybrid temporal formulas with the satisfaction operators $HTF_{\mathbb{Q}}$ are built from PROP using 1) \rightarrow , \perp , 2) \bigcirc^+ , \bigcirc^- 3) satisfaction operators \mathbb{Q}_i , $i \in \mathbb{N} = \{i_1, i_2, \ldots\}$

Definition. Let $F = (W, R^+, R^-)$ be a Kripke frame with two accessibility relations R^+, R^- . *F* is called an *SL.t-frame* if R^+ and R^- define two mutually inverse bijections — permutations on the set of worlds *W*: 1) $(R^+)^{-1} = R^-$ 2) $\forall x \exists ! y \ x R^+ y$ 3) $\forall x \exists ! y \ x R^- y$ **Lemma.** $F = (W, R^+, R^-)$ is an *SL.t-frame* \Leftrightarrow *F* validates the following set of (temporal) axioms (*): (1) $\bigcirc^- \bigcirc^+ p \leftrightarrow p$, (2) $\bigcirc^+ \bigcirc^- p \leftrightarrow p$

$$\begin{array}{c} (2) \bigcirc & p \leftrightarrow p, \\ (3) \neg \bigcirc^+ p \leftrightarrow \bigcirc^+ \neg p, \\ (4) \neg \bigcirc^- p \leftrightarrow \bigcirc^- \neg p. \end{array}$$

Modal logic *SL.t* is also known as «yesterday»-«tomorrow» logic and as a logic with functional modalities. *SL.t* was introduced in 1965 by Clifford and by Lemmon&Scott. The first results about *SL.t* where published by Muchnik in 1979.

Temporal hybrid logics

Definition. *SL*.*t* \mathcal{H} (1) all classical tautologies, (2) the temporal axioms (*), (3) the normality axioms: $\bigcirc^+(p \rightarrow q) \rightarrow (\bigcirc^+ p \rightarrow \bigcirc^+ q), \bigcirc^-(p \rightarrow q) \rightarrow (\bigcirc^- p \rightarrow \bigcirc^- q),$ (4) the set of axioms (NOM): $(i \land p) \rightarrow \bigcirc^{+n}(i \rightarrow p), (i \land p) \rightarrow \bigcirc^{-n}(i \rightarrow p), \text{ for all } n \ge 1$ (where $\bigcirc^{+n} = \underbrace{\bigcirc^+ \cdots \bigcirc^+}_{n \text{ times}}$ and $\bigcirc^{-n} = \underbrace{\bigcirc^- \cdots \bigcirc^-}_{n \text{ times}}$

(1) Modus Ponens,
(2) (Nec): if A ∈ Λ, then ○⁺A ∈ Λ and ○⁻A ∈ Λ,
(3) (Subst): if A(q) ∈ Λ, where q ∈ PROP, then A(B) ∈ Λ, for all B ∈ HTF,
(4) (Subst'): if i, j ∈ N and A(i) ∈ Λ, then A(j) ∈ Λ.

Definition. $SL.t\mathcal{H}_{@}$ (1) all classical tautologies, (2) the temporal axioms (*), (3) the normality axioms, (4) the following axioms: $\neg @_{i}A \leftrightarrow @_{i} \neg A$, $\bigcirc^{+}@_{i}A \rightarrow @_{i}A$, $\bigcirc^{-}@_{i}A \rightarrow @_{i}A$, $@_{i}@_{j}A \rightarrow @_{j}A$, where $i, j \in \mathbb{N}$

Modus Ponens,
 (Nec),
 (Subst) if A(q) ∈ Λ, where q ∈ PROP, then A(B) ∈ Λ, for all B ∈ HTF_Q,
 (Nec_Q) if A ∈ Λ, then Q_iA ∈ Λ.

Semantics

Definition. Let *F* be an *SL*.*t*-frame. A hybrid Kripke model on *F* is a pair (*F*, *V*), where $V:PROP \cup N \rightarrow 2^W$ is such that |V(i)| = 1 for $i \in N$.

Definition. The truth values of formulas in worlds of Kripke models are defined in a standard way:

$$(M, w) \not\vDash \bot, (M, w) \vDash i \text{ iff } w \in V(i), (M, w) \vDash p \text{ iff } w \in V(p), (M, w) \vDash A \to B \text{ iff } ((M, w) \vDash A \Rightarrow (M, w) \vDash B), (M, w) \vDash \bigcirc^+A \text{ iff } \forall v \in W(wR^+v \Rightarrow (M, v) \vDash A), (M, w) \vDash \bigcirc^-A \text{ iff } \forall v \in W(wR^-v \Rightarrow (M, v) \vDash A), (M, w) \vDash @_iA \text{ iff } \forall v \in V(i) ((M, v) \vDash A).$$

Definition. Let F = (W, R) be an *SL.t*-frame. A set $\Gamma \subseteq HTF(HTF_{@}$ respectively) is *(hybrid) satisfiable in F* if it is true at a point of some hybrid Kripke model on *F*.

 $A \in HTF(HTF_{@})$ is (hybrid) valid on $F(F \vDash A)$ if $\neg A$ is not satisfiable on F.

Completeness

Definition. A logic Λ is complete for a class of frames C if $(A \in \Lambda)$ iff $C \models A$, for all formulas A.

A logic Λ is strongly complete for a class of frames C if $C \vDash \Lambda$ and for any Λ -consistent set of formulas Σ there is $F \in C$ such that Σ is satisfiable on F.

A logic Λ has the finite model property (FMP) if Λ is complete for some class of finite frames.

Theorem. SL.tH and $SL.tH_{@}$ are strongly complete for the class of all SL.t-frames.

The case of discrete time

Definition. $\mathcal{HZ}.t = SL.t\mathcal{H} + (i \rightarrow \neg \bigcirc^{+n} i) + (i \rightarrow \neg \bigcirc^{-n} i),$ for all $n \ge 1$.

Definition. The frame (\mathbb{Z}, R^+, R^-) , where xR^+y if y = x + 1 and xR^-y if y = x - 1 is called the (integer) *line*.

Results

Theorem. $\mathcal{HZ}.t$ is strongly complete for a disjoint union of two lines: $(\mathbb{Z}, \mathbb{R}^+, \mathbb{R}^-) \sqcup (\mathbb{Z}, \mathbb{R}^+, \mathbb{R}^-)$.

Remark. The set of formulas $\{\neg \bigcirc^{+n} i \mid n \in \mathbb{Z}\}$ is $\mathcal{HZ}.t$ -consistent, but is not satisfiable in a single line. So $\mathcal{HZ}.t$ cannot be strongly complete for a single line.

Results

Theorem 1.

 $(1)\mathcal{HZ}.t$ is complete for a single line.

(2) $\mathcal{HZ}.t$ is antitabular (all frames are infinite) $\Rightarrow \mathcal{HZ}.t$ lacks the FMP.

(3) The satisfability problem for $\mathcal{HZ}.t$ is NP-complete.

Theorem 2.

 $(1)SL.t\mathcal{H}_{\mathbb{Q}}$ is complete for a single line.

 $(2)SL.t\mathcal{H}_{\mathbb{Q}}$ has the FMP.

(3) The satisfability problem for $SL.tH_{@}$ is NP-complete.

Problems

1) An interesting problem is to find properties of temporal hybrid logics without axioms $\bigcirc^+ \neg p \rightarrow \neg \bigcirc^+ p$ and $\bigcirc^- \neg p \rightarrow \neg \bigcirc^- p$ and of temporal hybrid logics of branching time.

2) We may also conjecture that $\mathcal{HZ}.t$ is Post complete in the class of $\mathcal{H}.t$ -logics where the rule (Namelite) (if $\vdash \neg i$ then $\vdash \bot$) is admissible.

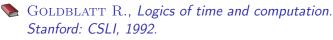
Thank you for your attention!

æ

< ロ > < 同 > < 回 > <

References

NARECES C., BLACKBURN P., MARX M., Hybrid logics: Characterization, interpolation, and complexity. Journal of Symbolic Logic. Vol. 66(3):977-1010, 2001.



Note: TEN CATE B., Model theory for extended modal languages. PhD thesis. Amsterdam: ILLC DS. 2005.

ARECES C., TEN CATE B., Handbook of modal logic. Chapter 14. Hybrid logics. New York: Elsevier, 2007.

Post completeness

Definition. A logic L is called Post complete in a lattice of logics if L is consistent and does not have proper consistent extensions in the lattice.

Definition. A logic L is called generally Post complete if it is consistent and does not have proper consistent extensions closed under the inference rules that are admissible in L.