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Syntax and semantics

Definition. Hybrid temporal formulas HTF are built from

1) PROP = {p1, p2, . . .} — a countable set of propositional
variables and
2) N = {i1, i2, . . .} — a countable set of nominals,
such that PROP ∩N = �
using the classical connectives →,⊥
and the unary modal connectives ©+ («tomorrow») and
©− («yesterday»).

Polina Vakhrusheva Temporal hybrid logics



Syntax and semantics
The case of discrete time

Results
Conclusion

Syntax and semantics

Definition. Hybrid temporal formulas with the satisfaction
operators HTF@ are built from PROP using
1) →,⊥,
2)©+, ©−
3) satisfaction operators @i , i ∈ N = {i1, i2, . . .}
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Definition. Let F = (W ,R+,R−) be a Kripke frame with two
accessibility relations R+,R−. F is called an SL.t-frame if R+ and
R− define two mutually inverse bijections — permutations on the
set of worlds W :
1) (R+)−1 = R−

2) ∀x∃!y xR+y
3) ∀x∃!y xR−y
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Lemma. F = (W ,R+,R−) is an SL.t-frame ⇔ F validates the
following set of (temporal) axioms (*):
(1) ©−©+ p ↔ p,
(2) ©+©− p ↔ p,
(3)¬©+ p ↔©+¬p,
(4) ¬©− p ↔©−¬p.
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Modal logic SL.t is also known as «yesterday»-«tomorrow» logic
and as a logic with functional modalities.
SL.t was introduced in 1965 by Clifford and by Lemmon&Scott.
The first results about SL.t where published by Muchnik in 1979.
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Temporal hybrid logics

Definition. SL.tH
(1) all classical tautologies,
(2) the temporal axioms (*),
(3) the normality axioms:
©+(p → q)→ (©+p →©+q), ©−(p → q)→ (©−p →©−q),
(4) the set of axioms (NOM):
(i ∧ p)→©+n(i → p), (i ∧ p)→©−n(i → p), for all n ≥ 1
(where ©+n =©+ · · ·©+︸ ︷︷ ︸

n times

and ©−n =©− · · ·©−︸ ︷︷ ︸
n times

)

(1) Modus Ponens,
(2) (Nec): if A ∈ Λ, then ©+A ∈ Λ and ©−A ∈ Λ,
(3) (Subst): if A(q) ∈ Λ, where q ∈ PROP, then A(B) ∈ Λ, for all
B ∈ HTF,
(4) (Subst′): if i , j ∈ N and A(i) ∈ Λ, then A(j) ∈ Λ.
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Definition. SL.tH@

(1) all classical tautologies,
(2) the temporal axioms (*),
(3) the normality axioms,
(4) the following axioms:
¬@iA↔ @i¬A,
©+@iA→ @iA,
©−@iA→ @iA,
@i@jA→ @jA, where i , j ∈ N

(1) Modus Ponens,
(2) (Nec),
(3) (Subst) if A(q) ∈ Λ, where q ∈ PROP, then A(B) ∈ Λ, for all
B ∈ HTF@,
(4) (Nec@) if A ∈ Λ, then @iA ∈ Λ.
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Semantics

Definition. Let F be an SL.t-frame.
A hybrid Kripke model on F is a pair (F ,V ),
where V :PROP ∪N→ 2W is such that |V (i)| = 1 for i ∈ N.
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Definition. The truth values of formulas in worlds of Kripke
models are defined in a standard way:
(M,w) 6�⊥,
(M,w) � i iff w ∈ V (i),
(M,w) � p iff w ∈ V (p),
(M,w) � A→ B iff ((M,w) � A⇒ (M,w) � B),
(M,w) �©+A iff ∀v ∈W (wR+v ⇒ (M, v) � A),
(M,w) �©−A iff ∀v ∈W (wR−v ⇒ (M, v) � A),
(M,w) � @iA iff ∀v ∈ V (i) ((M, v) � A).
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Definition. Let F = (W ,R) be an SL.t-frame.
A set Γ ⊆ HTF (HTF@ respectively) is (hybrid) satisfiable in F if it
is true at a point of some hybrid Kripke model on F .

A ∈ HTF (HTF@) is (hybrid) valid on F (F � A) if ¬A is not
satisfiable on F .
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Completeness

Definition. A logic Λ is complete for a class of frames C if (A ∈ Λ
iff C � A), for all formulas A.
A logic Λ is strongly complete for a class of frames C if C � Λ and
for any Λ-consistent set of formulas Σ there is F ∈ C such that Σ
is satisfiable on F .
A logic Λ has the finite model property (FMP) if Λ is complete for
some class of finite frames.
Theorem. SL.tH and SL.tH@ are strongly complete for the class
of all SL.t-frames.
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The case of discrete time

Definition. HZ.t = SL.tH + (i → ¬©+n i) + (i → ¬©−n i),
for all n ≥ 1.

Definition. The frame (Z,R+,R−), where xR+y if y = x + 1 and
xR−y if y = x − 1 is called the (integer) line.
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Results

Theorem. HZ.t is strongly complete for a disjoint union of two
lines: (Z,R+,R−) t (Z,R+,R−).

Remark. The set of formulas {¬©+n i | n ∈ Z} is
HZ.t-consistent, but is not satisfiable in a single line. So HZ.t
cannot be strongly complete for a single line.
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Results

Theorem 1.
(1)HZ.t is complete for a single line.
(2) HZ.t is antitabular (all frames are infinite) ⇒ HZ.t lacks the
FMP.
(3) The satisfability problem for HZ.t is NP-complete.
Theorem 2.
(1)SL.tH@ is complete for a single line.
(2)SL.tH@ has the FMP.
(3) The satisfability problem for SL.tH@ is NP-complete.
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Problems

1) An interesting problem is to find properties of temporal hybrid
logics without axioms ©+¬p → ¬©+ p and ©−¬p → ¬©− p
and of temporal hybrid logics of branching time.

2) We may also conjecture that HZ.t is Post complete in the class
of H.t-logics where the rule (Namelite) (if ` ¬i then `⊥) is
admissible.
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Thank you for your attention!

Polina Vakhrusheva Temporal hybrid logics



Syntax and semantics
The case of discrete time

Results
Conclusion

References

Areces C., Blackburn P., Marx M., Hybrid logics:
Characterization, interpolation, and complexity. Journal of
Symbolic Logic. Vol. 66(3):977-1010, 2001.

Goldblatt R., Logics of time and computation.
Stanford: CSLI, 1992.

ten Cate B., Model theory for extended modal languages.
PhD thesis, Amsterdam: ILLC DS, 2005.

Areces C., ten Cate B., Handbook of modal logic.
Chapter 14. Hybrid logics. New York: Elsevier, 2007.

Polina Vakhrusheva Temporal hybrid logics



Syntax and semantics
The case of discrete time

Results
Conclusion

Post completeness

Definition. A logic L is called Post complete in a lattice of logics if
L is consistent and does not have proper consistent extensions in
the lattice.
Definition. A logic L is called generally Post complete if it is
consistent and does not have proper consistent extensions closed
under the inference rules that are admissible in L.
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