MODAL AUTOMATA

studying modal fixpoint logics one step at a time

Yde Venema
http://staff.science.uva.nl/~yde

AiML, 30 August 2016
(largely joint work with Carreiro, Enqvist, Facchini, Fontaine, Seifan, Zanasi, ...)

Fixpoints in modal logic

Examples:

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
- $\left\langle\alpha^{*}\right\rangle \varphi \equiv \varphi \vee\langle\alpha\rangle\left\langle\alpha^{*}\right\rangle \varphi$
- $C \varphi \equiv \bigwedge_{a} K_{a} \varphi \wedge \bigwedge_{a} K_{a} C \varphi$

Fixpoints in modal logic

Examples:

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
- $\left\langle\alpha^{*}\right\rangle \varphi \equiv \varphi \vee\langle\alpha\rangle\left\langle\alpha^{*}\right\rangle \varphi$
- $C \varphi \equiv \bigwedge_{a} K_{a} \varphi \wedge \bigwedge_{a} K_{a} C \varphi$

Languages:

- LTL, CTL, PDL, CTL*, GL, ...

Fixpoints in modal logic

Examples:

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
- $\left\langle\alpha^{*}\right\rangle \varphi \equiv \varphi \vee\langle\alpha\rangle\left\langle\alpha^{*}\right\rangle \varphi$
- $C \varphi \equiv \wedge_{a} K_{a} \varphi \wedge \bigwedge_{a} K_{a} C \varphi$

Languages:

- LTL, CTL, PDL, CTL*, GL, $\ldots \subseteq \mu \mathrm{ML}$
- $\mu \mathrm{ML}$ was introduced by Dexter Kozen (1983)
- $\mu \mathrm{ML}$ extend basic modal logic with explicit fixpoint operators μ, ν
- $U \varphi \psi:=\mu x . \varphi \vee(\psi \wedge O x)$
- $\left\langle\alpha^{*}\right\rangle \varphi:=\mu x . \varphi \vee\langle\alpha\rangle x$
- $\left[\alpha^{*}\right] \varphi=\nu x . \varphi \wedge[\alpha] x$.
- $C \varphi:=\nu x . \wedge_{a} K_{a} \varphi \wedge \wedge_{a} K_{a} X$

The modal μ-calculus $\mu \mathrm{ML}$

- Formulas:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\diamond \varphi| \mu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

The modal μ-calculus $\mu \mathrm{ML}$

- Formulas:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\diamond \varphi| \mu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

- Formulas in negation normal form:

$$
\varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond \varphi|\square \varphi| \mu p . \varphi^{\prime} \mid \nu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

The modal μ-calculus $\mu \mathrm{ML}$

- Formulas:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\diamond \varphi| \mu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

- Formulas in negation normal form:

$$
\varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond \varphi|\square \varphi| \mu p . \varphi^{\prime} \mid \nu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

- Semantics:

$$
\begin{array}{ll}
\llbracket \mu p . \varphi \rrbracket^{\mathbb{S}, V} & :=\operatorname{LFP}\left(\lambda X . \llbracket \varphi \mathbb{\rrbracket}^{\mathbb{S}, V[p \mapsto X]}\right) \\
\llbracket \nu p \cdot \varphi \rrbracket^{\mathbb{S}, V} & :=\operatorname{GFP}\left(\lambda X . \llbracket \varphi \rrbracket^{\mathbb{S}, V[p \mapsto x]}\right)
\end{array}
$$

The modal μ-calculus $\mu \mathrm{ML}$

- Formulas:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\diamond \varphi| \mu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

- Formulas in negation normal form:

$$
\varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond \varphi|\square \varphi| \mu p . \varphi^{\prime} \mid \nu p . \varphi^{\prime}
$$

(provided that all occurrences of p in φ^{\prime} are positive)

- Semantics:

$$
\begin{aligned}
\llbracket \mu p . \varphi \rrbracket^{\mathbb{S}, V} & :=\operatorname{LFP}\left(\lambda X \cdot \llbracket \varphi \rrbracket^{\mathbb{S}, V[p \mapsto x]}\right) \\
\llbracket \nu p \cdot \varphi \rrbracket^{\mathbb{S}, V} & :=\operatorname{GFP}\left(\lambda X \cdot \llbracket \varphi \rrbracket^{\mathbb{S}, V[p \mapsto x]}\right)
\end{aligned}
$$

- Unravelling:
- $\eta x . \varphi \equiv \varphi[\eta x . \varphi / x]$ for $\eta=\mu, \nu$
- ν can unravel infinitely often, μ cannot
- traces in evaluation game and in tableaux

The modal μ-calculus 2

- [+] natural extension of basic modal logic
- [+] expressive
- [+] good computational properties
- [+] nice meta-logical theory
- [-] hard to understand (nested) fixpoint operators
- [-] theory of $\mu \mathrm{ML}$ isolated from theory of ML

Logic \& Automata

Most results on $\mu \mathrm{ML}$ use automata...

Logic \& Automata

Most results on $\mu \mathrm{ML}$ use automata ...
Automata in Logic

- long \& rich history (Büchi, Rabin, ...)
- mathematically interesting theory
- many practical applications
- automata for $\mu \mathrm{ML}$:
- Janin \& Walukiewicz (1995): μ-automata (nondeterministic)
- Wilke (2002): modal automata (alternating)

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Kripke structures

- Fix a set X of proposition letters
- Elements of PX are called colors
- Transition system/Kripke structure: pair $\mathbb{S}=(S, \sigma)$ with
- $\sigma=\left(\sigma_{R}, \sigma_{V}\right)$,
- $\sigma_{V}: S \rightarrow \mathrm{PX}$ is a marking/coloring
- $\sigma_{R}: S \rightarrow \mathrm{PS}$ encodes the binary relation
- $\sigma(s) \in \mathrm{PX} \times \mathrm{PS}$ is the one-step unfolding of s.
- Elements over PX $\times \mathrm{PS}$ are called one-step frames over S

One-step Logic

- A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- Let A (variables) be disjoint from X (proposition letters): $A \cap X=\varnothing$
- One-step formulas: $\neg p \wedge \diamond(a \wedge b), \square a \wedge(\diamond b \vee q), \ldots$

One-step Logic

- A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- Let A (variables) be disjoint from X (proposition letters): $A \cap X=\varnothing$
- One-step formulas: $\neg p \wedge \diamond(a \wedge b), \square a \wedge(\diamond b \vee q), \ldots$
- One-step modal language $1 \mathrm{ML}(\mathrm{X}, A)$ over A

$$
\alpha::=p|\neg p| \diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

with $p \in \mathrm{X}$ and $\pi \in \operatorname{Latt}(A)$

One-step Logic

- A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- Let A (variables) be disjoint from X (proposition letters): $A \cap X=\varnothing$
- One-step formulas: $\neg p \wedge \diamond(a \wedge b), \square a \wedge(\diamond b \vee q), \ldots$
- One-step modal language $1 \mathrm{ML}(\mathrm{X}, A)$ over A

$$
\alpha::=p|\neg p| \diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

with $p \in \mathrm{X}$ and $\pi \in \operatorname{Latt}(A)$

- $\operatorname{Latt}(A)$: prop. lang. over $A(\pi::=a|\perp| \top|\pi \vee \pi| \pi \wedge \pi)$
- One-step model (Y, U, m) with $Y \subseteq X$ and $m: U \rightarrow \mathrm{PA}$
- One-step semantics interprets $1 \mathrm{ML}(\mathrm{X}, A)$ over one-step models

One-step Semantics: details

- One-step model (Y, U, m) with $Y \subseteq X$ and $m: U \rightarrow \mathrm{PA}$
- Zero-step semantics

$$
\begin{aligned}
& \llbracket a \rrbracket^{0}:=\quad\{u \in U \mid a \in m(u)\} \\
& \begin{array}{ll}
\llbracket \perp \rrbracket^{0} & :=\varnothing \\
\llbracket \top \rrbracket^{0} & :=U
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \pi \vee \pi^{\prime} \rrbracket^{0} \\
& \llbracket \pi \wedge \pi^{\prime} \rrbracket^{0} \\
& \boxed{ }: \\
& :=\llbracket \pi \rrbracket^{0} \cup \llbracket \rrbracket^{0} \cap \llbracket \pi^{\prime} \rrbracket^{0} \pi^{0} \rrbracket^{0} \\
& \hline \pi
\end{aligned}
$$

- One-step semantics

$$
\begin{array}{ll}
(Y, U, m) \Vdash^{1} p & \text { if } \quad p \in Y \\
(Y, U, m) \Vdash^{1} \neg p & \text { if } p \notin Y \\
(Y, U, m) \Vdash^{1} \diamond \pi & \text { if } U \cap \llbracket \pi \rrbracket^{0} \neq \varnothing \\
(Y, U, m) \Vdash^{1} \square \pi & \text { if } U \subseteq \llbracket \pi \rrbracket^{0} \\
(Y, U, m) \Vdash^{1} \perp & \text { never } \\
(Y, U, m) \Vdash^{1} \top & \text { always } \\
(Y, U, m) \Vdash^{1} \alpha \vee \alpha^{\prime} & \text { if } \quad(Y, U, m) \Vdash^{1} \alpha \text { or }(Y, U, m) \Vdash^{1} \alpha^{\prime} \\
(Y, U, m) \Vdash^{1} \alpha \wedge \alpha^{\prime} & \text { if } \\
(Y, U, m) \Vdash^{1} \alpha \text { and }(Y, U, m) \Vdash^{1} \alpha^{\prime}
\end{array}
$$

Modal automata

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \rightarrow 1 \mathrm{ML}(\mathrm{X}, A)$ is the transition map
- Acc $\subseteq A^{\omega}$ is the acceptance condition

Modal automata

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \rightarrow 1 \mathrm{ML}(\mathrm{X}, A)$ is the transition map
- Acc $\subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is pair (\mathbb{A}, a) with $a \in A$
- Parity automata: $A c c$ is given by map $\Omega: A \rightarrow \omega$
- Given $\rho \in A^{\omega}, \operatorname{lnf}(\rho):=\left\{a \in A \mid a\right.$ occurs infinitely often in $\left.\pi_{b}\right\}$
- $A c c_{\Omega}:=\left\{\rho \in A^{\omega} \mid \max \{\Omega(a) \mid a \in \operatorname{Inf}(\rho)\}\right.$ is even $\}$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m \vDash \Theta(a)\right\}$
$m: S \hookrightarrow \mathrm{PA}$	\forall	$\{(b, t) \mid b \in m(t)\}$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m=\Theta(a)\right\}$
$m: S \hookrightarrow \mathrm{P} A$	\forall	$\{(b, t) \mid b \in m(t)\}$

Winning conditions:

- finite matches are lost by the player who gets stuck,
- infinite matches are won as specified by the acceptance condition:
- match $\pi=\left(a_{0}, s_{0}\right) m_{0}\left(a_{1}, s_{1}\right) m_{1} \ldots$ induces list $\pi_{A}:=a_{0} a_{1} a_{2} \ldots$
- \exists wins if $\pi_{A} \in A c c$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m \models \Theta(a)\right\}$
$m: S \hookrightarrow \mathrm{P} A$	\forall	$\{(b, t) \mid b \in m(t)\}$

Winning conditions:

- finite matches are lost by the player who gets stuck,
- infinite matches are won as specified by the acceptance condition:
- match $\pi=\left(a_{0}, s_{0}\right) m_{0}\left(a_{1}, s_{1}\right) m_{1} \ldots$ induces list $\pi_{A}:=a_{0} a_{1} a_{2} \ldots$
- \exists wins if $\pi_{A} \in A c c$

Definition (\mathbb{A}, a) accepts (\mathbb{S}, s) if $(a, s) \in \operatorname{Win}_{\exists}(\mathcal{A}(\mathbb{A}, \mathbb{S}))$.

Themes

Basis

- There are well-understood translations: formulas \leftrightarrow automata

Themes

Basis

- There are well-understood translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via these corresponding automata

Themes

Basis

- There are well-understood translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via these corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Themes

Basis

- There are well-understood translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via these corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- Which properties of modal parity automata are determined - already at one-step level

Themes

Basis

- There are well-understood translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via these corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Fragments/Variations

Fix automaton $\mathbb{A}=(A, \Theta, \Omega)$

- Write $a \rightsquigarrow b$ if b occurs in $\Theta(a)$, and $\triangleright:=(\rightsquigarrow)^{+}$
- A cluster is an equivalence relation of $\bowtie:=\triangleright \cup \triangleleft \cup \Delta_{A}$
- \mathbb{A} is weak if $a \bowtie b$ implies $\Omega(a)=\Omega(b)$ so WLOG $\Omega: A \rightarrow\{0,1\}$
- A PDL-automaton is a weak parity automaton \mathbb{A} s.t. for $a \in A$:
- if $\Omega(a)=1$ then $\Theta(a) \in A D D^{1}(X, A, C)$ given by

$$
\alpha::=\beta|\langle d\rangle c| \alpha \vee \alpha .
$$

where $\beta \in 1 M L(X, A \backslash C)$ and $c \in C$

- if $\Omega(a)=0$ then $\Theta(a) \in M U L^{1}(X, A, C)$ defined dually

Proposition (Carreiro \& Venema) test-free PDL \equiv PDL-automata

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

One-step Logic

Key Idea: take word 'logic' seriously!

One-step Logic

Key Idea: take word 'logic' seriously!

- (Y, U, m) and $\left.Y^{\prime}, U^{\prime}, m^{\prime}\right)$ are one-step bisimilar if

One-step Logic

Key Idea: take word 'logic' seriously!

- (Y, U, m) and $\left.Y^{\prime}, U^{\prime}, m^{\prime}\right)$ are one-step bisimilar if
- $Y=Y^{\prime}$
- $\forall u \in U \exists u^{\prime} \in U^{\prime} . m(u)=m^{\prime}\left(u^{\prime}\right)$
- $\forall u^{\prime} \in U^{\prime} \exists u \in U \cdot m(u)=m^{\prime}\left(u^{\prime}\right)$

Proposition If $\left.(Y, U, m) \overleftrightarrow{\unrhd}^{1} Y^{\prime}, U^{\prime}, m^{\prime}\right)$ then $\left.(Y, U, m) \equiv{ }^{1} Y^{\prime}, U^{\prime}, m^{\prime}\right)$.

One-step Logic

Key Idea: take word 'logic' seriously!

- (Y, U, m) and $\left.Y^{\prime}, U^{\prime}, m^{\prime}\right)$ are one-step bisimilar if
- $Y=Y^{\prime}$
- $\forall u \in U \exists u^{\prime} \in U^{\prime} . m(u)=m^{\prime}\left(u^{\prime}\right)$
- $\forall u^{\prime} \in U^{\prime} \exists u \in U \cdot m(u)=m^{\prime}\left(u^{\prime}\right)$

Proposition If $\left.(Y, U, m) \overleftrightarrow{\unrhd}^{1} Y^{\prime}, U^{\prime}, m^{\prime}\right)$ then $\left.(Y, U, m) \equiv{ }^{1} Y^{\prime}, U^{\prime}, m^{\prime}\right)$.

- A one-step morphism $f:(Y, U, m) \rightarrow\left(Y^{\prime}, U^{\prime}, m^{\prime}\right)$ is
- a surjection $f: U \rightarrow U^{\prime}$
- such that $m=m^{\prime} \circ f$
- but it only exists if $Y=Y^{\prime}$

One-step soundness and completeness

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\mid={ }^{1} \alpha \leq \alpha^{\prime}$ if for all (Y, U, m) :
$(Y, U, m) \Vdash^{1} \alpha$ implies $(Y, U, m) \Vdash^{1} \alpha^{\prime}$.

One-step soundness and completeness

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\mid={ }^{1} \alpha \leq \alpha^{\prime}$ if for all (Y, U, m) :

$$
(Y, U, m) \Vdash^{1} \alpha \text { implies }(Y, U, m) \Vdash^{1} \alpha^{\prime} .
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.

One-step soundness and completeness

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\mid={ }^{1} \alpha \leq \alpha^{\prime}$ if for all (Y, U, m) :

$$
(Y, U, m) \Vdash^{1} \alpha \text { implies }(Y, U, m) \Vdash^{1} \alpha^{\prime} .
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.

Example for basic modal logic \mathbf{K} the core consists of

- monotonicity rule for $\diamond: \pi \leq \pi^{\prime} / \diamond \pi \leq \diamond \pi^{\prime}$
- normality $(\diamond \perp \leq \perp)$ and additivity $\left(\diamond\left(\pi \vee \pi^{\prime}\right) \leq \diamond \pi \vee \diamond \pi^{\prime}\right)$ axioms

One-step soundness and completeness

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\mid={ }^{1} \alpha \leq \alpha^{\prime}$ if for all (Y, U, m) :

$$
(Y, U, m) \Vdash^{1} \alpha \text { implies }(Y, U, m) \Vdash^{1} \alpha^{\prime} .
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.

Example for basic modal logic \mathbf{K} the core consists of

- monotonicity rule for $\diamond: \pi \leq \pi^{\prime} / \diamond \pi \leq \diamond \pi^{\prime}$
- normality $(\diamond \perp \leq \perp)$ and additivity $\left(\diamond\left(\pi \vee \pi^{\prime}\right) \leq \diamond \pi \vee \diamond \pi^{\prime}\right)$ axioms
- A derivation system \mathbf{H} is one-step sound and complete if

$$
\vdash_{\mathbf{H}} \alpha \leq \alpha^{\prime} \text { iff }=^{1} \alpha \leq \alpha^{\prime}
$$

One-step soundness and completeness

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\mid={ }^{1} \alpha \leq \alpha^{\prime}$ if for all (Y, U, m) :

$$
(Y, U, m) \Vdash^{1} \alpha \text { implies }(Y, U, m) \Vdash^{1} \alpha^{\prime} .
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.

Example for basic modal logic \mathbf{K} the core consists of

- monotonicity rule for $\diamond: \pi \leq \pi^{\prime} / \diamond \pi \leq \diamond \pi^{\prime}$
- normality $(\diamond \perp \leq \perp)$ and additivity $\left(\diamond\left(\pi \vee \pi^{\prime}\right) \leq \diamond \pi \vee \diamond \pi^{\prime}\right)$ axioms
- A derivation system \mathbf{H} is one-step sound and complete if

$$
\vdash_{\mathbf{H}} \alpha \leq \alpha^{\prime} \text { iff } \models^{1} \alpha \leq \alpha^{\prime}
$$

- For more on this, check the literature on coalgebra (Pattinson, Schröder,...)

Chromatic automata

Separate X from A

- In $\mathbb{A}=(A, \Theta, \Omega)$, move from $\Theta: A \rightarrow 1 \mathrm{ML}(\mathrm{X}, A)$ with

$$
\alpha:=p|\neg p| \diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

Chromatic automata

Separate X from A

- In $\mathbb{A}=(A, \Theta, \Omega)$, move from $\Theta: A \rightarrow 1 \mathrm{ML}(\mathrm{X}, A)$ with

$$
\alpha:=p|\neg p| \diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

$$
\text { to } \Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(\varnothing, A)
$$

$$
\alpha:=\diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

Chromatic automata

Separate X from A

- In $\mathbb{A}=(A, \Theta, \Omega)$, move from $\Theta: A \rightarrow 1 \mathrm{ML}(\mathrm{X}, A)$ with

$$
\alpha:=p|\neg p| \diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

to $\Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(\varnothing, A)$

$$
\alpha:=\diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha
$$

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma_{R}(s), m=\Theta\left(a, \sigma_{V}(s)\right)\right\}$
$m: S \rightarrow \mathrm{PA}$	\forall	$\{(b, t) \mid b \in m(t)\}$

- Point: $\left(\sigma_{R}, m\right)$ is an A-structure in the sense of model theory, i.e. a pair (D, I) with $I: A \rightarrow P D$ interpreting each $a \in A$

A family of automaton types

A family of automaton types

- Let $\mathcal{L}(A)$ be some set of A-monotone sentences of some logic

A family of automaton types

- Let $\mathcal{L}(A)$ be some set of A-monotone sentences of some logic
- Example: FOE

$$
\varphi::=x=y|a(x)| \neg \varphi|\varphi \vee \varphi| \exists x . \varphi
$$

sloppy: restrict to A-positive fragment

A family of automaton types

- Let $\mathcal{L}(A)$ be some set of A-monotone sentences of some logic
- Example: FOE

$$
\varphi::=x=y|a(x)| \neg \varphi|\varphi \vee \varphi| \exists x . \varphi
$$

sloppy: restrict to A-positive fragment

- Other examples: $\mathrm{FO}, \mathrm{MSO}, \mathrm{FO}^{\infty}, \mathrm{FO}_{\forall}, \ldots$
- Aut (\mathcal{L}) : automata with $\Theta: A \times \mathrm{PX} \rightarrow \mathcal{L}(A)$

A family of automaton types

- Let $\mathcal{L}(A)$ be some set of A-monotone sentences of some logic
- Example: FOE

$$
\varphi::=x=y|a(x)| \neg \varphi|\varphi \vee \varphi| \exists x . \varphi
$$

sloppy: restrict to A-positive fragment

- Other examples: $\mathrm{FO}, \mathrm{MSO}, \mathrm{FO}^{\infty}, \mathrm{FO}_{\forall}, \ldots$
- Aut (\mathcal{L}) : automata with $\Theta: A \times \mathrm{PX} \rightarrow \mathcal{L}(A)$

Proposition Modal automata $\sim \operatorname{Aut}(F O)$

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE. Theorem There is a translation $(\cdot)^{\diamond}:$ FOE \rightarrow FO such that $\varphi \equiv \varphi^{\diamond}$ iff φ is one-step bisimulation invariant

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE. Theorem There is a translation $(\cdot)^{\diamond}:$ FOE \rightarrow FO such that

$$
\varphi \equiv \varphi^{\diamond} \text { iff } \varphi \text { is one-step bisimulation invariant }
$$

Corollary There is a translation $(\cdot)^{\diamond}: \operatorname{Aut}(F O E) \rightarrow \operatorname{Aut}(F O)$ such that

$$
\mathbb{A} \equiv \mathbb{A}^{\diamond} \text { iff } \mathbb{A} \text { is bisimulation invariant }
$$

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE. Theorem There is a translation $(\cdot)^{\diamond}:$ FOE \rightarrow FO such that $\varphi \equiv \varphi^{\diamond}$ iff φ is one-step bisimulation invariant

Corollary There is a translation $(\cdot)^{\diamond}: \operatorname{Aut}(F O E) \rightarrow \operatorname{Aut}(F O)$ such that

$$
\mathbb{A} \equiv \mathbb{A}^{\diamond} \text { iff } \mathbb{A} \text { is bisimulation invariant }
$$

Hence $\operatorname{Aut}(\mathrm{FO})$ is the bisimulation-invariant fragment of Aut(FOE).

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE. Theorem There is a translation $(\cdot)^{\diamond}:$ FOE \rightarrow FO such that

$$
\varphi \equiv \varphi^{\diamond} \text { iff } \varphi \text { is one-step bisimulation invariant }
$$

Corollary There is a translation $(\cdot)^{\diamond}: \operatorname{Aut}(F O E) \rightarrow \operatorname{Aut}(F O)$ such that

$$
\mathbb{A} \equiv \mathbb{A}^{\diamond} \text { iff } \mathbb{A} \text { is bisimulation invariant }
$$

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).
Corollary (Janin \& Walukiewicz) $\mu \mathrm{ML} \equiv \mathrm{MSO} / \overleftrightarrow{\leftrightarrow}$.

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE. Theorem There is a translation $(\cdot)^{\diamond}:$ FOE \rightarrow FO such that

$$
\varphi \equiv \varphi^{\diamond} \text { iff } \varphi \text { is one-step bisimulation invariant }
$$

Corollary There is a translation $(\cdot)^{\diamond}: \operatorname{Aut}($ FOE $) \rightarrow \operatorname{Aut}(F O)$ such that

$$
\mathbb{A} \equiv \mathbb{A}^{\diamond} \text { iff } \mathbb{A} \text { is bisimulation invariant }
$$

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).
Corollary (Janin \& Walukiewicz) $\mu \mathrm{ML} \equiv \mathrm{MSO} / \overleftrightarrow{\leftrightarrow}$.
Proof (1) $\mu \mathrm{ML} \equiv \operatorname{Aut}(\mathrm{FO})$
(2) $\mathrm{MSO} \equiv \operatorname{Aut}($ FOE $)$ (on trees)

Bisimulation invariance

Bisimulation invariance

Theorem Let \mathcal{L} and \mathcal{L}^{\prime} be two one-step languages. Then

$$
\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / \overleftrightarrow{セ}^{1} \text { implies } \operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv_{s} \operatorname{Aut}(\mathcal{L}) / \leftrightarrow
$$

This result allows

- variations/generalizations of the Janin-Walukiewicz Theorem

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Model theory of modal automata

- normal form theorems
- characterization theorems
- (uniform) interpolation
- ...

Normal forms

- Given \mathcal{L}, find nice \mathcal{L}^{\prime} such that $\operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv \operatorname{Aut}(\mathcal{L})$

Normal forms

- Given \mathcal{L}, find nice \mathcal{L}^{\prime} such that $\operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv \operatorname{Aut}(\mathcal{L})$
- α is disjunctive if for all $(Y, U, m) \Vdash^{-1} \alpha$ there is $\left(Y, U^{\prime}, m^{\prime}\right)$ and a fr morphism $f:\left(Y, U^{\prime}\right) \rightarrow(Y, U)$ s.t.
- $m^{\prime} \circ f \subseteq m$
- $\left(Y^{\prime}, U^{\prime}, m^{\prime}\right) \Vdash^{1} \alpha$ and
- $|m(u)| \leq 1$ for all $u \in U$.
- Example $\nabla B:=\bigwedge \diamond B \wedge \square \bigvee B$ for $B \subseteq A$
- $\mathbb{A}=(A, \Theta, \Omega)$ is disjunctive if $\Theta(a)$ is disjunctive for all $a \in A$

Normal forms

- Given \mathcal{L}, find nice \mathcal{L}^{\prime} such that $\operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv \operatorname{Aut}(\mathcal{L})$
- α is disjunctive if for all $(Y, U, m) \Vdash^{-1} \alpha$ there is $\left(Y, U^{\prime}, m^{\prime}\right)$ and a fr morphism $f:\left(Y, U^{\prime}\right) \rightarrow(Y, U)$ s.t.
- $m^{\prime} \circ f \subseteq m$
- $\left(Y^{\prime}, U^{\prime}, m^{\prime}\right) \Vdash^{1} \alpha$ and
- $|m(u)| \leq 1$ for all $u \in U$.
- Example $\nabla B:=\bigwedge \diamond B \wedge \square \bigvee B$ for $B \subseteq A$
- $\mathbb{A}=(A, \Theta, \Omega)$ is disjunctive if $\Theta(a)$ is disjunctive for all $a \in A$

Simulation Theorem (Janin \& Walukiewicz)
Every modal automaton has a disjunctive equivalent:

$$
\operatorname{Aut}(1 \mathrm{ML}) \equiv \operatorname{Aut}\left(1 \mathrm{ML}^{d}\right)
$$

Uniform Interpolation

Theorem (D'Agostino \& Hollenberg) $\mu \mathrm{ML}$ enjoys uniform interpolation

Uniform Interpolation

Theorem (D'Agostino \& Hollenberg) $\mu \mathrm{ML}$ enjoys uniform interpolation
Theorem $\operatorname{Aut}(\mathcal{L})$ enjoys uniform interpolation if
(1) \mathcal{L} consists of disjunctive formulas
(2) \mathcal{L} is closed under disjunctions

Łos-Tarski Theorem

- φ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino \& Hollenberg) $\xi \in \mu \mathrm{ML}$ has LT iff $\xi \equiv \varphi \in \mu \mathrm{ML}_{\forall}$

$$
\mu \mathrm{ML}_{\forall} \ni \varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \square \varphi|\mu x \cdot \varphi| \nu x . \varphi
$$

Łos-Tarski Theorem

- φ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino \& Hollenberg) $\xi \in \mu \mathrm{ML}$ has LT iff $\xi \equiv \varphi \in \mu \mathrm{ML}_{\forall}$

$$
\mu \mathrm{ML}_{\forall} \ni \varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \square \varphi|\mu x . \varphi| \nu x . \varphi
$$

- $\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / L T$ if there is a map $(\cdot)^{L T}: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ such that

$$
\alpha \in \mathcal{L} \text { has LT iff } \alpha \equiv_{s} \alpha^{L T}
$$

Łos-Tarski Theorem

- φ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino \& Hollenberg)
$\xi \in \mu \mathrm{ML}$ has LT iff $\xi \equiv \varphi \in \mu \mathrm{ML}_{\forall}$

$$
\mu \mathrm{ML}_{\forall} \ni \varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \square \varphi|\mu x . \varphi| \nu x . \varphi
$$

- $\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / L T$ if there is a map $(\cdot)^{L T}: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ such that

$$
\alpha \in \mathcal{L} \text { has LT iff } \alpha \equiv_{s} \alpha^{L T}
$$

Proposition If $\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / L T$ then $\operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv_{s} \operatorname{Aut} \mathcal{L} / L T$
Proposition $\mathrm{FO}_{\forall} \equiv_{s} \mathrm{FO} / L T$

Łos-Tarski Theorem

- φ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino \& Hollenberg)
$\xi \in \mu \mathrm{ML}$ has LT iff $\xi \equiv \varphi \in \mu \mathrm{ML}_{\forall}$

$$
\mu \mathrm{ML}_{\forall} \ni \varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \square \varphi|\mu x . \varphi| \nu x . \varphi
$$

- $\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / L T$ if there is a map $(\cdot)^{L T}: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ such that

$$
\alpha \in \mathcal{L} \text { has LT iff } \alpha \equiv_{s} \alpha^{L T}
$$

Proposition If $\mathcal{L}^{\prime} \equiv_{s} \mathcal{L} / L T$ then $\operatorname{Aut}\left(\mathcal{L}^{\prime}\right) \equiv_{s} \operatorname{Aut} \mathcal{L} / L T$
Proposition $\mathrm{FO}_{\forall} \equiv_{s} \mathrm{FO} / L T$
Corollary (1) $\operatorname{Aut}\left(\mathrm{FO}_{\forall}\right) \equiv_{s} \operatorname{Aut}(\mathrm{FO}) / L T$
(2) it is decidable whether $\mathbb{A} \in \operatorname{Aut}(\mathrm{FO}) / \varphi \in \mu \mathrm{ML}$ has LT

Continuity

- A formula φ is (Scott) p-continuous if
$\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finite $U \subseteq V(p)$
or equivalently

$$
\varphi_{p}(W)=\bigcup\left\{\varphi_{p}(U) \mid U \subseteq_{\omega} W\right\}
$$

Theorem (Fontaine) $\xi \in \mu \mathrm{ML}$ is p-continuous iff $\xi \equiv \varphi \in \operatorname{CONT}_{p}(\mu \mathrm{ML})$

$$
\operatorname{CONT}_{P}(\mu \mathrm{ML}) \ni \varphi::=p|\psi| \varphi \vee \varphi|\varphi \wedge \varphi| \diamond \varphi \mid \mu x . \varphi^{\prime}
$$

where $p \in P, \psi \in \mu \mathrm{ML}$ is p-free, and $\varphi^{\prime} \in \operatorname{CONT}_{P \cup\{x\}}(\mu \mathrm{ML})$.

Continuity continued

- φ is horizontally p-continuous if
$\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$
- φ is vertically p-continuous if

$$
\mathbb{S}, s \Vdash \varphi \text { iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text { for some finite-depth } U \subseteq V(p)
$$

Continuity continued

- φ is horizontally p-continuous if
$\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$
- φ is vertically p-continuous if

$$
\mathbb{S}, s \Vdash \varphi \text { iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text { for some finite-depth } U \subseteq V(p)
$$

Observations

- p-continuity $=$ horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- vertical p-continuity is easily determined at level of priority map Ω

Continuity continued

- φ is horizontally p-continuous if
$\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$
- φ is vertically p-continuous if

$$
\mathbb{S}, s \Vdash \varphi \text { iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text { for some finite-depth } U \subseteq V(p)
$$

Observations

- p-continuity $=$ horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine \& Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.

Continuity continued

- φ is horizontally p-continuous if
$\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$
- φ is vertically p-continuous if

$$
\mathbb{S}, s \Vdash \varphi \text { iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text { for some finite-depth } U \subseteq V(p)
$$

Observations

- p-continuity $=$ horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine \& Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.
All three are decidable properties.

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x \cdot \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x \cdot \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

- $\mu_{c} \mathrm{ML}$: require φ^{\prime} is continuous in x

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x . \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

- $\mu_{c} \mathrm{ML}$: require φ^{\prime} is continuous in x
- $\mu_{\mathrm{a}} \mathrm{ML}$: require φ^{\prime} is completely additive in x

Theorem (Venema) $\mu_{\mathrm{a}} \mathrm{ML} \equiv P D L$

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x \cdot \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

- $\mu_{c} \mathrm{ML}$: require φ^{\prime} is continuous in x
- $\mu_{\mathrm{a}} \mathrm{ML}$: require φ^{\prime} is completely additive in x

Theorem (Venema) $\mu_{\mathrm{a}} \mathrm{ML} \equiv P D L$
Theorem (Carreiro, Facchini, Venema \& Zanasi) $\mu_{c} \mathrm{ML} \equiv$

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x \cdot \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

- $\mu_{c} \mathrm{ML}$: require φ^{\prime} is continuous in x
- $\mu_{\mathrm{a}} \mathrm{ML}$: require φ^{\prime} is completely additive in x

Theorem (Venema) $\mu_{\mathrm{a}} \mathrm{ML} \equiv P D L$
Theorem (Carreiro, Facchini, Venema \& Zanasi) $\mu_{c} \mathrm{ML} \equiv$ WMSO $/ \leftrightarrow$

Continuity 3

Sublanguages of $\mu \mathrm{ML}$:

- $\mu \mathrm{ML}$

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle d\rangle \varphi| \mu x . \varphi^{\prime}
$$

where φ^{\prime} is monotone in x

- $\mu_{c} \mathrm{ML}$: require φ^{\prime} is continuous in x
- $\mu_{\mathrm{a}} \mathrm{ML}$: require φ^{\prime} is completely additive in x

Theorem (Venema) $\mu_{\mathrm{a}} \mathrm{ML} \equiv P D L$
Theorem (Carreiro, Facchini, Venema \& Zanasi) $\mu_{c} \mathrm{ML} \equiv$ WMSO $/ \leftrightarrows$ Proof
(1) $\mathrm{WMSO} \equiv \mathrm{Aut}_{c w}\left(\mathrm{FO}^{\infty}\right)$
(2) careful analysis of FO^{∞} as a one-step language
(3) $\mathrm{Aut}_{c w}\left(\mathrm{FO}^{\infty}\right) \equiv_{s} \mathrm{Aut}_{c w}$ (FO)

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p . \varphi) \vdash_{\kappa} \mu p . \varphi$
$\left(\alpha \vdash_{K} \beta\right.$ abbreviates $\left.\vdash_{K} \alpha \rightarrow \beta\right)$
- if $\varphi(\psi) \vdash_{k} \varphi$ then $\mu p . \varphi \vdash_{K} \psi$

Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p . \varphi) \vdash_{\kappa} \mu p . \varphi$
- if $\varphi(\psi) \vdash_{\kappa} \varphi$ then $\mu p . \varphi \vdash_{K} \psi$

Theorem (Kozen 1983)
\vdash_{K} is sound, and complete for aconjunctive formulas.

Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p . \varphi) \vdash_{\kappa} \mu p . \varphi$
$\left(\alpha \vdash_{K} \beta\right.$ abbreviates $\left.\vdash_{K} \alpha \rightarrow \beta\right)$
- if $\varphi(\psi) \vdash_{K} \varphi$ then $\mu p . \varphi \vdash_{K} \psi$

Theorem (Kozen 1983)
\vdash_{K} is sound, and complete for aconjunctive formulas.
Theorem (Walukiewicz 1995)
\vdash_{K} is sound and complete for all formulas.

Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p . \varphi) \vdash_{K} \mu p . \varphi$
- if $\varphi(\psi) \vdash_{\kappa} \varphi$ then $\mu p . \varphi \vdash_{\kappa} \psi$

Theorem (Kozen 1983)
\vdash_{K} is sound, and complete for aconjunctive formulas.
Theorem (Walukiewicz 1995)
\vdash_{K} is sound and complete for all formulas.
Questions (2015)
How to generalise this to similar logics, eg, the monotone μ-calculus?
How to generalise this to restricted frame classes?
Does completeness transfer to fragments of $\mu \mathrm{ML}$?

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?
1 complex combinatorics of traces
2 incorporate simulation theorem into derivations
3 mix of \vdash^{K}-derivations, tableaux and automata
4 tableau rules for boolean connectives complicate combinatorics
$5 \ldots$

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?
1 complex combinatorics of traces
2 incorporate simulation theorem into derivations
3 mix of \vdash_{K}-derivations, tableaux and automata
4 tableau rules for boolean connectives complicate combinatorics
$5 \ldots$
content vs wrapping

Our Approach: Principles

- separate the combinatorics from the dynamics
- focus on automata rather than formulas
- make traces first-class citizens

Our Approach: Principles

Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules

Our Approach: Principles

Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Our Approach: Principles

Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

- use binary relations to deal with trace combinatorics

Our Approach: Principles

Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

- use binary relations to deal with trace combinatorics

Automata

- uniform, 'clean' presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem

Our Approach: Principles

Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

- use binary relations to deal with trace combinatorics

Automata

- uniform, 'clean' presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem
- bring automata into proof theory

Automata \& Formulas

Theorem
There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$

Automata \& Formulas

Theorem
There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) satisfy $\varphi \equiv \kappa \xi\left(\mathbb{B}_{\varphi}\right)$;

Automata \& Formulas

Theorem
There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) satisfy $\varphi \equiv{ }_{K} \xi\left(\mathbb{B}_{\varphi}\right)$;
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

$$
\xi(\mathbb{A}[\mathbb{B} / x]) \equiv_{K} \xi(\mathbb{A})[\xi(\mathbb{B}) / x] .
$$

Automata \& Formulas

Theorem

There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) satisfy $\varphi \equiv{ }_{K} \xi\left(\mathbb{B}_{\varphi}\right)$;
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

$$
\xi(\mathbb{A}[\mathbb{B} / x]) \equiv_{K} \xi(\mathbb{A})[\xi(\mathbb{B}) / x] .
$$

As a corollary, we may apply proof-theoretic concepts to automata

Framework

Satisfiability Game $\mathcal{S}(\mathbb{A})$ (Fontaine, Leal \& Venema 2010)

- basic positions: binary relations $R \in \mathrm{P}(A \times A)$
- R corresponds to $\bigwedge\{\Delta(a) \mid a \in R\}$
- direct representation of \mathbb{A}-traces through $R_{0} R_{1} \ldots$
- \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \varnothing$

Framework

Satisfiability Game $\mathcal{S}(\mathbb{A})$ (Fontaine, Leal \& Venema 2010)

- basic positions: binary relations $R \in \mathrm{P}(A \times A)$
- R corresponds to $\bigwedge\{\Delta(a) \mid a \in R\}$
- direct representation of \mathbb{A}-traces through $R_{0} R_{1} \cdots$
- \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \varnothing$

Consequence Game $\mathcal{C}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$

- basic positions: pair of binary relations (R, R^{\prime})
- winning condition in terms of trace reflection
- $\mathbb{A} \models_{G} \mathbb{A}^{\prime}$ implies $L(\mathbb{A}) \subseteq L\left(\mathbb{A}^{\prime}\right)$

Framework

Satisfiability Game $\mathcal{S}(\mathbb{A})$ (Fontaine, Leal \& Venema 2010)

- basic positions: binary relations $R \in \mathrm{P}(A \times A)$
- R corresponds to $\bigwedge\{\Delta(a) \mid a \in R\}$
- direct representation of \mathbb{A}-traces through $R_{0} R_{1} \cdots$
- \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \varnothing$

Consequence Game $\mathcal{C}\left(\mathbb{A}, \mathbb{A}^{\prime}\right)$

- basic positions: pair of binary relations (R, R^{\prime})
- winning condition in terms of trace reflection
- $\mathbb{A} \models_{G} \mathbb{A}^{\prime}$ implies $L(\mathbb{A}) \subseteq L\left(\mathbb{A}^{\prime}\right)$ but not vice versa

Special Automata

Modal Automaton: $\mathbb{A}=\left\langle A, a_{l}, \Delta, \Omega\right\rangle$, with $\Delta: A \rightarrow \mathrm{ML}_{1}(P, A)$

- $\operatorname{Latt}(A) \alpha::=p|\alpha \vee \alpha| \perp|\alpha \wedge \alpha| \top$
- $\mathrm{ML}_{1}(P, A) \varphi::=p|\neg p| \diamond \alpha|\square \alpha| \varphi \vee \varphi|\perp| \varphi \wedge \varphi \mid \top$

Special Automata

Modal Automaton: $\mathbb{A}=\left\langle A, a_{l}, \Delta, \Omega\right\rangle$, with $\Delta: A \rightarrow \mathrm{ML}_{1}(P, A)$

- $\operatorname{Latt}(A) \alpha::=p|\alpha \vee \alpha| \perp|\alpha \wedge \alpha| \top$
- $\mathrm{ML}_{1}(P, A) \varphi::=p|\neg p| \diamond \alpha|\square \alpha| \varphi \vee \varphi|\perp| \varphi \wedge \varphi \mid \top$

Disjunctive Automaton $\Delta: A \rightarrow \mathrm{ML}_{1}^{d}(P, A)$

- List $(P) \pi::=\perp|\top| p \wedge \pi \mid \neg p \wedge \pi$
- $\mathrm{ML}_{1}^{d}(P, A) \varphi::=\perp|\top| \pi \wedge \nabla B \mid \varphi \vee \varphi$,
where $B \subseteq A$.

Special Automata

Modal Automaton: $\mathbb{A}=\left\langle A, a_{l}, \Delta, \Omega\right\rangle$, with $\Delta: A \rightarrow \mathrm{ML}_{1}(P, A)$

- $\operatorname{Latt}(A) \alpha::=p|\alpha \vee \alpha| \perp|\alpha \wedge \alpha| \top$
- $\mathrm{ML}_{1}(P, A) \varphi::=p|\neg p| \diamond \alpha|\square \alpha| \varphi \vee \varphi|\perp| \varphi \wedge \varphi \mid \top$

Disjunctive Automaton $\Delta: A \rightarrow \mathrm{ML}_{1}^{d}(P, A)$

- $\operatorname{List}(P) \pi::=\perp|\top| p \wedge \pi \mid \neg p \wedge \pi$
- $\mathrm{ML}_{1}^{d}(P, A) \varphi::=\perp|\top| \pi \wedge \nabla B \mid \varphi \vee \varphi$, where $B \subseteq A$.

Semi-disjunctive Automaton $\Delta(a) \in \mathrm{ML}_{1}^{\mathrm{s}, C_{a}}(P, A)$

- List $(P) \pi::=\perp|\top| p \wedge \pi \mid \neg p \wedge \pi$
- $\mathrm{ML}_{1}^{s, C}(P, A) \varphi::=\perp|\top| \pi \wedge \nabla\{\wedge B \mid B \in \mathcal{B}\} \mid \varphi \vee \varphi$, where for all $B \in \mathcal{B}$, all $b, b^{\prime} \in B$ with $b \neq b^{\prime}, b$ or b^{\prime} is a maximal even element of C.

Key Lemmas

Strong Simulation Theorem (cf W39)

For every modal automaton \mathbb{A} there is an equivalent disjunctive simulation $\overline{\mathbb{A}}$ such that

$$
\begin{aligned}
\mathbb{A} & \models_{G} \overline{\mathbb{A}} \\
\overline{\mathbb{A}} & \models_{G} \mathbb{A} \\
\mathbb{B}[\overline{\mathbb{A}} / x] & \models_{G} \mathbb{B}[\mathbb{A} / x]
\end{aligned}
$$

for all automata \mathbb{B}.
Lemma (cf W36)
Let \mathbb{A}, \mathbb{B} be respectively a semidisjunctive and an arbitrary automaton. If $\mathbb{A} \models G \mathbb{B}$, then $\mathbb{A} \wedge \neg \mathbb{B}$ has a thin refutation.
Lemma (cf Kozen)
If \mathbb{A} is a consistent automaton, then \exists has a winning strategy in $\mathcal{S}_{\text {thin }}$.
Corollary If \mathbb{A} is a consistent (semi-)disjunctive automaton, then \mathbb{A} is satisfiable.

Proof of Kozen-Walukiewicz Theorem

Main Proposition

For every $\varphi \in \mu \mathrm{ML}$ there is an equivalent disjunctive automaton \mathbb{D} such that

$$
\varphi \vdash_{K} \mathbb{D} .
$$

Proof

Induction on φ : similar to Walukiewicz' proof, but using the above lemmas.

Work in progress

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L} Then $\mathbf{H}+K o z$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Work in progress

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L} Then $\mathbf{H}+K o z$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Examples:

- linear time μ-calculus
- k-successor μ-calculus
- standard modal μ-calculus
- graded μ-calculus
- monotone modal μ-calculus
- game μ-calculus

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Conclusions

Sample results:
R1 one-step bisimulation invariance implies bisimulation invariance
R2 one-step disjunctiveness implies uniform interpolation
R3 systematic characterization of continuity, complete additivity, ...
R4 one-step completeness + disjunctive basis implies completeness
Sample questions/problems:
Q1 Does J-W Thm hold on finite models?
Q2 Which fragments of $\mu \mathrm{ML}$ have interpolation? (PDL!)
Q3 Prove/disprove completeness for fixpoint logics (game logic!)

Conclusions

Sample results:
R1 one-step bisimulation invariance implies bisimulation invariance
R2 one-step disjunctiveness implies uniform interpolation
R3 systematic characterization of continuity, complete additivity, ...
R4 one-step completeness + disjunctive basis implies completeness
Sample questions/problems:
Q1 Does J-W Thm hold on finite models?
Q2 Which fragments of $\mu \mathrm{ML}$ have interpolation? (PDL!)
Q3 Prove/disprove completeness for fixpoint logics (game logic!)
Modal automata are too nice to leave them to computer science alone!

References

- G. Fontaine. Continuous fragment of the μ-calculus. CSL, 139-153, 2008.
- G. Fontaine \& YV. Some model theory of the modal μ-calculus. submitted, 2010.
- YV. Expressiveness modulo bisimilarity: a coalgebraic perspective. Johan van Benthem (Outstanding Contributions Series), Springer, 2014.
- A. Facchini, YV \& F. Zanasi. A characterization theorem for the alternation-free fragment of the modal μ-calculus. LICS, 478-487, 2013.
- F. Carreiro, A. Facchini, YV \& F. Zanasi. Weak MSO: Automata and expressiveness modulo bisimilarity. CSL-LICS, 27:1-27:27, 2014.
- S. Enqvist, F. Seifan \& YV. Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras. LICS, 353-365, 2015.
- F. Carreiro. PDL is the bisimulation-invariant fragment of weak chain logic, LICS, 341-352, 2016.
- S. Enqvist, F. Seifan \& YV. Completeness for coalgebraic fixpoint logic, CSL 2016.

References ct'd

- S. Enqvist, F. Seifan \& YV. Completeness for the modal μ-calculus: separating the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.
- YV. Lecture notes on the modal μ-calculus. Manuscript, ILLC, 2012.

> http://staff.science.uva.nl/~yde

