
MODAL AUTOMATA
studying modal fixpoint logics one step at a time

Yde Venema
http://staff.science.uva.nl/~yde

AiML, 30 August 2016

(largely joint work with Carreiro, Enqvist, Facchini, Fontaine, Seifan,
Zanasi, . . .)

http://staff.science.uva.nl/~yde

Fixpoints in modal logic

Examples:

I Uϕψ ≡ ϕ ∨ (ψ ∧©Uϕψ)

I 〈α∗〉ϕ ≡ ϕ ∨ 〈α〉〈α∗〉ϕ
I Cϕ ≡

∧
a Kaϕ ∧

∧
a KaCϕ

Languages:

I LTL, CTL, PDL, CTL∗, GL, . . .⊆ µML

I µML was introduced by Dexter Kozen (1983)

I µML extend basic modal logic with explicit fixpoint operators µ, ν

I Uϕψ := µx .ϕ ∨ (ψ ∧©x)

I 〈α∗〉ϕ := µx .ϕ ∨ 〈α〉x
I [α∗]ϕ = νx .ϕ ∧ [α]x .

I Cϕ := νx .
∧

a Kaϕ ∧
∧

a Kax

Fixpoints in modal logic

Examples:

I Uϕψ ≡ ϕ ∨ (ψ ∧©Uϕψ)

I 〈α∗〉ϕ ≡ ϕ ∨ 〈α〉〈α∗〉ϕ
I Cϕ ≡

∧
a Kaϕ ∧

∧
a KaCϕ

Languages:

I LTL, CTL, PDL, CTL∗, GL, . . .

⊆ µML

I µML was introduced by Dexter Kozen (1983)

I µML extend basic modal logic with explicit fixpoint operators µ, ν

I Uϕψ := µx .ϕ ∨ (ψ ∧©x)

I 〈α∗〉ϕ := µx .ϕ ∨ 〈α〉x
I [α∗]ϕ = νx .ϕ ∧ [α]x .

I Cϕ := νx .
∧

a Kaϕ ∧
∧

a Kax

Fixpoints in modal logic

Examples:

I Uϕψ ≡ ϕ ∨ (ψ ∧©Uϕψ)

I 〈α∗〉ϕ ≡ ϕ ∨ 〈α〉〈α∗〉ϕ
I Cϕ ≡

∧
a Kaϕ ∧

∧
a KaCϕ

Languages:

I LTL, CTL, PDL, CTL∗, GL, . . .⊆ µML

I µML was introduced by Dexter Kozen (1983)

I µML extend basic modal logic with explicit fixpoint operators µ, ν

I Uϕψ := µx .ϕ ∨ (ψ ∧©x)

I 〈α∗〉ϕ := µx .ϕ ∨ 〈α〉x
I [α∗]ϕ = νx .ϕ ∧ [α]x .

I Cϕ := νx .
∧

a Kaϕ ∧
∧

a Kax

The modal µ-calculus µML

I Formulas:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Formulas in negation normal form:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µp.ϕ′ | νp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Semantics:
[[µp.ϕ]]S,V := LFP(λX .[[ϕ]]S,V [p 7→X])

[[νp.ϕ]]S,V := GFP(λX .[[ϕ]]S,V [p 7→X])

I Unravelling:

I ηx .ϕ ≡ ϕ[ηx .ϕ/x] for η = µ, ν

I ν can unravel infinitely often, µ cannot

I traces in evaluation game and in tableaux

The modal µ-calculus µML

I Formulas:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Formulas in negation normal form:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µp.ϕ′ | νp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Semantics:
[[µp.ϕ]]S,V := LFP(λX .[[ϕ]]S,V [p 7→X])

[[νp.ϕ]]S,V := GFP(λX .[[ϕ]]S,V [p 7→X])

I Unravelling:

I ηx .ϕ ≡ ϕ[ηx .ϕ/x] for η = µ, ν

I ν can unravel infinitely often, µ cannot

I traces in evaluation game and in tableaux

The modal µ-calculus µML

I Formulas:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Formulas in negation normal form:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µp.ϕ′ | νp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Semantics:
[[µp.ϕ]]S,V := LFP(λX .[[ϕ]]S,V [p 7→X])

[[νp.ϕ]]S,V := GFP(λX .[[ϕ]]S,V [p 7→X])

I Unravelling:

I ηx .ϕ ≡ ϕ[ηx .ϕ/x] for η = µ, ν

I ν can unravel infinitely often, µ cannot

I traces in evaluation game and in tableaux

The modal µ-calculus µML

I Formulas:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Formulas in negation normal form:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µp.ϕ′ | νp.ϕ′

(provided that all occurrences of p in ϕ′ are positive)

I Semantics:
[[µp.ϕ]]S,V := LFP(λX .[[ϕ]]S,V [p 7→X])

[[νp.ϕ]]S,V := GFP(λX .[[ϕ]]S,V [p 7→X])

I Unravelling:

I ηx .ϕ ≡ ϕ[ηx .ϕ/x] for η = µ, ν

I ν can unravel infinitely often, µ cannot

I traces in evaluation game and in tableaux

The modal µ-calculus 2

I [+] natural extension of basic modal logic

I [+] expressive

I [+] good computational properties

I [+] nice meta-logical theory

I [–] hard to understand (nested) fixpoint operators

I [–] theory of µML isolated from theory of ML

Logic & Automata

Most results on µML use automata . . .

Automata in Logic

I long & rich history (Büchi, Rabin, . . .)

I mathematically interesting theory

I many practical applications

I automata for µML:

I Janin & Walukiewicz (1995): µ-automata (nondeterministic)

I Wilke (2002): modal automata (alternating)

Logic & Automata

Most results on µML use automata . . .

Automata in Logic

I long & rich history (Büchi, Rabin, . . .)

I mathematically interesting theory

I many practical applications

I automata for µML:

I Janin & Walukiewicz (1995): µ-automata (nondeterministic)

I Wilke (2002): modal automata (alternating)

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Kripke structures

I Fix a set X of proposition letters

I Elements of PX are called colors
I Transition system/Kripke structure: pair S = (S , σ) with

I σ = (σR , σV),

I σV : S → PX is a marking/coloring

I σR : S → PS encodes the binary relation

I σ(s) ∈ PX× PS is the one-step unfolding of s.

I Elements over PX× PS are called one-step frames over S

One-step Logic

I A one-step frame is a pair (Y ,U) with Y ⊆ X and U some set

I Let A (variables) be disjoint from X (proposition letters): A∩X = ∅
I One-step formulas: ¬p ∧ ♦(a ∧ b), �a ∧ (♦b ∨ q), . . .

I One-step modal language 1ML(X,A) over A

α ::= p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

with p ∈ X and π ∈ Latt(A)

I Latt(A): prop. lang. over A (π ::= a | ⊥ | > | π ∨ π | π ∧ π)

I One-step model (Y ,U,m) with Y ⊆ X and m : U → PA

I One-step semantics interprets 1ML(X,A) over one-step models

One-step Logic

I A one-step frame is a pair (Y ,U) with Y ⊆ X and U some set

I Let A (variables) be disjoint from X (proposition letters): A∩X = ∅
I One-step formulas: ¬p ∧ ♦(a ∧ b), �a ∧ (♦b ∨ q), . . .

I One-step modal language 1ML(X,A) over A

α ::= p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

with p ∈ X and π ∈ Latt(A)

I Latt(A): prop. lang. over A (π ::= a | ⊥ | > | π ∨ π | π ∧ π)

I One-step model (Y ,U,m) with Y ⊆ X and m : U → PA

I One-step semantics interprets 1ML(X,A) over one-step models

One-step Logic

I A one-step frame is a pair (Y ,U) with Y ⊆ X and U some set

I Let A (variables) be disjoint from X (proposition letters): A∩X = ∅
I One-step formulas: ¬p ∧ ♦(a ∧ b), �a ∧ (♦b ∨ q), . . .

I One-step modal language 1ML(X,A) over A

α ::= p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

with p ∈ X and π ∈ Latt(A)

I Latt(A): prop. lang. over A (π ::= a | ⊥ | > | π ∨ π | π ∧ π)

I One-step model (Y ,U,m) with Y ⊆ X and m : U → PA

I One-step semantics interprets 1ML(X,A) over one-step models

One-step Semantics: details

I One-step model (Y ,U,m) with Y ⊆ X and m : U → PA

I Zero-step semantics

[[a]]0 := {u ∈ U | a ∈ m(u)}
[[⊥]]0 := ∅ [[π ∨ π′]]0 := [[π]]0 ∪ [[π′]]0

[[>]]0 := U [[π ∧ π′]]0 := [[π]]0 ∩ [[π′]]0

I One-step semantics

(Y ,U,m) 1 p if p ∈ Y
(Y ,U,m) 1 ¬p if p 6∈ Y
(Y ,U,m) 1 ♦π if U ∩ [[π]]0 6= ∅
(Y ,U,m) 1 �π if U ⊆ [[π]]0

(Y ,U,m) 1 ⊥ never
(Y ,U,m) 1 > always
(Y ,U,m) 1 α ∨ α′ if (Y ,U,m) 1 α or (Y ,U,m) 1 α′

(Y ,U,m) 1 α ∧ α′ if (Y ,U,m) 1 α and (Y ,U,m) 1 α′

Modal automata

I A modal automaton is a triple A = (A,Θ,Acc), where

I A is a finite set of states

I Θ : A→ 1ML(X,A) is the transition map

I Acc ⊆ Aω is the acceptance condition

I An initialized automaton is pair (A, a) with a ∈ A

I Parity automata: Acc is given by map Ω : A→ ω
I Given ρ ∈ Aω, Inf (ρ) := {a ∈ A | a occurs infinitely often in πb}
I AccΩ := {ρ ∈ Aω | max{Ω(a) | a ∈ Inf (ρ)} is even }

Modal automata

I A modal automaton is a triple A = (A,Θ,Acc), where

I A is a finite set of states

I Θ : A→ 1ML(X,A) is the transition map

I Acc ⊆ Aω is the acceptance condition

I An initialized automaton is pair (A, a) with a ∈ A

I Parity automata: Acc is given by map Ω : A→ ω
I Given ρ ∈ Aω, Inf (ρ) := {a ∈ A | a occurs infinitely often in πb}
I AccΩ := {ρ ∈ Aω | max{Ω(a) | a ∈ Inf (ρ)} is even }

Acceptance game

Acceptance game A(A,S) of A = 〈A,Θ,Acc〉 on S = 〈S , σ〉:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σ(s),m |= Θ(a)}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

Winning conditions:

I finite matches are lost by the player who gets stuck,

I infinite matches are won as specified by the acceptance condition:
I match π = (a0, s0)m0(a1, s1)m1 . . . induces list πA := a0a1a2 . . .
I ∃ wins if πA ∈ Acc

Definition (A, a) accepts (S, s) if (a, s) ∈Win∃(A(A,S)).

Acceptance game

Acceptance game A(A,S) of A = 〈A,Θ,Acc〉 on S = 〈S , σ〉:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σ(s),m |= Θ(a)}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

Winning conditions:

I finite matches are lost by the player who gets stuck,

I infinite matches are won as specified by the acceptance condition:
I match π = (a0, s0)m0(a1, s1)m1 . . . induces list πA := a0a1a2 . . .
I ∃ wins if πA ∈ Acc

Definition (A, a) accepts (S, s) if (a, s) ∈Win∃(A(A,S)).

Acceptance game

Acceptance game A(A,S) of A = 〈A,Θ,Acc〉 on S = 〈S , σ〉:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σ(s),m |= Θ(a)}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

Winning conditions:

I finite matches are lost by the player who gets stuck,

I infinite matches are won as specified by the acceptance condition:
I match π = (a0, s0)m0(a1, s1)m1 . . . induces list πA := a0a1a2 . . .
I ∃ wins if πA ∈ Acc

Definition (A, a) accepts (S, s) if (a, s) ∈Win∃(A(A,S)).

Themes

Basis

I There are well-understood translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via these corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Themes

Basis

I There are well-understood translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via these corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Themes

Basis

I There are well-understood translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via these corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Themes

Basis

I There are well-understood translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via these corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level

- by the interaction of combinatorics and dynamics

Themes

Basis

I There are well-understood translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via these corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Fragments/Variations

Fix automaton A = (A,Θ,Ω)

I Write a b if b occurs in Θ(a), and B := ()+

I A cluster is an equivalence relation of ./ := B ∪C ∪∆A

I A is weak if a ./ b implies Ω(a) = Ω(b) so WLOG Ω : A→ {0, 1}
I A PDL-automaton is a weak parity automaton A s.t. for a ∈ A:

I if Ω(a) = 1 then Θ(a) ∈ ADD1(X,A,C) given by

α ::= β | 〈d〉c | α ∨ α.

where β ∈ 1ML(X,A \ C) and c ∈ C

I if Ω(a) = 0 then Θ(a) ∈ MUL1(X,A,C) defined dually

Proposition (Carreiro & Venema) test-free PDL ≡ PDL-automata

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

One-step Logic

Key Idea: take word ‘logic’ seriously!

I (Y ,U,m) and Y ′,U ′,m′) are one-step bisimilar if
I Y = Y ′

I ∀u ∈ U ∃u′ ∈ U ′.m(u) = m′(u′)

I ∀u′ ∈ U ′ ∃u ∈ U.m(u) = m′(u′)

Proposition If (Y ,U,m)↔1 Y ′,U ′,m′) then (Y ,U,m) ≡1 Y ′,U ′,m′).

I A one-step morphism f : (Y ,U,m)→ (Y ′,U ′,m′) is

I a surjection f : U → U ′

I such that m = m′ ◦ f
I but it only exists if Y = Y ′

One-step Logic

Key Idea: take word ‘logic’ seriously!

I (Y ,U,m) and Y ′,U ′,m′) are one-step bisimilar if

I Y = Y ′

I ∀u ∈ U ∃u′ ∈ U ′.m(u) = m′(u′)

I ∀u′ ∈ U ′ ∃u ∈ U.m(u) = m′(u′)

Proposition If (Y ,U,m)↔1 Y ′,U ′,m′) then (Y ,U,m) ≡1 Y ′,U ′,m′).

I A one-step morphism f : (Y ,U,m)→ (Y ′,U ′,m′) is

I a surjection f : U → U ′

I such that m = m′ ◦ f
I but it only exists if Y = Y ′

One-step Logic

Key Idea: take word ‘logic’ seriously!

I (Y ,U,m) and Y ′,U ′,m′) are one-step bisimilar if
I Y = Y ′

I ∀u ∈ U ∃u′ ∈ U ′.m(u) = m′(u′)

I ∀u′ ∈ U ′ ∃u ∈ U.m(u) = m′(u′)

Proposition If (Y ,U,m)↔1 Y ′,U ′,m′) then (Y ,U,m) ≡1 Y ′,U ′,m′).

I A one-step morphism f : (Y ,U,m)→ (Y ′,U ′,m′) is

I a surjection f : U → U ′

I such that m = m′ ◦ f
I but it only exists if Y = Y ′

One-step Logic

Key Idea: take word ‘logic’ seriously!

I (Y ,U,m) and Y ′,U ′,m′) are one-step bisimilar if
I Y = Y ′

I ∀u ∈ U ∃u′ ∈ U ′.m(u) = m′(u′)

I ∀u′ ∈ U ′ ∃u ∈ U.m(u) = m′(u′)

Proposition If (Y ,U,m)↔1 Y ′,U ′,m′) then (Y ,U,m) ≡1 Y ′,U ′,m′).

I A one-step morphism f : (Y ,U,m)→ (Y ′,U ′,m′) is

I a surjection f : U → U ′

I such that m = m′ ◦ f
I but it only exists if Y = Y ′

One-step soundness and completeness

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (Y ,U,m):

(Y ,U,m) 1 α implies (Y ,U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.
Example for basic modal logic K the core consists of

I monotonicity rule for ♦: π ≤ π′ / ♦π ≤ ♦π′

I normality (♦⊥ ≤ ⊥) and additivity (♦(π ∨ π′) ≤ ♦π ∨ ♦π′) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Pattinson, Schröder,. . .)

One-step soundness and completeness

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (Y ,U,m):

(Y ,U,m) 1 α implies (Y ,U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.

Example for basic modal logic K the core consists of

I monotonicity rule for ♦: π ≤ π′ / ♦π ≤ ♦π′

I normality (♦⊥ ≤ ⊥) and additivity (♦(π ∨ π′) ≤ ♦π ∨ ♦π′) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Pattinson, Schröder,. . .)

One-step soundness and completeness

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (Y ,U,m):

(Y ,U,m) 1 α implies (Y ,U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.
Example for basic modal logic K the core consists of

I monotonicity rule for ♦: π ≤ π′ / ♦π ≤ ♦π′

I normality (♦⊥ ≤ ⊥) and additivity (♦(π ∨ π′) ≤ ♦π ∨ ♦π′) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Pattinson, Schröder,. . .)

One-step soundness and completeness

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (Y ,U,m):

(Y ,U,m) 1 α implies (Y ,U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.
Example for basic modal logic K the core consists of

I monotonicity rule for ♦: π ≤ π′ / ♦π ≤ ♦π′

I normality (♦⊥ ≤ ⊥) and additivity (♦(π ∨ π′) ≤ ♦π ∨ ♦π′) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Pattinson, Schröder,. . .)

One-step soundness and completeness

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (Y ,U,m):

(Y ,U,m) 1 α implies (Y ,U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.
Example for basic modal logic K the core consists of

I monotonicity rule for ♦: π ≤ π′ / ♦π ≤ ♦π′

I normality (♦⊥ ≤ ⊥) and additivity (♦(π ∨ π′) ≤ ♦π ∨ ♦π′) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Pattinson, Schröder,. . .)

Chromatic automata

Separate X from A

I In A = (A,Θ,Ω), move from Θ : A→ 1ML(X,A) with

α := p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

to Θ : A× PX→ 1ML(∅,A)

α := ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σR(s),m |= Θ(a, σV (s))}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

I Point: (σR ,m) is an A-structure in the sense of model theory,
i.e. a pair (D, I) with I : A→ PD interpreting each a ∈ A

Chromatic automata

Separate X from A

I In A = (A,Θ,Ω), move from Θ : A→ 1ML(X,A) with

α := p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

to Θ : A× PX→ 1ML(∅,A)

α := ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σR(s),m |= Θ(a, σV (s))}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

I Point: (σR ,m) is an A-structure in the sense of model theory,
i.e. a pair (D, I) with I : A→ PD interpreting each a ∈ A

Chromatic automata

Separate X from A

I In A = (A,Θ,Ω), move from Θ : A→ 1ML(X,A) with

α := p | ¬p | ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

to Θ : A× PX→ 1ML(∅,A)

α := ♦π | �π | ⊥ | > | α ∨ α | α ∧ α

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σR(s),m |= Θ(a, σV (s))}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

I Point: (σR ,m) is an A-structure in the sense of model theory,
i.e. a pair (D, I) with I : A→ PD interpreting each a ∈ A

A family of automaton types

I Let L(A) be some set of A-monotone sentences of some logic

I Example: FOE

ϕ ::= x = y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ

sloppy: restrict to A-positive fragment

I Other examples: FO, MSO, FO∞, FO∀, . . .

I Aut(L): automata with Θ : A× PX→ L(A)

Proposition Modal automata ∼ Aut(FO)

A family of automaton types

I Let L(A) be some set of A-monotone sentences of some logic

I Example: FOE

ϕ ::= x = y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ

sloppy: restrict to A-positive fragment

I Other examples: FO, MSO, FO∞, FO∀, . . .

I Aut(L): automata with Θ : A× PX→ L(A)

Proposition Modal automata ∼ Aut(FO)

A family of automaton types

I Let L(A) be some set of A-monotone sentences of some logic

I Example: FOE

ϕ ::= x = y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ

sloppy: restrict to A-positive fragment

I Other examples: FO, MSO, FO∞, FO∀, . . .

I Aut(L): automata with Θ : A× PX→ L(A)

Proposition Modal automata ∼ Aut(FO)

A family of automaton types

I Let L(A) be some set of A-monotone sentences of some logic

I Example: FOE

ϕ ::= x = y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ

sloppy: restrict to A-positive fragment

I Other examples: FO, MSO, FO∞, FO∀, . . .

I Aut(L): automata with Θ : A× PX→ L(A)

Proposition Modal automata ∼ Aut(FO)

A family of automaton types

I Let L(A) be some set of A-monotone sentences of some logic

I Example: FOE

ϕ ::= x = y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ

sloppy: restrict to A-positive fragment

I Other examples: FO, MSO, FO∞, FO∀, . . .

I Aut(L): automata with Θ : A× PX→ L(A)

Proposition Modal automata ∼ Aut(FO)

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Aut(FO) and Aut(FOE)

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Theorem There is a translation (·)♦ : FOE→ FO such that

ϕ ≡ ϕ♦ iff ϕ is one-step bisimulation invariant

Corollary There is a translation (·)♦ : Aut(FOE)→ Aut(FO) such that

A ≡ A♦ iff A is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Corollary (Janin & Walukiewicz) µML ≡ MSO/↔.

Proof (1) µML ≡ Aut(FO)
(2) MSO ≡ Aut(FOE) (on trees)

Bisimulation invariance

Theorem Let L and L′ be two one-step languages. Then

L′ ≡s L/↔1 implies Aut(L′) ≡s Aut(L)/↔

This result allows

I variations/generalizations of the Janin-Walukiewicz Theorem

Bisimulation invariance

Theorem Let L and L′ be two one-step languages. Then

L′ ≡s L/↔1 implies Aut(L′) ≡s Aut(L)/↔

This result allows

I variations/generalizations of the Janin-Walukiewicz Theorem

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Model theory of modal automata

I normal form theorems

I characterization theorems

I (uniform) interpolation

I . . .

Normal forms

I Given L, find nice L′ such that Aut(L′) ≡ Aut(L)

I α is disjunctive if for all (Y ,U,m) 1 α

there is (Y ,U ′,m′) and a fr morphism f : (Y ,U ′)→ (Y ,U) s.t.

I m′ ◦ f ⊆ m

I (Y ′,U ′,m′) 1 α and

I |m(u)| ≤ 1 for all u ∈ U.

I Example ∇B :=
∧
♦B ∧�

∨
B for B ⊆ A

I A = (A,Θ,Ω) is disjunctive if Θ(a) is disjunctive for all a ∈ A

Simulation Theorem (Janin & Walukiewicz)
Every modal automaton has a disjunctive equivalent:

Aut(1ML) ≡ Aut(1MLd)

Normal forms

I Given L, find nice L′ such that Aut(L′) ≡ Aut(L)

I α is disjunctive if for all (Y ,U,m) 1 α

there is (Y ,U ′,m′) and a fr morphism f : (Y ,U ′)→ (Y ,U) s.t.

I m′ ◦ f ⊆ m

I (Y ′,U ′,m′) 1 α and

I |m(u)| ≤ 1 for all u ∈ U.

I Example ∇B :=
∧
♦B ∧�

∨
B for B ⊆ A

I A = (A,Θ,Ω) is disjunctive if Θ(a) is disjunctive for all a ∈ A

Simulation Theorem (Janin & Walukiewicz)
Every modal automaton has a disjunctive equivalent:

Aut(1ML) ≡ Aut(1MLd)

Normal forms

I Given L, find nice L′ such that Aut(L′) ≡ Aut(L)

I α is disjunctive if for all (Y ,U,m) 1 α

there is (Y ,U ′,m′) and a fr morphism f : (Y ,U ′)→ (Y ,U) s.t.

I m′ ◦ f ⊆ m

I (Y ′,U ′,m′) 1 α and

I |m(u)| ≤ 1 for all u ∈ U.

I Example ∇B :=
∧
♦B ∧�

∨
B for B ⊆ A

I A = (A,Θ,Ω) is disjunctive if Θ(a) is disjunctive for all a ∈ A

Simulation Theorem (Janin & Walukiewicz)
Every modal automaton has a disjunctive equivalent:

Aut(1ML) ≡ Aut(1MLd)

Uniform Interpolation

Theorem (D’Agostino & Hollenberg) µML enjoys uniform interpolation

Theorem Aut(L) enjoys uniform interpolation if
(1) L consists of disjunctive formulas
(2) L is closed under disjunctions

Uniform Interpolation

Theorem (D’Agostino & Hollenberg) µML enjoys uniform interpolation

Theorem Aut(L) enjoys uniform interpolation if
(1) L consists of disjunctive formulas
(2) L is closed under disjunctions

 Los-Tarski Theorem

I ϕ has the LT-property if the truth of ϕ is preserved under taking
submodels.

Theorem (D’Agostino & Hollenberg)
ξ ∈ µML has LT iff ξ ≡ ϕ ∈ µML∀

µML∀ 3 ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µx .ϕ | νx .ϕ

I L′ ≡s L/LT if there is a map (·)LT : L → L′ such that

α ∈ L has LT iff α ≡s α
LT

Proposition If L′ ≡s L/LT then Aut(L′) ≡s AutL/LT

Proposition FO∀ ≡s FO/LT

Corollary (1) Aut(FO∀) ≡s Aut(FO)/LT
(2) it is decidable whether A ∈ Aut(FO)/ϕ ∈ µML has LT

 Los-Tarski Theorem

I ϕ has the LT-property if the truth of ϕ is preserved under taking
submodels.

Theorem (D’Agostino & Hollenberg)
ξ ∈ µML has LT iff ξ ≡ ϕ ∈ µML∀

µML∀ 3 ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µx .ϕ | νx .ϕ

I L′ ≡s L/LT if there is a map (·)LT : L → L′ such that

α ∈ L has LT iff α ≡s α
LT

Proposition If L′ ≡s L/LT then Aut(L′) ≡s AutL/LT

Proposition FO∀ ≡s FO/LT

Corollary (1) Aut(FO∀) ≡s Aut(FO)/LT
(2) it is decidable whether A ∈ Aut(FO)/ϕ ∈ µML has LT

 Los-Tarski Theorem

I ϕ has the LT-property if the truth of ϕ is preserved under taking
submodels.

Theorem (D’Agostino & Hollenberg)
ξ ∈ µML has LT iff ξ ≡ ϕ ∈ µML∀

µML∀ 3 ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µx .ϕ | νx .ϕ

I L′ ≡s L/LT if there is a map (·)LT : L → L′ such that

α ∈ L has LT iff α ≡s α
LT

Proposition If L′ ≡s L/LT then Aut(L′) ≡s AutL/LT

Proposition FO∀ ≡s FO/LT

Corollary (1) Aut(FO∀) ≡s Aut(FO)/LT
(2) it is decidable whether A ∈ Aut(FO)/ϕ ∈ µML has LT

 Los-Tarski Theorem

I ϕ has the LT-property if the truth of ϕ is preserved under taking
submodels.

Theorem (D’Agostino & Hollenberg)
ξ ∈ µML has LT iff ξ ≡ ϕ ∈ µML∀

µML∀ 3 ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µx .ϕ | νx .ϕ

I L′ ≡s L/LT if there is a map (·)LT : L → L′ such that

α ∈ L has LT iff α ≡s α
LT

Proposition If L′ ≡s L/LT then Aut(L′) ≡s AutL/LT

Proposition FO∀ ≡s FO/LT

Corollary (1) Aut(FO∀) ≡s Aut(FO)/LT
(2) it is decidable whether A ∈ Aut(FO)/ϕ ∈ µML has LT

Continuity

I A formula ϕ is (Scott) p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finite U ⊆ V (p)

or equivalently

ϕp(W) =
⋃{

ϕp(U) | U ⊆ω W }

Theorem (Fontaine) ξ ∈ µML is p-continuous iff ξ ≡ ϕ ∈ CONT p(µML)

CONTP(µML) 3 ϕ ::= p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | µx .ϕ′

where p ∈ P, ψ ∈ µML is p-free, and ϕ′ ∈ CONTP∪{x}(µML).

Continuity continued

I ϕ is horizontally p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finitely branching U ⊆ V (p)

I ϕ is vertically p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finite-depth U ⊆ V (p)

Observations

I p-continuity = horizontal p-continuity + vertical p-continuity

I horizontal p-continuity is easily determined at one-step level

I vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.
All three are decidable properties.

Continuity continued

I ϕ is horizontally p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finitely branching U ⊆ V (p)

I ϕ is vertically p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finite-depth U ⊆ V (p)

Observations

I p-continuity = horizontal p-continuity + vertical p-continuity

I horizontal p-continuity is easily determined at one-step level

I vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.
All three are decidable properties.

Continuity continued

I ϕ is horizontally p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finitely branching U ⊆ V (p)

I ϕ is vertically p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finite-depth U ⊆ V (p)

Observations

I p-continuity = horizontal p-continuity + vertical p-continuity

I horizontal p-continuity is easily determined at one-step level

I vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.

All three are decidable properties.

Continuity continued

I ϕ is horizontally p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finitely branching U ⊆ V (p)

I ϕ is vertically p-continuous if

S, s ϕ iff S[p 7→ U], s ϕ for some finite-depth U ⊆ V (p)

Observations

I p-continuity = horizontal p-continuity + vertical p-continuity

I horizontal p-continuity is easily determined at one-step level

I vertical p-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)
Syntactic characterizations of automata that are (hor/vert) continuous.
All three are decidable properties.

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡ WMSO/↔
Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡ WMSO/↔
Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡ WMSO/↔
Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡

WMSO/↔
Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡ WMSO/↔

Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Continuity 3

Sublanguages of µML:

I µML
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx .ϕ′

where ϕ′ is monotone in x

I µcML: require ϕ′ is continuous in x

I µaML: require ϕ′ is completely additive in x

Theorem (Venema) µaML ≡ PDL

Theorem (Carreiro, Facchini, Venema & Zanasi) µcML ≡ WMSO/↔
Proof
(1) WMSO ≡ Autcw (FO∞)
(2) careful analysis of FO∞ as a one-step language
(3) Autcw (FO∞) ≡s Autcw (FO)

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Completeness

Kozen Axiomatisation:

I complete calculus for modal logic

I ϕ(µp.ϕ) `K µp.ϕ (α `K β abbreviates `K α → β)

I if ϕ(ψ) `K ϕ then µp.ϕ `K ψ

Theorem (Kozen 1983)
`K is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
`K is sound and complete for all formulas.

Questions (2015)
How to generalise this to similar logics, eg, the monotone µ-calculus?
How to generalise this to restricted frame classes?
Does completeness transfer to fragments of µML?

Completeness

Kozen Axiomatisation:

I complete calculus for modal logic

I ϕ(µp.ϕ) `K µp.ϕ (α `K β abbreviates `K α → β)

I if ϕ(ψ) `K ϕ then µp.ϕ `K ψ

Theorem (Kozen 1983)
`K is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
`K is sound and complete for all formulas.

Questions (2015)
How to generalise this to similar logics, eg, the monotone µ-calculus?
How to generalise this to restricted frame classes?
Does completeness transfer to fragments of µML?

Completeness

Kozen Axiomatisation:

I complete calculus for modal logic

I ϕ(µp.ϕ) `K µp.ϕ (α `K β abbreviates `K α → β)

I if ϕ(ψ) `K ϕ then µp.ϕ `K ψ

Theorem (Kozen 1983)
`K is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
`K is sound and complete for all formulas.

Questions (2015)
How to generalise this to similar logics, eg, the monotone µ-calculus?
How to generalise this to restricted frame classes?
Does completeness transfer to fragments of µML?

Completeness

Kozen Axiomatisation:

I complete calculus for modal logic

I ϕ(µp.ϕ) `K µp.ϕ (α `K β abbreviates `K α → β)

I if ϕ(ψ) `K ϕ then µp.ϕ `K ψ

Theorem (Kozen 1983)
`K is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
`K is sound and complete for all formulas.

Questions (2015)
How to generalise this to similar logics, eg, the monotone µ-calculus?
How to generalise this to restricted frame classes?
Does completeness transfer to fragments of µML?

Walukiewicz’ Proof: Evaluation

Why is Walukiewicz’ proof hard?

1 complex combinatorics of traces

2 incorporate simulation theorem into derivations

3 mix of `K -derivations, tableaux and automata

4 tableau rules for boolean connectives complicate combinatorics

5 . . .

content vs wrapping

Walukiewicz’ Proof: Evaluation

Why is Walukiewicz’ proof hard?

1 complex combinatorics of traces

2 incorporate simulation theorem into derivations

3 mix of `K -derivations, tableaux and automata

4 tableau rules for boolean connectives complicate combinatorics

5 . . .

content vs wrapping

Walukiewicz’ Proof: Evaluation

Why is Walukiewicz’ proof hard?

1 complex combinatorics of traces

2 incorporate simulation theorem into derivations

3 mix of `K -derivations, tableaux and automata

4 tableau rules for boolean connectives complicate combinatorics

5 . . .

content vs wrapping

Our Approach: Principles

I separate the combinatorics from the dynamics

I focus on automata rather than formulas

I make traces first-class citizens

Our Approach: Principles

Dynamics: coalgebra

I one step at a time

I absorb booleans into one-step rules

I Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management

I use binary relations to deal with trace combinatorics

Automata

I uniform, ‘clean’ presentation of fixpoint formulas

I excellent framework for developing trace theory

I direct formulation of simulation theorem

I bring automata into proof theory

Our Approach: Principles

Dynamics: coalgebra

I one step at a time

I absorb booleans into one-step rules

I Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management

I use binary relations to deal with trace combinatorics

Automata

I uniform, ‘clean’ presentation of fixpoint formulas

I excellent framework for developing trace theory

I direct formulation of simulation theorem

I bring automata into proof theory

Our Approach: Principles

Dynamics: coalgebra

I one step at a time

I absorb booleans into one-step rules

I Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management

I use binary relations to deal with trace combinatorics

Automata

I uniform, ‘clean’ presentation of fixpoint formulas

I excellent framework for developing trace theory

I direct formulation of simulation theorem

I bring automata into proof theory

Our Approach: Principles

Dynamics: coalgebra

I one step at a time

I absorb booleans into one-step rules

I Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management

I use binary relations to deal with trace combinatorics

Automata

I uniform, ‘clean’ presentation of fixpoint formulas

I excellent framework for developing trace theory

I direct formulation of simulation theorem

I bring automata into proof theory

Our Approach: Principles

Dynamics: coalgebra

I one step at a time

I absorb booleans into one-step rules

I Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management

I use binary relations to deal with trace combinatorics

Automata

I uniform, ‘clean’ presentation of fixpoint formulas

I excellent framework for developing trace theory

I direct formulation of simulation theorem

I bring automata into proof theory

Automata & Formulas

Theorem
There are maps B− : µML→ Aut(ML1) and ξ : Aut(ML1)→ µML that
(1) preserve meaning: ϕ ≡ Bϕ and A ≡ ξ(A)

(2) satisfy ϕ ≡K ξ(Bϕ);
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

ξ(A[B/x]) ≡K ξ(A)[ξ(B)/x].

As a corollary, we may apply proof-theoretic concepts to automata

Automata & Formulas

Theorem
There are maps B− : µML→ Aut(ML1) and ξ : Aut(ML1)→ µML that
(1) preserve meaning: ϕ ≡ Bϕ and A ≡ ξ(A)
(2) satisfy ϕ ≡K ξ(Bϕ);

(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

ξ(A[B/x]) ≡K ξ(A)[ξ(B)/x].

As a corollary, we may apply proof-theoretic concepts to automata

Automata & Formulas

Theorem
There are maps B− : µML→ Aut(ML1) and ξ : Aut(ML1)→ µML that
(1) preserve meaning: ϕ ≡ Bϕ and A ≡ ξ(A)
(2) satisfy ϕ ≡K ξ(Bϕ);
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

ξ(A[B/x]) ≡K ξ(A)[ξ(B)/x].

As a corollary, we may apply proof-theoretic concepts to automata

Automata & Formulas

Theorem
There are maps B− : µML→ Aut(ML1) and ξ : Aut(ML1)→ µML that
(1) preserve meaning: ϕ ≡ Bϕ and A ≡ ξ(A)
(2) satisfy ϕ ≡K ξ(Bϕ);
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

ξ(A[B/x]) ≡K ξ(A)[ξ(B)/x].

As a corollary, we may apply proof-theoretic concepts to automata

Framework

Satisfiability Game S(A) (Fontaine, Leal & Venema 2010)

I basic positions: binary relations R ∈ P(A× A)

I R corresponds to
∧
{∆(a) | a ∈ R}

I direct representation of A-traces through R0R1 · · ·
I ∃ wins S(A) iff L(A) 6= ∅

Consequence Game C(A,A′)
I basic positions: pair of binary relations (R,R ′)

I winning condition in terms of trace reflection

I A |=G A′ implies L(A) ⊆ L(A′) but not vice versa

Framework

Satisfiability Game S(A) (Fontaine, Leal & Venema 2010)

I basic positions: binary relations R ∈ P(A× A)

I R corresponds to
∧
{∆(a) | a ∈ R}

I direct representation of A-traces through R0R1 · · ·
I ∃ wins S(A) iff L(A) 6= ∅

Consequence Game C(A,A′)
I basic positions: pair of binary relations (R,R ′)

I winning condition in terms of trace reflection

I A |=G A′ implies L(A) ⊆ L(A′)

but not vice versa

Framework

Satisfiability Game S(A) (Fontaine, Leal & Venema 2010)

I basic positions: binary relations R ∈ P(A× A)

I R corresponds to
∧
{∆(a) | a ∈ R}

I direct representation of A-traces through R0R1 · · ·
I ∃ wins S(A) iff L(A) 6= ∅

Consequence Game C(A,A′)
I basic positions: pair of binary relations (R,R ′)

I winning condition in terms of trace reflection

I A |=G A′ implies L(A) ⊆ L(A′) but not vice versa

Special Automata

Modal Automaton: A = 〈A, aI ,∆,Ω〉, with ∆ : A→ ML1(P,A)

I Latt(A) α ::= p | α ∨ α | ⊥ | α ∧ α | >
I ML1(P,A) ϕ ::= p | ¬p | ♦α | �α | ϕ ∨ ϕ | ⊥ | ϕ ∧ ϕ | >

Disjunctive Automaton ∆ : A→ MLd
1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLd

1 (P,A) ϕ ::= ⊥ | > | π ∧∇B | ϕ ∨ ϕ,
where B ⊆ A.

Semi-disjunctive Automaton ∆(a) ∈ MLs,Ca

1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLs,C

1 (P,A) ϕ ::= ⊥ | > | π ∧∇{
∧
B | B ∈ B} | ϕ ∨ ϕ,

where for all B ∈ B, all b, b′ ∈ B with b 6= b′, b or b′ is a maximal even element of C.

Special Automata

Modal Automaton: A = 〈A, aI ,∆,Ω〉, with ∆ : A→ ML1(P,A)

I Latt(A) α ::= p | α ∨ α | ⊥ | α ∧ α | >
I ML1(P,A) ϕ ::= p | ¬p | ♦α | �α | ϕ ∨ ϕ | ⊥ | ϕ ∧ ϕ | >

Disjunctive Automaton ∆ : A→ MLd
1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLd

1 (P,A) ϕ ::= ⊥ | > | π ∧∇B | ϕ ∨ ϕ,
where B ⊆ A.

Semi-disjunctive Automaton ∆(a) ∈ MLs,Ca

1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLs,C

1 (P,A) ϕ ::= ⊥ | > | π ∧∇{
∧
B | B ∈ B} | ϕ ∨ ϕ,

where for all B ∈ B, all b, b′ ∈ B with b 6= b′, b or b′ is a maximal even element of C.

Special Automata

Modal Automaton: A = 〈A, aI ,∆,Ω〉, with ∆ : A→ ML1(P,A)

I Latt(A) α ::= p | α ∨ α | ⊥ | α ∧ α | >
I ML1(P,A) ϕ ::= p | ¬p | ♦α | �α | ϕ ∨ ϕ | ⊥ | ϕ ∧ ϕ | >

Disjunctive Automaton ∆ : A→ MLd
1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLd

1 (P,A) ϕ ::= ⊥ | > | π ∧∇B | ϕ ∨ ϕ,
where B ⊆ A.

Semi-disjunctive Automaton ∆(a) ∈ MLs,Ca

1 (P,A)

I List(P) π ::= ⊥ | > | p ∧ π | ¬p ∧ π
I MLs,C

1 (P,A) ϕ ::= ⊥ | > | π ∧∇{
∧

B | B ∈ B} | ϕ ∨ ϕ,
where for all B ∈ B, all b, b′ ∈ B with b 6= b′, b or b′ is a maximal even element of C.

Key Lemmas

Strong Simulation Theorem (cf W39)
For every modal automaton A there is an equivalent disjunctive
simulation A such that

A |=G A
A |=G A

B[A/x] |=G B[A/x]

for all automata B.

Lemma (cf W36)
Let A,B be respectively a semidisjunctive and an arbitrary automaton.
If A |=G B, then A ∧ ¬B has a thin refutation.

Lemma (cf Kozen)
If A is a consistent automaton, then ∃ has a winning strategy in Sthin.

Corollary If A is a consistent (semi-)disjunctive automaton, then A is satisfiable.

Proof of Kozen-Walukiewicz Theorem

Main Proposition
For every ϕ ∈ µML there is an equivalent disjunctive automaton D such
that

ϕ `K D.

Proof
Induction on ϕ: similar to Walukiewicz’ proof, but using the above
lemmas.

Work in progress

Theorem Assume that

I L is a one-step language with an adequate disjunctive base

I H is a one-step sound and complete axiomatization for L
Then H + Koz is a sound and complete axiomatization for µL.

Examples:

I linear time µ-calculus

I k-successor µ-calculus

I standard modal µ-calculus

I graded µ-calculus

I monotone modal µ-calculus

I game µ-calculus

I . . .

Work in progress

Theorem Assume that

I L is a one-step language with an adequate disjunctive base

I H is a one-step sound and complete axiomatization for L
Then H + Koz is a sound and complete axiomatization for µL.

Examples:

I linear time µ-calculus

I k-successor µ-calculus

I standard modal µ-calculus

I graded µ-calculus

I monotone modal µ-calculus

I game µ-calculus

I . . .

Overview

I Introduction

I Modal automata

I One-step logic

I Bisimulation invariance

I Model Theory

I Completeness

I Conclusion

Conclusions

Sample results:

R1 one-step bisimulation invariance implies bisimulation invariance

R2 one-step disjunctiveness implies uniform interpolation

R3 systematic characterization of continuity, complete additivity, . . .

R4 one-step completeness + disjunctive basis implies completeness

Sample questions/problems:

Q1 Does J-W Thm hold on finite models?

Q2 Which fragments of µML have interpolation? (PDL!)

Q3 Prove/disprove completeness for fixpoint logics (game logic!)

Modal automata are too nice to leave them to computer science alone!

Conclusions

Sample results:

R1 one-step bisimulation invariance implies bisimulation invariance

R2 one-step disjunctiveness implies uniform interpolation

R3 systematic characterization of continuity, complete additivity, . . .

R4 one-step completeness + disjunctive basis implies completeness

Sample questions/problems:

Q1 Does J-W Thm hold on finite models?

Q2 Which fragments of µML have interpolation? (PDL!)

Q3 Prove/disprove completeness for fixpoint logics (game logic!)

Modal automata are too nice to leave them to computer science alone!

References

I G. Fontaine. Continuous fragment of the µ-calculus. CSL, 139–153, 2008.

I G. Fontaine & YV. Some model theory of the modal µ-calculus. submitted,
2010.

I YV. Expressiveness modulo bisimilarity: a coalgebraic perspective. Johan van
Benthem (Outstanding Contributions Series), Springer, 2014.

I A. Facchini, YV & F. Zanasi. A characterization theorem for the alternation-free
fragment of the modal µ-calculus. LICS, 478–487, 2013.

I F. Carreiro, A. Facchini, YV & F. Zanasi. Weak MSO: Automata and
expressiveness modulo bisimilarity. CSL-LICS, 27:1–27:27, 2014.

I S. Enqvist, F. Seifan & YV. Monadic Second-Order Logic and Bisimulation
Invariance for Coalgebras. LICS, 353–365, 2015.

I F. Carreiro. PDL is the bisimulation-invariant fragment of weak chain logic,
LICS, 341–352, 2016.

I S. Enqvist, F. Seifan & YV. Completeness for coalgebraic fixpoint logic, CSL
2016.

References ct’d

I S. Enqvist, F. Seifan & YV. Completeness for the modal µ-calculus: separating
the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.

I YV. Lecture notes on the modal µ-calculus. Manuscript, ILLC, 2012.

http://staff.science.uva.nl/~yde

http://staff.science.uva.nl/~yde

