MODAL AUTOMATA

studying modal fixpoint logics one step at a time

Yde Venema http://staff.science.uva.nl/~yde

AiML, 30 August 2016

(largely joint work with Carreiro, Enqvist, Facchini, Fontaine, Seifan, Zanasi, . . .)

Fixpoints in modal logic

Examples:

- $\blacktriangleright \ U\varphi\psi\equiv\varphi\vee(\psi\wedge\bigcirc U\varphi\psi)$
- $\blacktriangleright \ \langle \alpha^* \rangle \varphi \equiv \varphi \vee \langle \alpha \rangle \langle \alpha^* \rangle \varphi$
- $\blacktriangleright \ C\varphi \equiv \bigwedge_{a} K_{a}\varphi \wedge \bigwedge_{a} K_{a}C\varphi$

Fixpoints in modal logic

Examples:

- $\blacktriangleright \ U\varphi\psi\equiv\varphi\vee(\psi\wedge\bigcirc U\varphi\psi)$
- $\blacktriangleright \ \langle \alpha^* \rangle \varphi \equiv \varphi \vee \langle \alpha \rangle \langle \alpha^* \rangle \varphi$
- $\blacktriangleright \ C\varphi \equiv \bigwedge_{a} K_{a}\varphi \wedge \bigwedge_{a} K_{a}C\varphi$

Languages:

▶ LTL, CTL, PDL, CTL*, GL, ...

Fixpoints in modal logic

Examples:

- $\blacktriangleright \ U\varphi\psi\equiv\varphi\vee(\psi\wedge\bigcirc U\varphi\psi)$
- $\blacktriangleright \ \langle \alpha^* \rangle \varphi \equiv \varphi \vee \langle \alpha \rangle \langle \alpha^* \rangle \varphi$
- $\blacktriangleright \ C\varphi \equiv \bigwedge_{a} K_{a}\varphi \wedge \bigwedge_{a} K_{a}C\varphi$

Languages:

- ▶ LTL, CTL, PDL, CTL*, GL, $\ldots \subseteq \mu$ ML
- μ ML was introduced by Dexter Kozen (1983)
- $\blacktriangleright~\mu \rm{ML}$ extend basic modal logic with explicit fixpoint operators μ,ν

$$\bullet \quad U\varphi\psi := \mu x.\varphi \lor (\psi \land \bigcirc x)$$

- $\blacktriangleright \langle \alpha^* \rangle \varphi := \mu x. \varphi \lor \langle \alpha \rangle x$
- $\blacktriangleright \ [\alpha^*]\varphi = \nu x.\varphi \wedge [\alpha]x.$
- $\blacktriangleright \quad C\varphi := \nu x. \bigwedge_{a} K_{a} \varphi \wedge \bigwedge_{a} K_{a} x$

► Formulas:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond \varphi \mid \mu p.\varphi'$$

(provided that all occurrences of p in φ' are positive)

► Formulas:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond \varphi \mid \mu p. \varphi'$$

(provided that all occurrences of p in φ' are positive)

► Formulas in negation normal form:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu p.\varphi' \mid \nu p.\varphi'$$

(provided that all occurrences of p in φ' are positive)

► Formulas:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond \varphi \mid \mu p. \varphi'$$

(provided that all occurrences of p in φ' are positive)

► Formulas in negation normal form:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu p.\varphi' \mid \nu p.\varphi'$$

(provided that all occurrences of p in φ' are positive)

► Semantics:

$$\begin{split} \llbracket \mu \rho.\varphi \rrbracket^{\mathbb{S},V} &:= LFP(\lambda X.\llbracket \varphi \rrbracket^{\mathbb{S},V[\rho \mapsto X]}) \\ \llbracket \nu \rho.\varphi \rrbracket^{\mathbb{S},V} &:= GFP(\lambda X.\llbracket \varphi \rrbracket^{\mathbb{S},V[\rho \mapsto X]}) \end{aligned}$$

► Formulas:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond \varphi \mid \mu p. \varphi'$$

(provided that all occurrences of p in φ' are positive)

▶ Formulas in negation normal form:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu p.\varphi' \mid \nu p.\varphi'$$

(provided that all occurrences of p in φ' are positive)

Semantics:

$$\begin{split} \llbracket \mu p.\varphi \rrbracket^{\mathbb{S},V} &:= LFP(\lambda X.\llbracket \varphi \rrbracket^{\mathbb{S},V[p \mapsto X]}) \\ \llbracket \nu p.\varphi \rrbracket^{\mathbb{S},V} &:= GFP(\lambda X.\llbracket \varphi \rrbracket^{\mathbb{S},V[p \mapsto X]}) \end{aligned}$$

► Unravelling:

- $\eta x. \varphi \equiv \varphi[\eta x. \varphi/x]$ for $\eta = \mu, \nu$
- ν can unravel infinitely often, μ cannot
- traces in evaluation game and in tableaux

The modal $\mu\text{-calculus}\ 2$

- ▶ [+] natural extension of basic modal logic
- ► [+] expressive
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory
- ▶ [-] hard to understand (nested) fixpoint operators
- \blacktriangleright [-] theory of $\mu \rm ML$ isolated from theory of $\rm ML$

Logic & Automata

Most results on μ ML use automata ...

Logic & Automata

Most results on μ ML use automata ...

Automata in Logic

- ▶ long & rich history (Büchi, Rabin, ...)
- mathematically interesting theory
- many practical applications
- \blacktriangleright automata for $\mu \rm{ML:}$
 - ▶ Janin & Walukiewicz (1995): µ-automata (nondeterministic)
 - ▶ Wilke (2002): modal automata (alternating)

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Kripke structures

- Fix a set X of proposition letters
- Elements of PX are called colors
- Transition system/Kripke structure: pair $\mathbb{S} = (S, \sigma)$ with

•
$$\sigma = (\sigma_R, \sigma_V),$$

- $\sigma_V : S \rightarrow \mathsf{PX}$ is a marking/coloring
- ▶ $\sigma_R: S \rightarrow \mathsf{P}S$ encodes the binary relation
- $\sigma(s) \in \mathsf{PX} \times \mathsf{PS}$ is the one-step unfolding of *s*.
- Elements over $PX \times PS$ are called one-step frames over S

- ▶ A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- ▶ Let A (variables) be disjoint from X (proposition letters): $A \cap X = \emptyset$
- One-step formulas: $\neg p \land \Diamond(a \land b), \Box a \land (\Diamond b \lor q), \ldots$

- ▶ A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- ▶ Let A (variables) be disjoint from X (proposition letters): $A \cap X = \emptyset$
- One-step formulas: $\neg p \land \Diamond (a \land b), \Box a \land (\Diamond b \lor q), \ldots$
- One-step modal language 1ML(X, A) over A

 $\alpha ::= p \mid \neg p \mid \Diamond \pi \mid \Box \pi \mid \bot \mid \top \mid \alpha \lor \alpha \mid \alpha \land \alpha$

with $p \in X$ and $\pi \in Latt(A)$

- ▶ A one-step frame is a pair (Y, U) with $Y \subseteq X$ and U some set
- ▶ Let A (variables) be disjoint from X (proposition letters): $A \cap X = \emptyset$
- One-step formulas: $\neg p \land \Diamond (a \land b), \Box a \land (\Diamond b \lor q), \ldots$
- One-step modal language 1ML(X, A) over A

$$\alpha ::= \mathbf{p} \mid \neg \mathbf{p} \mid \Diamond \pi \mid \Box \pi \mid \bot \mid \top \mid \alpha \lor \alpha \mid \alpha \land \alpha$$

with $p \in X$ and $\pi \in Latt(A)$

- ▶ Latt(A): prop. lang. over A (π ::= $a \mid \perp \mid \top \mid \pi \lor \pi \mid \pi \land \pi$)
- One-step model (Y, U, m) with $Y \subseteq X$ and $m : U \rightarrow PA$
- One-step semantics interprets 1ML(X, A) over one-step models

One-step Semantics: details

- ▶ One-step model (Y, U, m) with $Y \subseteq X$ and $m : U \rightarrow PA$
- Zero-step semantics

One-step semantics

$$\begin{array}{lll} (Y, U, m) \Vdash^{1} p & \text{if } p \in Y \\ (Y, U, m) \Vdash^{1} \neg p & \text{if } p \notin Y \\ (Y, U, m) \Vdash^{1} \Diamond \pi & \text{if } U \cap \llbracket \pi \rrbracket^{0} \neq \varnothing \\ (Y, U, m) \Vdash^{1} \Box \pi & \text{if } U \subseteq \llbracket \pi \rrbracket^{0} \\ (Y, U, m) \Vdash^{1} \Box \pi & \text{if } U \subseteq \llbracket \pi \rrbracket^{0} \\ (Y, U, m) \Vdash^{1} \bot & never \\ (Y, U, m) \Vdash^{1} T & always \\ (Y, U, m) \Vdash^{1} \alpha \lor \alpha' & \text{if } (Y, U, m) \Vdash^{1} \alpha \text{ or } (Y, U, m) \Vdash^{1} \alpha' \\ (Y, U, m) \Vdash^{1} \alpha \land \alpha' & \text{if } (Y, U, m) \Vdash^{1} \alpha \text{ and } (Y, U, m) \Vdash^{1} \alpha' \end{array}$$

Modal automata

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \rightarrow 1ML(X, A)$ is the transition map
 - ▶ $Acc \subseteq A^{\omega}$ is the acceptance condition

Modal automata

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \rightarrow 1ML(X, A)$ is the transition map
 - $Acc \subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is pair (\mathbb{A}, a) with $a \in A$
- ▶ Parity automata: Acc is given by map $\Omega: A \rightarrow \omega$
 - Given $\rho \in A^{\omega}$, $Inf(\rho) := \{a \in A \mid a \text{ occurs infinitely often in } \pi_b\}$
 - $Acc_{\Omega} := \{ \rho \in A^{\omega} \mid \max\{\Omega(a) \mid a \in Inf(\rho) \} \text{ is even } \}$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle A, \Theta, Acc \rangle$ on $\mathbb{S} = \langle S, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Э	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \models \Theta(a)\}$
$m: S \stackrel{\sim}{ ightarrow} PA$	A	$\{(b,t)\mid b\in m(t)\}$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle A, \Theta, Acc \rangle$ on $\mathbb{S} = \langle S, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Ξ	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \models \Theta(a)\}$
$m: S \stackrel{\sim}{\rightarrow} PA$	A	$\{(b,t)\mid b\in m(t)\}$

Winning conditions:

- ▶ finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by the acceptance condition:
 - match $\pi = (a_0, s_0)m_0(a_1, s_1)m_1...$ induces list $\pi_A := a_0a_1a_2...$
 - ▶ \exists wins if $\pi_A \in Acc$

Acceptance game

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle A, \Theta, Acc \rangle$ on $\mathbb{S} = \langle S, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Ξ	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \models \Theta(a)\}$
$m: S \stackrel{\sim}{\rightarrow} PA$	A	$\{(b,t)\mid b\in m(t)\}$

Winning conditions:

- ▶ finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by the acceptance condition:
 - match $\pi = (a_0, s_0)m_0(a_1, s_1)m_1...$ induces list $\pi_A := a_0a_1a_2...$
 - \exists wins if $\pi_A \in Acc$

Definition (\mathbb{A}, a) accepts (\mathbb{S}, s) if $(a, s) \in Win_{\exists}(\mathcal{A}(\mathbb{A}, \mathbb{S}))$.

Basis

 \blacktriangleright There are well-understood translations: formulas \leftrightarrow automata

Basis

 \blacktriangleright There are well-understood translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via these corresponding automata

Basis

 \blacktriangleright There are well-understood translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via these corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Basis

 \blacktriangleright There are well-understood translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via these corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- \blacktriangleright automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

Which properties of modal parity automata are determined
 already at one-step level

Basis

 \blacktriangleright There are well-understood translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via these corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- \blacktriangleright automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- ▶ Which properties of modal parity automata are determined
 - already at one-step level
 - by the interaction of combinatorics and dynamics

Fragments/Variations

Fix automaton $\mathbb{A} = (A, \Theta, \Omega)$

- Write $a \rightsquigarrow b$ if b occurs in $\Theta(a)$, and $\rhd := (\rightsquigarrow)^+$
- A cluster is an equivalence relation of $\bowtie := \rhd \cup \lhd \cup \Delta_A$
- A is weak if $a \bowtie b$ implies $\Omega(a) = \Omega(b)$ so WLOG $\Omega : A \to \{0, 1\}$
- ▶ A PDL-automaton is a weak parity automaton A s.t. for $a \in A$:
 - ▶ if $\Omega(a) = 1$ then $\Theta(a) \in ADD^1(X, A, C)$ given by

$$\alpha ::= \beta \mid \langle \mathbf{d} \rangle \mathbf{c} \mid \alpha \lor \alpha$$

where $\beta \in 1ML(X, A \setminus C)$ and $c \in C$

▶ if $\Omega(a) = 0$ then $\Theta(a) \in MUL^1(X, A, C)$ defined dually

Proposition (Carreiro & Venema) test-free PDL = PDL-automata

Overview

- Introduction
- Modal automata
- ► One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Key Idea: take word 'logic' seriously!

Key Idea: take word 'logic' seriously!

▶ (Y, U, m) and Y', U', m') are one-step bisimilar if

Key Idea: take word 'logic' seriously!

(Y, U, m) and Y', U', m') are one-step bisimilar if
Y = Y'

- $\blacktriangleright \forall u \in U \exists u' \in U'.m(u) = m'(u')$
- ► $\forall u' \in U' \exists u \in U.m(u) = m'(u')$

Proposition If $(Y, U, m) \Leftrightarrow^1 Y', U', m'$ then $(Y, U, m) \equiv^1 Y', U', m'$.

Key Idea: take word 'logic' seriously!

(Y, U, m) and Y', U', m') are one-step bisimilar if
 Y = Y'

- $\blacktriangleright \forall u \in U \exists u' \in U'.m(u) = m'(u')$
- $\blacktriangleright \forall u' \in U' \exists u \in U.m(u) = m'(u')$

Proposition If $(Y, U, m) \Leftrightarrow^1 Y', U', m'$ then $(Y, U, m) \equiv^1 Y', U', m'$.

- ▶ A one-step morphism $f : (Y, U, m) \rightarrow (Y', U', m')$ is
 - ▶ a surjection $f: U \to U'$
 - ▶ such that $m = m' \circ f$
 - ▶ but it only exists if Y = Y'

One-step soundness and completeness

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (Y, U, m):

 $(Y, U, m) \Vdash^1 \alpha$ implies $(Y, U, m) \Vdash^1 \alpha'$.

One-step soundness and completeness

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (Y, U, m):

 $(Y, U, m) \Vdash^1 \alpha$ implies $(Y, U, m) \Vdash^1 \alpha'$.

A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.

One-step soundness and completeness

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (Y, U, m):

 $(Y, U, m) \Vdash^1 \alpha$ implies $(Y, U, m) \Vdash^1 \alpha'$.

A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.

Example for basic modal logic K the core consists of

- monotonicity rule for $\Diamond: \pi \leq \pi' / \Diamond \pi \leq \Diamond \pi'$
- normality ($\Diamond \perp \leq \perp$) and additivity ($\Diamond (\pi \lor \pi') \leq \Diamond \pi \lor \Diamond \pi'$) axioms

One-step soundness and completeness

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (Y, U, m):

 $(Y, U, m) \Vdash^1 \alpha$ implies $(Y, U, m) \Vdash^1 \alpha'$.

A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.

Example for basic modal logic K the core consists of

- monotonicity rule for $\Diamond: \pi \leq \pi' / \Diamond \pi \leq \Diamond \pi'$
- normality ($\Diamond \perp \leq \perp$) and additivity ($\Diamond (\pi \lor \pi') \leq \Diamond \pi \lor \Diamond \pi'$) axioms

► A derivation system **H** is one-step sound and complete if

 $\vdash_{\mathbf{H}} \alpha \leq \alpha' \text{ iff } \models^1 \alpha \leq \alpha'.$

One-step soundness and completeness

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (Y, U, m):

 $(Y, U, m) \Vdash^1 \alpha$ implies $(Y, U, m) \Vdash^1 \alpha'$.

A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.

Example for basic modal logic K the core consists of

- monotonicity rule for $\Diamond: \pi \leq \pi' / \Diamond \pi \leq \Diamond \pi'$
- normality ($\Diamond \perp \leq \perp$) and additivity ($\Diamond (\pi \lor \pi') \leq \Diamond \pi \lor \Diamond \pi'$) axioms
- ► A derivation system **H** is one-step sound and complete if

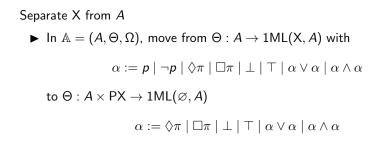
$$\vdash_{\mathbf{H}} \alpha \leq \alpha' \text{ iff } \models^1 \alpha \leq \alpha'.$$

▶ For more on this, check the literature on coalgebra (Pattinson, Schröder,...)

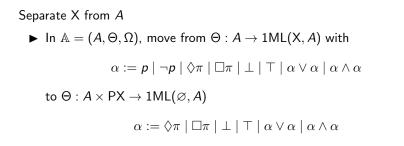
Chromatic automata



Chromatic automata



Chromatic automata



Position	Player	Admissible moves
$(a,s) \in A \times S$	Ш	$\{m: \sigma_R(s) \to PA \mid \sigma_R(s), m \models \Theta(a, \sigma_V(s))\}$
$m: S \stackrel{\sim}{\rightarrow} PA$	\forall	$\{(b,t)\mid b\in m(t)\}$

Point: (σ_R, m) is an A-structure in the sense of model theory, i.e. a pair (D, I) with I : A → PD interpreting each a ∈ A

• Let $\mathcal{L}(A)$ be some set of A-monotone sentences of some logic

Let L(A) be some set of A-monotone sentences of some logic
 Example: FOE

$$\varphi ::= x = y \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x.\varphi$$

sloppy: restrict to A-positive fragment

Let L(A) be some set of A-monotone sentences of some logic
 Example: FOE

$$\varphi ::= x = y \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x.\varphi$$

sloppy: restrict to A-positive fragment

- ▶ Other examples: FO, MSO, FO^{∞} , FO_{\forall} , ...
- $\operatorname{Aut}(\mathcal{L})$: automata with $\Theta: A \times \mathsf{PX} \to \mathcal{L}(A)$

Let L(A) be some set of A-monotone sentences of some logic
 Example: FOE

$$\varphi ::= x = y \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x.\varphi$$

sloppy: restrict to A-positive fragment

- ▶ Other examples: FO, MSO, FO^{∞} , FO_{\forall} , ...
- Aut(\mathcal{L}): automata with $\Theta : A \times \mathsf{PX} \to \mathcal{L}(A)$

Proposition Modal automata $\sim Aut(FO)$

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Proposition FO is the one-step bisimulation invariant fragment of FOE.

Proposition FO is the one-step bisimulation invariant fragment of FOE. **Theorem** There is a translation $(\cdot)^{\diamond}$: FOE \rightarrow FO such that

 $\varphi\equiv\varphi^{\Diamond}$ iff φ is one-step bisimulation invariant

Proposition FO is the one-step bisimulation invariant fragment of FOE. **Theorem** There is a translation $(\cdot)^{\diamond}$: FOE \rightarrow FO such that

 $\varphi\equiv\varphi^{\Diamond}$ iff φ is one-step bisimulation invariant

Corollary There is a translation $(\cdot)^{\Diamond}$: Aut(FOE) \rightarrow Aut(FO) such that

 $\mathbb{A}\equiv\mathbb{A}^{\diamondsuit}$ iff \mathbb{A} is bisimulation invariant

Proposition FO is the one-step bisimulation invariant fragment of FOE. **Theorem** There is a translation $(\cdot)^{\diamond}$: FOE \rightarrow FO such that

 $\varphi\equiv\varphi^{\Diamond}$ iff φ is one-step bisimulation invariant

Corollary There is a translation $(\cdot)^{\Diamond}$: Aut(FOE) \rightarrow Aut(FO) such that

 $\mathbb{A}\equiv\mathbb{A}^{\Diamond}$ iff \mathbb{A} is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE).

Proposition FO is the one-step bisimulation invariant fragment of FOE. **Theorem** There is a translation $(\cdot)^{\diamond}$: FOE \rightarrow FO such that

 $\varphi\equiv\varphi^{\Diamond}$ iff φ is one-step bisimulation invariant

Corollary There is a translation $(\cdot)^{\diamond}$: Aut(FOE) \rightarrow Aut(FO) such that

 $\mathbb{A}\equiv\mathbb{A}^{\Diamond}$ iff \mathbb{A} is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE). Corollary (Janin & Walukiewicz) $\mu ML \equiv MSO/ \Leftrightarrow$.

Proposition FO is the one-step bisimulation invariant fragment of FOE. **Theorem** There is a translation $(\cdot)^{\diamond}$: FOE \rightarrow FO such that

 $\varphi\equiv\varphi^{\Diamond}$ iff φ is one-step bisimulation invariant

Corollary There is a translation $(\cdot)^{\Diamond}$: Aut(FOE) \rightarrow Aut(FO) such that

 $\mathbb{A}\equiv\mathbb{A}^{\diamondsuit}$ iff \mathbb{A} is bisimulation invariant

Hence Aut(FO) is the bisimulation-invariant fragment of Aut(FOE). **Corollary** (Janin & Walukiewicz) μ ML \equiv MSO/ \Leftrightarrow . **Proof** (1) μ ML \equiv Aut(FO) (2) MSO \equiv Aut(FOE) (on trees)

Bisimulation invariance

Bisimulation invariance

Theorem Let \mathcal{L} and \mathcal{L}' be two one-step languages. Then

This result allows

▶ variations/generalizations of the Janin-Walukiewicz Theorem

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- ► Model Theory
- Completeness
- Conclusion

Model theory of modal automata

- ▶ normal form theorems
- ► characterization theorems
- ▶ (uniform) interpolation
- ▶ ...

Normal forms

• Given \mathcal{L} , find *nice* \mathcal{L}' such that $Aut(\mathcal{L}') \equiv Aut(\mathcal{L})$

Normal forms

- Given L, find nice L' such that Aut(L') ≡ Aut(L)
 α is disjunctive if for all (Y, U, m) ⊩¹ α there is (Y, U', m') and a fr morphism f : (Y, U') → (Y, U) s.t.
 m' ∘ f ⊆ m
 (Y', U', m') ⊩¹ α and
 - ▶ $|m(u)| \le 1$ for all $u \in U$.
- Example $\nabla B := \bigwedge \Diamond B \land \Box \bigvee B$ for $B \subseteq A$
- ▶ $\mathbb{A} = (A, \Theta, \Omega)$ is disjunctive if $\Theta(a)$ is disjunctive for all $a \in A$

Normal forms

Given L, find nice L' such that Aut(L') ≡ Aut(L)
α is disjunctive if for all (Y, U, m) ⊩¹ α there is (Y, U', m') and a fr morphism f : (Y, U') → (Y, U) s.t.
m' ∘ f ⊆ m
(Y', U', m') ⊩¹ α and

▶ $|m(u)| \le 1$ for all $u \in U$.

- Example $\nabla B := \bigwedge \Diamond B \land \Box \bigvee B$ for $B \subseteq A$
- ▶ $\mathbb{A} = (A, \Theta, \Omega)$ is disjunctive if $\Theta(a)$ is disjunctive for all $a \in A$

Simulation Theorem (Janin & Walukiewicz) Every modal automaton has a disjunctive equivalent:

 $\operatorname{Aut}(1\mathsf{ML}) \equiv \operatorname{Aut}(1\mathsf{ML}^d)$

Uniform Interpolation

Theorem (D'Agostino & Hollenberg) μ ML enjoys uniform interpolation

Uniform Interpolation

Theorem (D'Agostino & Hollenberg) μ ML enjoys uniform interpolation

Theorem Aut(\mathcal{L}) enjoys uniform interpolation if (1) \mathcal{L} consists of disjunctive formulas (2) \mathcal{L} is closed under disjunctions

 $\blacktriangleright \ \varphi$ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino & Hollenberg) $\xi \in \mu ML$ has LT iff $\xi \equiv \varphi \in \mu ML_{\forall}$

 $\mu\mathsf{ML}_{\forall} \ni \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Box \varphi \mid \mu x.\varphi \mid \nu x.\varphi$

 $\blacktriangleright \ \varphi$ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino & Hollenberg) $\xi \in \mu ML$ has LT iff $\xi \equiv \varphi \in \mu ML_{\forall}$

 $\mu\mathsf{ML}_{\forall} \ni \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Box \varphi \mid \mu x.\varphi \mid \nu x.\varphi$

• $\mathcal{L}' \equiv_{s} \mathcal{L}/LT$ if there is a map $(\cdot)^{LT} : \mathcal{L} \to \mathcal{L}'$ such that

 $\alpha \in \mathcal{L}$ has LT iff $\alpha \equiv_{s} \alpha^{LT}$

 $\blacktriangleright \ \varphi$ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino & Hollenberg) $\xi \in \mu ML$ has LT iff $\xi \equiv \varphi \in \mu ML_{\forall}$ $\mu ML_{\forall} \ni \varphi ::= p | \neg p | \varphi \lor \varphi | \varphi \land \varphi | \Box \varphi | \mu x.\varphi | \nu x.\varphi$

•
$$\mathcal{L}' \equiv_{s} \mathcal{L}/LT$$
 if there is a map $(\cdot)^{LT} : \mathcal{L} \to \mathcal{L}'$ such that
 $\alpha \in \mathcal{L}$ has LT iff $\alpha \equiv_{s} \alpha^{LT}$

Proposition If $\mathcal{L}' \equiv_s \mathcal{L}/LT$ then $\operatorname{Aut}(\mathcal{L}') \equiv_s \operatorname{Aut}\mathcal{L}/LT$ **Proposition** $\operatorname{FO}_{\forall} \equiv_s \operatorname{FO}/LT$

 $\blacktriangleright \ \varphi$ has the LT-property if the truth of φ is preserved under taking submodels.

Theorem (D'Agostino & Hollenberg) $\xi \in \mu ML$ has LT iff $\xi \equiv \varphi \in \mu ML_{\forall}$ $\mu ML_{\forall} \ni \varphi ::= p | \neg p | \varphi \lor \varphi | \varphi \land \varphi | \Box \varphi | \mu x.\varphi | \nu x.\varphi$

•
$$\mathcal{L}' \equiv_{s} \mathcal{L}/LT$$
 if there is a map $(\cdot)^{LT} : \mathcal{L} \to \mathcal{L}'$ such that
 $\alpha \in \mathcal{L}$ has LT iff $\alpha \equiv_{s} \alpha^{LT}$

Proposition If $\mathcal{L}' \equiv_s \mathcal{L}/LT$ then $Aut(\mathcal{L}') \equiv_s Aut\mathcal{L}/LT$

Proposition $FO_{\forall} \equiv_{s} FO/LT$

Corollary (1) $\operatorname{Aut}(FO_{\forall}) \equiv_{s} \operatorname{Aut}(FO)/LT$ (2) it is decidable whether $\mathbb{A} \in \operatorname{Aut}(FO)/\varphi \in \mu ML$ has LT

Continuity

• A formula φ is (Scott) *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi \text{ iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text{ for some finite } U \subseteq V(p)$

or equivalently

$$\varphi_p(W) = \bigcup \left\{ \varphi_p(U) \mid U \subseteq_\omega W \right\}$$

Theorem (Fontaine) $\xi \in \mu ML$ is *p*-continuous iff $\xi \equiv \varphi \in CONT_p(\mu ML)$

 $CONT_{P}(\mu \mathsf{ML}) \ni \varphi ::= p \mid \psi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \mu x.\varphi'$

where $p \in P$, $\psi \in \mu ML$ is *p*-free, and $\varphi' \in CONT_{P \cup \{x\}}(\mu ML)$.

 $\blacktriangleright \varphi$ is horizontally *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$

 $\blacktriangleright \varphi$ is vertically *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi \text{ iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text{ for some finite-depth } U \subseteq V(p)$

 $\blacktriangleright \varphi$ is horizontally *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$

 $\blacktriangleright \varphi$ is vertically *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi \text{ iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text{ for some finite-depth } U \subseteq V(p)$

Observations

- p-continuity = horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- ► vertical *p*-continuity is easily determined at level of priority map Ω

 $\blacktriangleright \ \varphi$ is horizontally *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$

 $\blacktriangleright \varphi$ is vertically *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finite-depth $U \subseteq V(p)$

Observations

- p-continuity = horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- \blacktriangleright vertical *p*-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)

Syntactic characterizations of automata that are (hor/vert) continuous.

 $\blacktriangleright \ \varphi$ is horizontally *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi$ iff $\mathbb{S}[p \mapsto U], s \Vdash \varphi$ for some finitely branching $U \subseteq V(p)$

 $\blacktriangleright \varphi$ is vertically *p*-continuous if

 $\mathbb{S}, s \Vdash \varphi \text{ iff } \mathbb{S}[p \mapsto U], s \Vdash \varphi \text{ for some finite-depth } U \subseteq V(p)$

Observations

- p-continuity = horizontal p-continuity + vertical p-continuity
- horizontal p-continuity is easily determined at one-step level
- \blacktriangleright vertical *p*-continuity is easily determined at level of priority map Ω

Theorem (Fontaine & Venema)

Syntactic characterizations of automata that are (hor/vert) continuous. All three are decidable properties.

Sublanguages of μ ML:

▶ μ ML

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle d \rangle \varphi \mid \mu x. \varphi'$$

where φ' is monotone in x

Sublanguages of μ ML:

► µML

 $\varphi \ ::= \ p \ \mid \ \neg \varphi \ \mid \ \varphi \lor \varphi \ \mid \ \langle d \rangle \varphi \ \mid \ \mu x. \varphi'$

where φ' is monotone in x

• μ_c ML: require φ' is continuous in x

Sublanguages of μ ML:

► µML

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle d \rangle \varphi \mid \mu x. \varphi'$$

where φ' is monotone in \boldsymbol{x}

• μ_c ML: require φ' is continuous in x

▶ μ_a ML: require φ' is completely additive in x

Theorem (Venema) $\mu_a ML \equiv PDL$

Sublanguages of μ ML:

► *µ*ML

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle d \rangle \varphi \mid \mu x. \varphi'$$

where φ' is monotone in \boldsymbol{x}

• μ_c ML: require φ' is continuous in x

▶ μ_a ML: require φ' is completely additive in x

Theorem (Venema) $\mu_a ML \equiv PDL$

Theorem (Carreiro, Facchini, Venema & Zanasi) $\mu_c ML \equiv$

Sublanguages of μ ML:

► *µ*ML

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle d \rangle \varphi \mid \mu x. \varphi'$$

where φ' is monotone in \boldsymbol{x}

• μ_c ML: require φ' is continuous in x

▶ μ_a ML: require φ' is completely additive in x

Theorem (Venema) $\mu_a ML \equiv PDL$

Theorem (Carreiro, Facchini, Venema & Zanasi) $\mu_c ML \equiv WMSO/$

Sublanguages of μ ML:

► µML

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle d \rangle \varphi \mid \mu x. \varphi'$$

where φ' is monotone in \boldsymbol{x}

▶ μ_c ML: require φ' is continuous in x

• μ_a ML: require φ' is completely additive in x

Theorem (Venema) $\mu_a ML \equiv PDL$

Theorem (Carreiro, Facchini, Venema & Zanasi) $\mu_c ML \equiv WMSO/ \Leftrightarrow$ **Proof**

(1) WMSO $\equiv Aut_{cw}(FO^{\infty})$

- (2) careful analysis of FO^∞ as a one-step language
- (3) $\operatorname{Aut}_{cw}(\operatorname{FO}^{\infty}) \equiv_{s} \operatorname{Aut}_{cw}(\operatorname{FO})$

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Kozen Axiomatisation:

- complete calculus for modal logic
- $\blacktriangleright \varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- ▶ if $\varphi(\psi) \vdash_{\kappa} \varphi$ then $\mu p.\varphi \vdash_{\kappa} \psi$

 $(\alpha \vdash_{K} \beta \text{ abbreviates} \vdash_{K} \alpha \rightarrow \beta)$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\blacktriangleright \varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathcal{K}} \varphi$ then $\mu p.\varphi \vdash_{\mathcal{K}} \psi$

Theorem (Kozen 1983)

 $\vdash_{\mathcal{K}}$ is sound, and complete for aconjunctive formulas.

 $(\alpha \vdash_{K} \beta \text{ abbreviates} \vdash_{K} \alpha \rightarrow \beta)$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\blacktriangleright \varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathcal{K}} \varphi$ then $\mu p.\varphi \vdash_{\mathcal{K}} \psi$

Theorem (Kozen 1983)

 $\vdash_{\mathcal{K}}$ is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)

 \vdash_{K} is sound and complete for all formulas.

 $(\alpha \vdash_{\mathcal{K}} \beta \text{ abbreviates} \vdash_{\mathcal{K}} \alpha \rightarrow \beta)$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\blacktriangleright \varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathcal{K}} \varphi$ then $\mu p.\varphi \vdash_{\mathcal{K}} \psi$

Theorem (Kozen 1983)

 $\vdash_{\mathcal{K}}$ is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)

 $\vdash_{\mathcal{K}}$ is sound and complete for all formulas.

Questions (2015)

How to generalise this to similar logics, eg, the monotone μ -calculus? How to generalise this to restricted frame classes? Does completeness transfer to fragments of μ ML?

 $(\alpha \vdash_{\mathcal{K}} \beta \text{ abbreviates} \vdash_{\mathcal{K}} \alpha \rightarrow \beta)$

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?

- $1 \;$ complex combinatorics of traces
- 2 incorporate simulation theorem into derivations
- 3 mix of $\vdash_{\mathcal{K}}$ -derivations, tableaux and automata
- 4 tableau rules for boolean connectives complicate combinatorics 5 ...

Walukiewicz' Proof: Evaluation

Why is Walukiewicz' proof hard?

- $1 \;$ complex combinatorics of traces
- 2 incorporate simulation theorem into derivations
- 3 mix of $\vdash_{\mathcal{K}}$ -derivations, tableaux and automata
- 4 tableau rules for boolean connectives complicate combinatorics 5 \dots

content vs wrapping

- ▶ separate the combinatorics from the dynamics
- ▶ focus on automata rather than formulas
- make traces first-class citizens

Dynamics: coalgebra

- ▶ one step at a time
- ► absorb booleans into one-step rules

Dynamics: coalgebra

- ▶ one step at a time
- ▶ absorb booleans into one-step rules
- ▶ Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Dynamics: coalgebra

- ▶ one step at a time
- ▶ absorb booleans into one-step rules
- ▶ Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

▶ use binary relations to deal with trace combinatorics

Dynamics: coalgebra

- ▶ one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

▶ use binary relations to deal with trace combinatorics

Automata

- uniform, 'clean' presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem

Dynamics: coalgebra

- ▶ one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of "one-step completeness + Kozen axiomatisation"

Combinatorics: trace management

▶ use binary relations to deal with trace combinatorics

Automata

- uniform, 'clean' presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem
- bring automata into proof theory

Theorem

There are maps $\mathbb{B}_{-}: \mu ML \to Aut(ML_1)$ and $\xi: Aut(ML_1) \to \mu ML$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$

Theorem

There are maps $\mathbb{B}_-: \mu ML \to Aut(ML_1)$ and $\xi : Aut(ML_1) \to \mu ML$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$ (2) satisfy $\varphi \equiv_{\mathcal{K}} \xi(\mathbb{B}_{\varphi})$;

Theorem

There are maps $\mathbb{B}_{-}: \mu ML \to Aut(ML_1)$ and $\xi : Aut(ML_1) \to \mu ML$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$

(2) satisfy $\varphi \equiv_{\kappa} \xi(\mathbb{B}_{\varphi});$

(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

 $\xi(\mathbb{A}[\mathbb{B}/x]) \equiv_{\mathcal{K}} \xi(\mathbb{A})[\xi(\mathbb{B})/x].$

Theorem

There are maps $\mathbb{B}_-: \mu ML \to Aut(ML_1)$ and $\xi : Aut(ML_1) \to \mu ML$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$ (2) satisfy $\varphi \equiv_{\mathcal{K}} \xi(\mathbb{B}_{\varphi})$;

(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

 $\xi(\mathbb{A}[\mathbb{B}/x]) \equiv_{\mathcal{K}} \xi(\mathbb{A})[\xi(\mathbb{B})/x].$

As a corollary, we may apply proof-theoretic concepts to automata

Framework

Satisfiability Game $S(\mathbb{A})$ (Fontaine, Leal & Venema 2010)

- ▶ basic positions: binary relations $R \in P(A \times A)$
- ▶ *R* corresponds to $\bigwedge \{ \Delta(a) \mid a \in R \}$
- ▶ direct representation of \mathbb{A} -traces through $R_0R_1\cdots$
- ▶ \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

Framework

Satisfiability Game $S(\mathbb{A})$ (Fontaine, Leal & Venema 2010)

- ▶ basic positions: binary relations $R \in P(A \times A)$
- ▶ *R* corresponds to $\bigwedge \{ \Delta(a) \mid a \in R \}$
- ▶ direct representation of \mathbb{A} -traces through $R_0R_1\cdots$
- ▶ \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

Consequence Game $\mathcal{C}(\mathbb{A}, \mathbb{A}')$

- ▶ basic positions: pair of binary relations (R, R')
- ▶ winning condition in terms of trace reflection
- ▶ $\mathbb{A} \models_{G} \mathbb{A}'$ implies $L(\mathbb{A}) \subseteq L(\mathbb{A}')$

Framework

Satisfiability Game $S(\mathbb{A})$ (Fontaine, Leal & Venema 2010)

- ▶ basic positions: binary relations $R \in P(A \times A)$
- ▶ *R* corresponds to $\bigwedge \{ \Delta(a) \mid a \in R \}$
- ▶ direct representation of \mathbb{A} -traces through $R_0R_1\cdots$
- ▶ \exists wins $\mathcal{S}(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

Consequence Game $\mathcal{C}(\mathbb{A}, \mathbb{A}')$

- ▶ basic positions: pair of binary relations (R, R')
- ▶ winning condition in terms of trace reflection
- ▶ $A \models_G A'$ implies $L(A) \subseteq L(A')$ but not vice versa

Special Automata

Modal Automaton: $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$, with $\Delta : A \to \mathsf{ML}_1(P, A)$

► Latt(A)
$$\alpha ::= p \mid \alpha \lor \alpha \mid \bot \mid \alpha \land \alpha \mid \top$$

 $\blacktriangleright \mathsf{ML}_1(P,A) \varphi ::= p \mid \neg p \mid \Diamond \alpha \mid \Box \alpha \mid \varphi \lor \varphi \mid \bot \mid \varphi \land \varphi \mid \top$

Special Automata

Modal Automaton: $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$, with $\Delta : A \to \mathsf{ML}_1(P, A)$

- ► Latt(A) $\alpha ::= p \mid \alpha \lor \alpha \mid \perp \mid \alpha \land \alpha \mid \top$
- $\blacktriangleright \mathsf{ML}_1(P,A) \varphi ::= p \mid \neg p \mid \Diamond \alpha \mid \Box \alpha \mid \varphi \lor \varphi \mid \bot \mid \varphi \land \varphi \mid \top$

Disjunctive Automaton $\Delta : A \rightarrow ML_1^d(P, A)$

- $\blacktriangleright List(P) \pi ::= \bot | \top | p \land \pi | \neg p \land \pi$
- ► $\mathsf{ML}_1^d(P, A) \varphi ::= \bot | \top | \pi \land \nabla B | \varphi \lor \varphi$, where $B \subseteq A$.

Special Automata

Modal Automaton: $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$, with $\Delta : A \to \mathsf{ML}_1(P, A)$

- ► Latt(A) $\alpha ::= p \mid \alpha \lor \alpha \mid \perp \mid \alpha \land \alpha \mid \top$
- $\blacktriangleright \mathsf{ML}_1(P,A) \varphi ::= p \mid \neg p \mid \Diamond \alpha \mid \Box \alpha \mid \varphi \lor \varphi \mid \bot \mid \varphi \land \varphi \mid \top$

Disjunctive Automaton $\Delta : A \rightarrow ML_1^d(P, A)$

- $\blacktriangleright List(P) \pi ::= \bot | \top | p \land \pi | \neg p \land \pi$
- ► $\mathsf{ML}_1^d(P, A) \varphi ::= \bot | \top | \pi \land \nabla B | \varphi \lor \varphi$, where $B \subseteq A$.

Semi-disjunctive Automaton $\Delta(a) \in ML_1^{s,C_a}(P,A)$

- $\blacktriangleright List(P) \pi ::= \bot | \top | p \land \pi | \neg p \land \pi$
- $\blacktriangleright \mathsf{ML}_1^{s,C}(P,A) \varphi ::= \bot | \top | \pi \land \nabla\{\bigwedge B | B \in \mathcal{B}\} | \varphi \lor \varphi,$

where for all $B \in \mathcal{B}$, all $b, b' \in B$ with $b \neq b'$, b or b' is a maximal even element of C.

Key Lemmas

Strong Simulation Theorem (cf W39)

For every modal automaton $\mathbb A$ there is an equivalent disjunctive simulation $\overline{\mathbb A}$ such that

$$\begin{array}{c} \mathbb{A} \models_{G} \overline{\mathbb{A}} \\ \overline{\mathbb{A}} \models_{G} \mathbb{A} \\ \mathbb{B}[\overline{\mathbb{A}}/x] \models_{G} \mathbb{B}[\mathbb{A}/x] \end{array}$$

for all automata \mathbb{B} .

Lemma (cf W36) Let \mathbb{A}, \mathbb{B} be respectively a semidisjunctive and an arbitrary automaton. If $\mathbb{A} \models_{G} \mathbb{B}$, then $\mathbb{A} \land \neg \mathbb{B}$ has a thin refutation.

Lemma (cf Kozen) If \mathbb{A} is a consistent automaton, then \exists has a winning strategy in S_{thin} .

Corollary If $\mathbb A$ is a consistent (semi-)disjunctive automaton, then $\mathbb A$ is satisfiable.

Proof of Kozen-Walukiewicz Theorem

Main Proposition

For every $\varphi \in \mu \mathsf{ML}$ there is an equivalent disjunctive automaton $\mathbb D$ such that

 $\varphi \vdash_{\mathcal{K}} \mathbb{D}.$

Proof

Induction on $\varphi:$ similar to Walukiewicz' proof, but using the above lemmas.

Work in progress

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H} + \mathit{Koz}$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Work in progress

Theorem Assume that

- $\blacktriangleright\ \mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$
- Then $\mathbf{H} + Koz$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Examples:

- \blacktriangleright linear time $\mu\text{-calculus}$
- ► *k*-successor *µ*-calculus
- ▶ standard modal μ -calculus
- ▶ graded μ -calculus
- ▶ monotone modal μ -calculus
- ▶ game μ -calculus

▶ ...

Overview

- Introduction
- Modal automata
- One-step logic
- Bisimulation invariance
- Model Theory
- Completeness
- Conclusion

Conclusions

Sample results:

- R1 one-step bisimulation invariance implies bisimulation invariance
- R2 one-step disjunctiveness implies uniform interpolation
- R3 systematic characterization of continuity, complete additivity, ...
- R4 one-step completeness + disjunctive basis implies completeness

Sample questions/problems:

- Q1 Does J-W Thm hold on finite models?
- Q2 Which fragments of μ ML have interpolation? (PDL!)
- Q3 Prove/disprove completeness for fixpoint logics (game logic!)

Conclusions

Sample results:

- R1 one-step bisimulation invariance implies bisimulation invariance
- R2 one-step disjunctiveness implies uniform interpolation
- R3 systematic characterization of continuity, complete additivity, ...
- R4 one-step completeness + disjunctive basis implies completeness

Sample questions/problems:

- Q1 Does J-W Thm hold on finite models?
- Q2 Which fragments of μ ML have interpolation? (PDL!)
- Q3 Prove/disprove completeness for fixpoint logics (game logic!)

Modal automata are too nice to leave them to computer science alone!

References

- ▶ G. Fontaine. Continuous fragment of the μ -calculus. *CSL*, 139–153, 2008.
- ► G. Fontaine & YV. Some model theory of the modal µ-calculus. submitted, 2010.
- ▶ YV. Expressiveness modulo bisimilarity: a coalgebraic perspective. Johan van Benthem (Outstanding Contributions Series), Springer, 2014.
- A. Facchini, YV & F. Zanasi. A characterization theorem for the alternation-free fragment of the modal μ-calculus. LICS, 478–487, 2013.
- ► F. Carreiro, A. Facchini, YV & F. Zanasi. Weak MSO: Automata and expressiveness modulo bisimilarity. CSL-LICS, 27:1–27:27, 2014.
- ► S. Enqvist, F. Seifan & YV. Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras. LICS, 353–365, 2015.
- ► F. Carreiro. PDL is the bisimulation-invariant fragment of weak chain logic, LICS, 341–352, 2016.
- S. Enqvist, F. Seifan & YV. Completeness for coalgebraic fixpoint logic, CSL 2016.

References ct'd

- S. Enqvist, F. Seifan & YV. Completeness for the modal μ-calculus: separating the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.
- ▶ YV. Lecture notes on the modal μ -calculus. Manuscript, ILLC, 2012.

http://staff.science.uva.nl/~yde