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Some background: Focused proof systems

Let’s consider a (1-sided) sequent system setting.

Better organize the structure of derivations.

Emphasis on: non-invertible vs. invertible rules.

Propositional connectives have:

a positive version;
a negative version.

` Θ,Bi

` Θ,B1 ∨ B2
∨+

` Θ,B1,B2

` Θ,B1 ∨ B2
∨−
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Let’s consider a (1-sided) sequent system setting.

Better organize the structure of derivations.

Emphasis on: non-invertible vs. invertible rules.

Propositional connectives have:

a positive version;
a negative version.

Polarization of a formula does not affect its provability.
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Some background: Focused proof systems

store

(a positive formula to possibly focus on later)

` Θ ⇑ Γ

t−, f −, ∨−, ∧−, ∀

release

` Θ ⇓ A

t+, f +, ∨+, ∧+, ∃

decide

(on a positive formula to focus on)
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Some background: Focused proof systems

store (a positive formula to possibly focus on later)

` Θ ⇑ Γ NEGATIVE PHASE (invertible)

release (change of phase)

` Θ ⇓ A POSITIVE PHASE (non-invertible)

decide (on a positive formula to focus on)
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Some background: Focused proof systems

store

(a positive formula to possibly focus on later)

` Θ ⇑ Γ

t−, f −, ∨−, ∧−, ∀

By the way,
release

this is a BIPOLE
` Θ ⇓ A

t+, f +, ∨+, ∧+, ∃

decide

(on a positive formula to focus on)
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PROPOSITIONAL 
MODAL LOGIC

FIRST-ORDER 
CLASSICAL 

LOGIC

STANDARD 
TRANSLATION

LABELED
PROOF 

SYSTEM

FOCUSED
PROOF 

SYSTEM

LESS  STANDARD 
TRANSLATION

+  -

inference rule bipole

- proof checking
- proof search
- focused labeled modal proof system
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Negative introduction rules

G ` Θ ⇑ x : t−, Γ
t−

G ` Θ ⇑ Γ

G ` Θ ⇑ x : f −, Γ
f −

G ` Θ ⇑ x : A, Γ G ` Θ ⇑ x : B, Γ

G ` Θ ⇑ x : A ∧− B, Γ
∧−

G ` Θ ⇑ x : A, x : B, Γ

G ` Θ ⇑ x : A ∨− B, Γ
∨−

G ∪ {xRy} ` Θ ⇑ y : B, Γ

G ` Θ ⇑ x : �B, Γ
�

Positive introduction rules

G ` Θ ⇓ x : t+ t+
G ` Θ ⇓ x : B1 G ` Θ ⇓ x : B2

G ` Θ ⇓ x : B1 ∧+ B2
∧+

G ` Θ ⇓ x : Bi

G ` Θ ⇓ x : B1 ∨+ B2
∨+, i ∈ {1, 2}

G ∪ {xRy} ` Θ ⇓ y : B

G ∪ {xRy} ` Θ ⇓ x : ♦B
♦

Identity rules

G ` x : ¬Pa,Θ ⇓ x : Pa
init

G ` Θ ⇑ x : B G ` Θ ⇑ x : ¬B
G ` Θ ⇑ · cut

Structural rules

G ` Θ, x : C ⇑ Γ

G ` Θ ⇑ x : C , Γ
store

G ` Θ ⇑ x : N

G ` Θ ⇓ x : N
release

G ` x : P,Θ ⇓ x : P

G ` x : P,Θ ⇑ · decide
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A focused framework for emulating modal proof systems

Motivations

Provide (by combining already known formalism interrelation results
and some ideas from focusing) a general framework for:

comparing formalisms;

proof checking;

generating new modal proof systems.
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One step forward (this paper and more...)

MODAL PROOF 
SYSTEMS
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emulation
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MODAL PROOF 
SYSTEMS

FOCUSED 
LABELED 

FRAMEWORK

 + superpowers

 proper polarization

 superpower parameters
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An ordinary sequent system for modal logic

Identity and structural rules

` Γ,P,¬P init
` Γ,A ` ∆,¬A

` Γ,∆
cut

` Γ,A,A

` Γ,A
contr

Classical connectives rules

` Γ,A ` Γ,B

` Γ,A ∧ B
∧

` Γ,A,B

` Γ,A ∨ B
∨ ` Γ

` ⊥, Γ ⊥ ` >, Γ >

Modal rules

` Γ,A

` ♦Γ,�A,∆
�K

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems



What happens with ordinary sequent systems?

The case of K

` Γ,A

` ♦Γ,�A,∆
�K

This rule works at the same time on �s and ♦s.

Bipole!
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What happens with ordinary sequent systems?

Correspondence between ordinary and labeled sequents:

ordinary classical rules operate on a single world;
ordinary modal rules move from one world to another.

...

iv) Modal rule moving from y to z .

iii) Classical reasoning in y .

ii) Modal rule moving from x to y .

i) Classical reasoning in a world x .
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What happens with ordinary sequent systems?

The rule for K

` Γ,A

` ♦Γ,�A,∆
�K

G ∪ {xRy} ` Σ, x : ♦Γ ⇑ y : A

G ` Σ, x : ♦Γ ⇑ x : �A

One bipole for the �-formula.
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One bipole for the ♦-formulas.
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Which superpowers do we need?

Requirements

1 More ♦s at the same time.

2 All formulas associated to such ♦s move to the same world.

3 Once we move to a new world, we forget about the old ones.

Superpowers

1 Multifocusing.

2 Attach a “future” to ♦-formulas.

3 Decorate each sequent with a “present”.

G ` Θ ⇓ x : A

G ` Θ ⇑ · decide∗
G ∪ {xRy} ` Θ ⇓ y : B

G ∪ {xRy} ` Θ ⇓ x : ♦B
♦

∗ x : A ∈ Θ
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Superpowers

1 Multifocusing.

2 Attach a “future” (sequence σ of labels) to formulas.

3 Decorate each sequent with a “present”.

G ` Θ ⇓ Ω

G ` Θ ⇑ · decide∗
G ∪ {xRy} ` Θ ⇓ yσ : B,Ω

G ∪ {xRy} ` Θ ⇓ xyσ : ♦B,Ω
♦

∗ if xσ : A ∈ Ω then x : A ∈ Θ

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems



Which superpowers do we need?

Requirements

1 More ♦s at the same time.

2 All formulas associated to such ♦s move to the same world.

3 Once we move to a new world, we forget about the old ones.

Superpowers

1 Multifocusing.

2 Attach a “future” (sequence σ of labels) to formulas.

3 Decorate each sequent with a “present” (set of “active”
worlds).

G ` Θ ⇓ Ω

G ` Θ ⇑ · decide∗
G ∪ {xRy} ` Θ ⇓ yσ : B,Ω

G ∪ {xRy} ` Θ ⇓ xyσ : ♦B,Ω
♦

∗ if xσ : A ∈ Ω then x : A ∈ Θ

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems



Which superpowers do we need?

Requirements

1 More ♦s at the same time.

2 All formulas associated to such ♦s move to the same world.

3 Once we move to a new world, we forget about the old ones.

Superpowers

1 Multifocusing.

2 Attach a “future” (sequence σ of labels) to formulas.

3 Decorate each sequent with a “present” (set of “active”
worlds).

G ` Θ ⇓ Ω

G ` Θ ⇑ · decide∗
G ∪ {xRy} ` Θ ⇓ yσ : B,Ω

G ∪ {xRy} ` Θ ⇓ xyσ : ♦B,Ω
♦

∗ if xσ : A ∈ Ω then x : A ∈ Θ

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems



Which superpowers do we need?

Requirements

1 More ♦s at the same time.

2 All formulas associated to such ♦s move to the same world.

3 Once we move to a new world, we forget about the old ones.

Superpowers

1 Multifocusing.

2 Attach a “future” (sequence σ of labels) to formulas.

3 Decorate each sequent with a “present” (set of “active”
worlds).

G `H′ Θ ⇓ Ω

G `H Θ ⇑ · decide∗
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Asynchronous introduction rules

G `H Θ ⇑ x : t−,Ω
t−

G `H Θ ⇑ Ω

G `H Θ ⇑ x : f −,Ω
f −

G `H Θ ⇑ x : A,Ω G `H Θ ⇑ x : B,Ω

G `H Θ ⇑ x : A ∧− B,Ω
∧−

G `H Θ ⇑ x : A, x : B,Ω

G `H Θ ⇑ x : A ∨− B,Ω
∨−

G ∪ {xRy} `H Θ ⇑ y : B,Ω

G `H Θ ⇑ x : �B,Ω
�

Synchronous introduction rules

G `H Θ ⇓ xσ : t+ t+
G `H Θ ⇓ xσ : B1,Ω1 G `H Θ ⇓ xσ : B2,Ω2

G `H Θ ⇓ xσ : B1 ∧+ B2,Ω1,Ω2
∧+

G `H Θ ⇓ xσ : Bi ,Ω

G `H Θ ⇓ xσ : B1 ∨+ B2,Ω
∨+, i ∈ {1, 2}

G ∪ {xRy} `H Θ ⇓ yσ : B,Ω

G ∪ {xRy} `H Θ ⇓ xyσ : ♦B,Ω
♦

Identity rules

G `H x : ¬Pa,Θ ⇓ x : Pa
init

G `H Θ ⇑ x : B G `H Θ ⇑ x : ¬B
G `H Θ ⇑ · cut

Structural rules

G `H Θ, x : C ⇑ Ω

G `H Θ ⇑ x : C ,Ω
store

G `H Θ ⇑ Ω′

G `H Θ ⇓ Ω
release

G `H′ Θ ⇓ Ω

G `H Θ ⇑ · decide
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The general framework LMFX
∗

Parameters of the framework

X is a subset of relational properties in {T , 4, 5,B,D}.
∗ can be instantiated in a specific way by the following
parameters (of the decide rule):

1 restrictions on the class of formulas on which multifocusing can
be applied;

2 restrictions on the definition of the future σ of formulas in Ω;
3 restriction of the present H′.

Theorem

The framework LMFX
∗ is sound and complete with respect to the

logic KX, for any polarization of formulas.

By playing with polarization and parameters, one can obtain
different systems.
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Emulation of ordinary sequent systems

[P] = P

[¬P] = ¬P
[A ∧ B] = ∂+([A])∧−∂+([B])

[A ∨ B] = ∂+([A])∨−∂+([B])

[�A] = �(∂+([A]))

[♦A] = ♦(∂−(∂+([A])))
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Emulation of ordinary sequent systems (LMFX
OS)

G `{y} Θ ⇓ Ω

G `{x} Θ ⇑ · decideOS

where we have that either:
1 there exists y s.t.:

xRy ∈ G;
formulas in Ω have the form xy : ♦A; or

2 Ω = {x : A} for some A and x = y .
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Emulation of ordinary sequent systems

Theorem

Derivations in ordinary sequents are emulated by LMFX
OS , according

to a proper interpretation of sequents.
E.g., for K, a modal rule corresponds to two bipoles.

Corollary

The restriction of the system is complete.
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A look at nested sequents

Same polarization as for ordinary sequents.

No need for multifocusing.

No need for restrictions on futures.

The present is always the set of all labels.

G `L Θ ⇓ x : A

G `L Θ ⇑ · decideNS
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Conclusion

We showed the case of K; but it works for geometric extensions.

Emulation of modal focused systems (e.g., [Lellmann-Pimentel,
2015] or [Chaudhuri-Marin-Strassburger, 2016]).

What about hypersequents?

the present is a multiset;
external structural rules as operations on such a present;
modal communication rules as a combination of relational and
modal rules.

Not necessarily for emulation: design of new focused calculi.

Superpowers can be implemented in the augmented version of
the focused system LKF used in the project ProofCert.
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Thank you!
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