A focused framework for emulating modal proof systems

Sonia Marin, Dale Miller and Marco Volpe

INRIA, Parsifal Team

A focused framework for emulating modal proof systems

伺 ト く ヨ ト く ヨ ト

э

A focused framework for emulating modal proof systems

Focusing

- 2 The general framework
- Emulation of modal proof systems

30.00

Let's consider a (1-sided) sequent system setting.

- Better organize the structure of derivations.
- Emphasis on: non-invertible vs. invertible rules.
- Propositional connectives have:
 - a positive version;
 - a negative version.

$$\frac{\vdash \Theta, B_i}{\vdash \Theta, B_1 \lor B_2} \lor^{+} \qquad \frac{\vdash \Theta, B_1, B_2}{\vdash \Theta, B_1 \lor B_2} \lor^{-}$$

Let's consider a (1-sided) sequent system setting.

- Better organize the **structure** of derivations.
- Emphasis on: non-invertible vs. invertible rules.
- Propositional connectives have:
 - a positive version;
 - a negative version.
- Polarization of a formula does not affect its provability.

store

 $\vdash \Theta \Uparrow \Gamma$

release

 $\vdash \Theta \Downarrow A$

decide

-

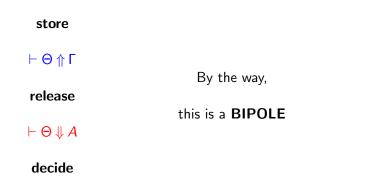
< ∃⇒

э

store(a positive formula to possibly focus on later) $\vdash \Theta \Uparrow \Gamma$ $t^-, f^-, \vee^-, \wedge^-, \forall$ release $\vdash \Theta \Downarrow A$ $t^+, f^+, \vee^+, \wedge^+, \exists$ decide(on a positive formula to focus on)

store	(a positive formula to possibly focus on later)		
$\vdash \Theta \Uparrow \Gamma$	NEGATIVE PHASE (invertible)		
release	(change of phase)		
$\vdash \Theta \Downarrow A$	POSITIVE PHASE (non-invertible)		
decide	(on a positive formula to focus on)		

-



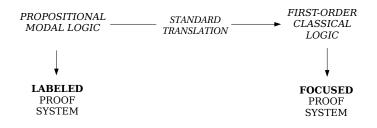
One step back

- ∢ ≣ ▶

P.

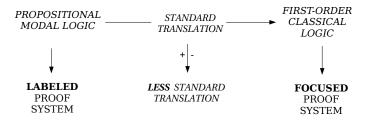
э

э



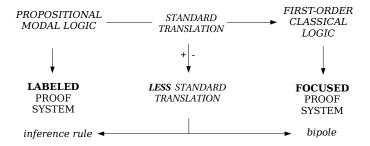
) 2 (?

One step back (Miller-Volpe, LPAR2015)



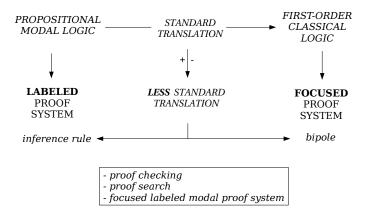
) 2 (?

One step back (Miller-Volpe, LPAR2015)



)20

One step back (Miller-Volpe, LPAR2015)



) 2 (?

Negative introduction rules

$$\frac{\mathcal{G} \vdash \Theta \Uparrow x : t, \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : t, \Gamma} t^{-} \frac{\mathcal{G} \vdash \Theta \Uparrow \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : t, \Gamma} f^{-} \frac{\mathcal{G} \vdash \Theta \Uparrow x : A, \Gamma \quad \mathcal{G} \vdash \Theta \Uparrow x : B, \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : A, \Lambda^{-} B, \Gamma} \wedge^{-} \frac{\mathcal{G} \vdash \Theta \Uparrow x : A, X : B, \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : A, \Lambda^{-} B, \Gamma} \cap^{-} \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Uparrow y : B, \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : \Box B, \Gamma} \Box$$

Identity rules

 $\begin{array}{c} \textbf{Structural rules} \\ \frac{\mathcal{G} \vdash \Theta, x : C \Uparrow \Gamma}{\mathcal{G} \vdash \Theta \Uparrow x : C, \Gamma} \text{ store } \quad \frac{\mathcal{G} \vdash \Theta \Uparrow x : N}{\mathcal{G} \vdash \Theta \Downarrow x : N} \text{ release } \quad \frac{\mathcal{G} \vdash x : P, \Theta \Downarrow x : P}{\mathcal{G} \vdash x : P, \Theta \Uparrow} \text{ decide} \end{array}$

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク へ (や

Motivations

Provide (by combining already known formalism interrelation results and some ideas from focusing) a general framework for:

- comparing formalisms;
- proof checking;
- generating new modal proof systems.

One step forward (this paper and more...)

MODAL PROOF SYSTEMS

MODAL PROOF SYSTEMS

ORDINARY SEQUENTS

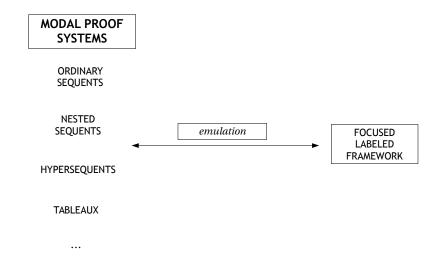
NESTED SEQUENTS

HYPERSEQUENTS

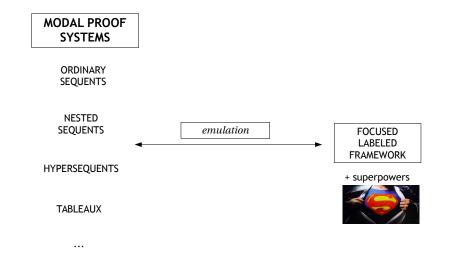
TABLEAUX

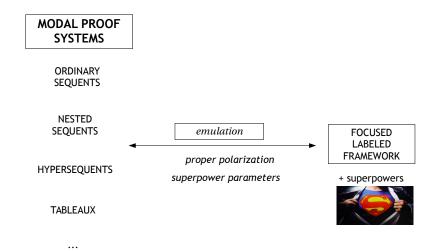
...

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems



One step forward (this paper and more...)





An ordinary sequent system for modal logic

 $\frac{}{\vdash \Gamma, P, \neg P} \text{ init} \qquad \frac{\vdash \Gamma, A \vdash \Delta, \neg A}{\vdash \Gamma, \Delta} \text{ cut} \qquad \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} \text{ contr}$

CLASSICAL CONNECTIVES RULES

$\vdash \Gamma, A \vdash \Gamma, B$	$\vdash \Gamma, A, B$	⊢Γ ,	Ŧ
$\vdash \Gamma, A \land B$	$\vdash \Gamma, A \lor B$ \lor	⊢⊥,Γ ⊥	<u>⊢⊤,</u> ′

Modal rules

 $\frac{\vdash \Gamma, A}{\vdash \Diamond \Gamma, \Box A, \Delta} \ \Box_{\mathcal{K}}$

伺 と く ヨ と く ヨ と …

3

The case of K $\frac{\vdash \Gamma, A}{\vdash \Diamond \Gamma, \Box A, \Delta} \Box_{K}$

This rule works at the same time on \Box s and \Diamond s.

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems

同 ト イ ヨ ト イ ヨ ト

The case of K $\frac{\vdash \Gamma, A}{\vdash \Diamond \Gamma, \Box A, \Delta} \Box_{\mathcal{K}}$

This rule works at the same time on \Box s and \Diamond s.

Bipole!

伺 ト イヨト イヨト

э

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

ii) Modal rule moving from x to y.

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

iii) Classical reasoning in y.

ii) Modal rule moving from x to y.

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

iv) Modal rule moving from y to z.

iii) Classical reasoning in y.

ii) Modal rule moving from x to y.

- Correspondence between ordinary and labeled sequents:
 - ordinary classical rules operate on a single world;
 - ordinary modal rules move from one world to another.

iv) Modal rule moving from y to z.

iii) Classical reasoning in y.

ii) Modal rule moving from x to y.

The rule for K

$$\frac{\vdash \mathsf{\Gamma}, \mathsf{A}}{\vdash \Diamond \mathsf{\Gamma}, \Box \mathsf{A}, \Delta} \Box_{\mathsf{K}}$$

$$\frac{\mathcal{G} \cup \{\mathsf{x}\mathsf{R}\mathsf{y}\} \vdash \mathsf{\Sigma}, x : \Diamond \mathsf{\Gamma} \Uparrow \mathsf{y} : \mathsf{A}}{\mathcal{G} \vdash \mathsf{\Sigma}, x : \Diamond \mathsf{\Gamma} \Uparrow \mathsf{x} : \Box \mathsf{A}}$$

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems

Image: Image:

The rule for K

$$\frac{\vdash \mathsf{\Gamma}, \mathsf{A}}{\vdash \Diamond \mathsf{\Gamma}, \Box \mathsf{A}, \Delta} \Box_{\mathsf{K}}$$

$$\frac{\mathcal{G} \cup \{\mathsf{x}\mathsf{R}\mathsf{y}\} \vdash \mathsf{\Sigma}, x : \Diamond \mathsf{\Gamma} \Uparrow \mathsf{y} : \mathsf{A}}{\mathcal{G} \vdash \mathsf{\Sigma}, x : \Diamond \mathsf{\Gamma} \Uparrow \mathsf{x} : \Box \mathsf{A}}$$

One **bipole** for the \Box -formula.

.⊒ . ►

The rule for K

$$\frac{\vdash \mathbf{\Gamma}, A}{\vdash \Diamond \mathbf{\Gamma}, \Box A, \Delta} R \Box$$

$$\mathcal{G} \cup \{xRy\} \vdash \Sigma, x : \Diamond \Gamma, y : A \Uparrow y : \Gamma$$
$$\vdots$$
$$\mathcal{G} \cup \{xRy\} \vdash \Sigma, x : \Diamond \Gamma, y : A \Downarrow x : \Diamond \Gamma$$

The rule for K

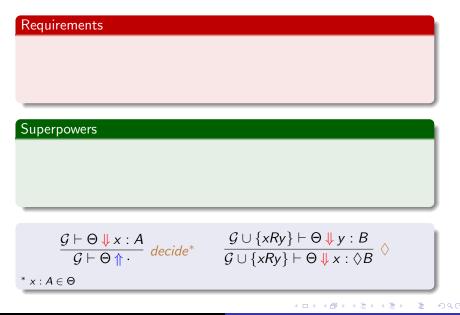
$$\frac{\vdash \mathbf{\Gamma}, A}{\vdash \Diamond \mathbf{\Gamma}, \Box A, \Delta} R \Box$$

$$\mathcal{G} \cup \{xRy\} \vdash \Sigma, x : \Diamond \Gamma, y : A \Uparrow y : \Gamma$$
$$\vdots$$
$$\mathcal{G} \cup \{xRy\} \vdash \Sigma, x : \Diamond \Gamma, y : A \Downarrow x : \Diamond \Gamma$$

Multifocusing: the \Diamond s can be processed in parallel.

One **bipole** for the \Diamond -formulas.

Which superpowers do we need?



Which superpowers do we need?

Requirements

0 More \Diamond s at the same time.

Superpowers

$$\frac{\mathcal{G} \vdash \Theta \Downarrow x : A}{\mathcal{G} \vdash \Theta \Uparrow} \text{ decide}^*$$

$$\frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y : B}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow x : \Diamond B} \langle$$

A ►

∃ >

э

∃ >

* $x : A \in \Theta$

Requirements

0 More \Diamond s at the same time.

Superpowers

$$\frac{\mathcal{G} \vdash \Theta \Downarrow x : A}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \ decide^*$$

$$\frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y : B}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow x : \Diamond B} \langle$$

A ►

글 > - < 글 >

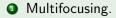
э

* $x : A \in \Theta$

Requirements

0 More \Diamond s at the same time.

Superpowers



$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow x : \Diamond B, \Omega} \diamond$$
* $\Omega \subseteq \Theta$

S. Marin, D. Miller, M. Volpe A focused framework for emulating modal proof systems

A 10

Requirements

- **0** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.

Superpowers

Multifocusing.

$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow x : \Diamond B, \Omega} \diamond$$
* $\Omega \subseteq \Theta$

Requirements

- **0** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.

Superpowers

- Multifocusing.
- Attach a "future" to formulas.

$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow x : \Diamond B, \Omega} \diamond$$

 $^{\ast }\ \Omega \subseteq \Theta$

Requirements

- **0** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.

Superpowers

- Multifocusing.
- **②** Attach a "future" (sequence σ of labels) to formulas.

$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y\sigma : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow xy\sigma : \Diamond B, \Omega} \langle$$

* if $x\sigma : A \in \Omega$ then $x : A \in \Theta$

Requirements

- **0** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.
- Once we move to a new world, we forget about the old ones.

Superpowers

- Multifocusing.
- **②** Attach a "future" (sequence σ of labels) to formulas.

$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y\sigma : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow xy\sigma : \Diamond B, \Omega} \diamond$$

* if $x\sigma: A \in \Omega$ then $x: A \in \Theta$

Requirements

- **0** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.
- Once we move to a new world, we forget about the old ones.

Superpowers

- Multifocusing.
- **②** Attach a "future" (sequence σ of labels) to formulas.
- Decorate each sequent with a "present" (set of "active" worlds).

$$\frac{\mathcal{G} \vdash \Theta \Downarrow \Omega}{\mathcal{G} \vdash \Theta \Uparrow \cdot} \quad \frac{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow y\sigma : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash \Theta \Downarrow xy\sigma : \Diamond B, \Omega}$$

* if $x\sigma : A \in \Omega$ then $x : A \in \Theta$

Requirements

- **O** More \Diamond s at the same time.
- **2** All formulas associated to such \Diamond s move to the same world.
- Once we move to a new world, we forget about the old ones.

Superpowers

- Multifocusing.
- **②** Attach a "future" (sequence σ of labels) to formulas.
- Decorate each sequent with a "present" (set of "active" worlds).

$$\frac{\mathcal{G} \vdash_{\mathcal{H}'} \Theta \Downarrow \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow \cdot} \ \textit{decide}^*$$

$$\frac{\mathcal{G} \cup \{xRy\} \vdash_{\mathcal{H}} \Theta \Downarrow y\sigma : B, \Omega}{\mathcal{G} \cup \{xRy\} \vdash_{\mathcal{H}} \Theta \Downarrow xy\sigma : \Diamond B, \Omega}$$

* if $x\sigma: A \in \Omega$ then $x: A \in \Theta$

Asynchronous introduction rules

 $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow X : t^{-} \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow X : t^{-} \Omega} t^{-} \qquad \frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow X : t^{-} \Omega} t^{-}$ $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : A, \Omega \quad \mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : B, \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : A \wedge^{-} B, \Omega} \wedge^{-} \qquad \frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : A, x : B, \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : A \vee^{-} B, \Omega} \vee^{-}$ $\frac{\mathcal{G} \cup \{xRy\} \vdash_{\mathcal{H}} \Theta \Uparrow y : B, \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Uparrow x : \Box B, \Omega} \ \Box$ Synchronous introduction rules $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : t^{+}}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : t^{+}} t^{+} \qquad \frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : B_{1}, \Omega_{1} \quad \mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : B_{2}, \Omega_{2}}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : B_{1} \wedge^{+} B_{2}, \Omega_{1}, \Omega_{2}} \wedge^{+}$ $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : B_{i}, \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \Downarrow x\sigma : B_{1} \lor^{+} B_{2}, \Omega} \lor^{+}, i \in \{1, 2\} \qquad \frac{\mathcal{G} \cup \{xRy\} \vdash_{\mathcal{H}} \Theta \Downarrow y\sigma : B, \Omega}{\mathcal{G} \cup \{xRv\} \vdash_{\mathcal{H}} \Theta \Downarrow xv\sigma : \Diamond B, \Omega} \diamondsuit$ IDENTITY BULES $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow x : \neg P_{a}, \Theta \Downarrow x : P_{a}}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow x : \neg P_{a}, \Theta \Downarrow x : P_{a}} \text{ init } \frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow x : B}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow x} \text{ cut}$ STRUCTURAL RULES $\frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta, x : \mathcal{C} \uparrow \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow x : \mathcal{C} \Omega} \text{ store } \qquad \frac{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow \Omega'}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \parallel \Omega} \text{ release } \qquad \frac{\mathcal{G} \vdash_{\mathcal{H}'} \Theta \Downarrow \Omega}{\mathcal{G} \vdash_{\mathcal{H}} \Theta \uparrow} \text{ decide}$

Parameters of the framework

- X is a subset of relational properties in $\{T, 4, 5, B, D\}$.
- * can be instantiated in a specific way by the following parameters (of the decide rule):
 - restrictions on the class of formulas on which multifocusing can be applied;
 - **2** restrictions on the definition of the future σ of formulas in Ω ;
 - **3** restriction of the present \mathcal{H}' .

Theorem

The framework LMF_*^X is sound and complete with respect to the logic KX, for any polarization of formulas.

By playing with polarization and parameters, one can obtain different systems.

Emulation of ordinary sequent systems

$$\begin{array}{rcl} [P] &=& P\\ [\neg P] &=& \neg P\\ [A \land B] &=& \partial^+([A]) \land^- \partial^+([B])\\ [A \lor B] &=& \partial^+([A]) \lor^- \partial^+([B])\\ [\Box A] &=& \Box(\partial^+([A]))\\ [\Diamond A] &=& \diamondsuit(\partial^-(\partial^+([A]))) \end{array}$$

Emulation of ordinary sequent systems (LMF_{OS}^{χ})

$$\frac{\mathcal{G} \vdash_{\{y\}} \Theta \Downarrow \Omega}{\mathcal{G} \vdash_{\{x\}} \Theta \Uparrow \cdot} \ decide_{OS}$$

where we have that either:

• there exists *y* s.t.:

•
$$xRy \in \mathcal{G}$$
;

formulas in Ω have the form xy : ◊A; or

2
$$\Omega = \{x : A\}$$
 for some A and $x = y$.

Theorem

Derivations in ordinary sequents are emulated by LMF_{OS}^{X} , according to a proper interpretation of sequents. E.g., for K, a modal rule corresponds to two bipoles.

Corollary

The restriction of the system is complete.

- Same polarization as for ordinary sequents.
- No need for multifocusing.
- No need for restrictions on futures.
- The present is always the set of all labels.

$$\frac{\mathcal{G} \vdash_{\mathcal{L}} \Theta \Downarrow x : A}{\mathcal{G} \vdash_{\mathcal{L}} \Theta \Uparrow \cdot} \ decide_{NS}$$

Conclusion

- We showed the case of K; but it works for geometric extensions.
- Emulation of modal focused systems (e.g., [Lellmann-Pimentel, 2015] or [Chaudhuri-Marin-Strassburger, 2016]).
- What about hypersequents?
 - the present is a multiset;
 - external structural rules as operations on such a present;
 - modal communication rules as a combination of relational and modal rules.
- Not necessarily for emulation: design of new focused calculi.
- Superpowers can be implemented in the augmented version of the focused system LKF used in the project ProofCert.

ヨッ イヨッ イヨッ

Thank you!

∢母▶ ∢ ≣▶

Э

æ