

"KNOWING VALUE" LOGIC AS A NORMAL MODAL LOGIC

Tao Gu¹ and Yanjing Wang² AiML2016, Sept. 1st, 2016

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

Background

A disguised normal modal logic

Conclusions

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

BACKGROUND

STANDARD EPISTEMIC LOGIC

Modal logics that reason about propositional knowledge (and belief) [von Wright 1951, Hintikka 1962]

- Language: "agent *i* knows that φ " ($K_i\varphi$).
- Semantics: you know that φ iff φ is true in all the epistemic alternatives that you cannot distinguish from the actual world.
- Proof systems: usually between S4 and S5.

$$s \models p \land \neg K_i p$$

$$(i)$$

$$s : p \longleftrightarrow_{i \longrightarrow j} \neg p$$

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

BEYOND "KNOWING THAT"

Knowledge is not only expressed in terms of "knowing that":

- I know whether the claim is true.
- I know what your password is.
- I know how to go to Budapest.
- I know why he was late.
- I know who proved this theorem.

Hits (in millions) returned by google:

Х	that	whether	what	how	who	why
"know X"	574	28	592	490	112	113
"knows X"	50.7	0.51	61.4	86.3	8.48	3.55

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

BEYOND "KNOWING THAT"

Knowledge is not only expressed in terms of "knowing that":

- I know whether the claim is true.
- I know what your password is.
- I know how to go to Budapest.
- I know why he was late.
- I know who proved this theorem.

Linguistically: factive verbs, embedded questions, exhaustivity Philosophically: reducible to "knowledge-that"? Logically: how to reason about "know-wh"? Computationally: efficient representation and reasoning

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

BEYOND "KNOWING THAT": THE RESEARCH AGENDA

"knowing who" was discussed by Hintikka (1962) in terms of first-order modal logic: $\exists x K_i(John = x)$, i.e., knowing the answer of the embedded question. Asking a wh-question is to know.

Our "minimalistic" approach:

- Take a know-wh construction as a single modality, e.g., pack ∃xK_i(John = x) into Kwho_iJohn.
- Balance the complexity and expressive power.
- Find intuitive reasoning patterns of different knowing X.
- New dynamics of knowledge (wait for Alexandru's talk).

Tao Gu¹ and Yanjing Wang²:

BEYOND KNOWING THAT: (TECHNICAL) DIFFICULTIES

- \cdot (apparently) not normal:
 - $\cdot \hspace{0.2cm} \not\vdash \hspace{0.2cm} \textit{Kw}(p \rightarrow q) \land \textit{Kw} \hspace{0.2cm} p \rightarrow \textit{Kw} \hspace{0.2cm} q$
 - \forall Khow $\varphi \land$ Khow $\psi \rightarrow$ Khow $(\varphi \land \psi)$
 - $\boldsymbol{\cdot} \vdash \varphi \nRightarrow \vdash \mathit{Kwhy}\varphi$
- combinations of quantifiers and modalities: $\exists x \Box \varphi(x)$;
- the axioms depend on the special schema of φ essentially;
- weak language vs. rich model: hard to axiomatize.

See Beyond knowing that: a new generation of epistemic logic for a survey on our logics of knowing whether, knowing what, and knowing how (http://arxiv.org/abs/1605.01995).

Tao Gu¹ and Yanjing Wang²: 1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A DISGUISED NORMAL MODAL LOGIC

"KNOWING VALUE" OPERATOR KV PROPOSED BY [PLAZA 89]

The language **ELKv** is defined as (where $c \in C$):

 $\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}_{i}\varphi \mid \mathcal{K}v_{i}C$

ELKv is interpreted on FO-epistemic models $\mathcal{M} = \langle S, D, \{\sim_i | i \in I\}, V, V_C \rangle$ where *D* is a *constant* domain, V_C assigns to each (non-rigid) $c \in C$ a $d \in D$ on each $s \in S$:

$$\mathcal{M}, s \vDash \mathcal{K}v_i c \iff \text{for any } t_1, t_2 : \text{ if } s \sim_i t_1, s \sim_i t_2,$$

then $V_C(c, t_1) = V_C(c, t_2).$

Essentially it is $\exists x K_i (c = x)$, which cannot be expressed by a finite disjunction in principle.

ELKv can express "*i* knows that *j* knows the password but *i*

doocn't know what ovactly it is" by K Kych _ Kyc

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

CONDITIONALLY KNOWING VALUE [WANG AND FAN IJCAI 2013]

We propose a conditional generalization of $\mathcal{K}v_i$ operator (call the language **ELKv**^r):

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}_i \varphi \mid \mathcal{K} \mathsf{V}_i (\varphi, \mathsf{C})$$

where $\mathcal{K}v_i(\varphi, c)$ says "agent *i* knows what *c* is, given φ ".

 $\mathcal{M}, s \models \mathcal{K}v_i(\varphi, c) \quad \Leftrightarrow \quad \text{for any } t_1, t_2 \in S \text{ such that } s \sim_i t_1 \text{ and } s \sim_i t_2 :$ $\mathcal{M}, t_1 \models \varphi \& \mathcal{M}, t_2 \models \varphi \text{ implies } V_c(c, t_1) = V_c(c, t_2)$

Essentially $\exists x K_i(\varphi \rightarrow c = x)$ and $\mathcal{K}v_i c := \mathcal{K}v_i(\top, c)$. This language is equally expressive as **ELKv** with public announcements.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

AXIOMATIZING ELKV^r OVER S5 FRAMES [WANG AND FAN AIML2014]

System S5-ELKVR

AXIOIII SCII	enids		
TAUT	all the instances of tautologies	Rules	
DISTK	$\mathcal{K}_i(p ightarrow q) ightarrow (\mathcal{K}_i p ightarrow \mathcal{K}_i q)$	MP	$\frac{\varphi,\varphi \to \psi}{\psi}$
Т	$\mathcal{K}_i p o p$	NECK	$\overset{\psi}{arphi}$
4	$\mathcal{K}_i p o \mathcal{K}_i \mathcal{K}_i p$	NECK	$\overline{\mathcal{K}_{i} \varphi}$
5	$\neg \mathcal{K}_i p \rightarrow \mathcal{K}_i \neg \mathcal{K}_i p$	SUB	<u> </u>
DISTKv ^r	$\mathcal{K}_i(p \to q) \to (\mathcal{K}v_i(q,c) \to \mathcal{K}v_i(p,c))$		$\begin{array}{c} \varphi[p/\psi] \\ \psi \leftrightarrow \chi \end{array}$
Kv ^r 4	$\mathcal{K}V_i(p,c) \rightarrow \mathcal{K}_i\mathcal{K}V_i(p,c)$	RE	$\frac{1}{\varphi \leftrightarrow \varphi[\psi/\chi]}$
$Kv^{r} \perp$	$\mathcal{K}V_i(\perp,c)$		7 7 1 7 7 7 7
Kv ^r ∨	$\hat{\mathcal{K}}_i(p \wedge q) \wedge \mathcal{K}v_i(p,c) \wedge \mathcal{K}v_i(q,c) \rightarrow \mathcal{K}v_i(p \vee q)$	q, c)	

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

"Knowing value" logic as a normal modal logic

Aviom Schomac

AXIOMATIZING ELKV^r OVER ARBITRARY FRAMES [DING 2015]

System \mathbb{ELKVR}

Axiom Schemas

- TAUTall the instances of tautologiesDISTK $\mathcal{K}_i(p \to q) \to (\mathcal{K}_i p \to \mathcal{K}_i q)$ DISTKv' $\mathcal{K}_i(p \to q) \to (\mathcal{K}v_i(q, c) \to \mathcal{K}v_i(p, c))$ $\mathsf{Kv}' \bot$ $\mathcal{K}v_i(\bot, c)$ $\mathsf{Kv}'(\mu, c) \to \mathcal{K}v_i(p, c) \to \mathcal{K}v_i(p, c)$
- $\mathsf{K}\mathsf{v}^{\mathsf{r}}\lor\qquad\qquad\hat{\mathcal{K}}_{i}(p\land q)\land\mathcal{K}\mathsf{v}_{i}(p,c)\land\mathcal{K}\mathsf{v}_{i}(q,c)\to\mathcal{K}\mathsf{v}_{i}(p\lor q,c)$
- The completeness proofs are highly non-trivial due to the imbalance between the rich model and limited language.
- The SAT problem of this logic is PSPACE-complete.
- $\cdot\,$ Suitable bisimulation notion for this logic was unknown.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

TWO QUESTIONS AND OUR KEY OBSERVATION

- How can it be connected to normal modal logic?
- How to rebalance the syntax and semantics?

Observation: $\neg \mathcal{K}v_i(\varphi, c)$ can be viewed as a special diamond:

 $\mathcal{M}, s \models \neg \mathcal{K}v_i(\varphi, c) \iff \text{there exist } t_1, t_2 \in S \text{ such that } s \sim_i t_1 \text{ and } s \sim_i t_2 :$ $\mathcal{M}, t_1 \models \varphi \text{ and } \mathcal{M}, t_2 \models \varphi \text{ but } V_C(c, t_1) \neq V_C(c, t_2)$

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A MODAL LANGUAGE

To facilitate the comparison, we write $\neg \mathcal{K}v_i(\varphi, c)$ as $\diamondsuit_i^c \varphi$ and use the following language **MLKv**^r:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Box_i \varphi \mid \diamondsuit_i^c \varphi$$

interpreted on Kripke models with binary and **ternary** relations $(S, \{\rightarrow_i : i \in I\}, \{R_i^c : i \in I, c \in C\}, V)$, with extra conditions.

 $M, s \Vdash \Diamond_i^c \varphi \iff \exists u, v: s.t. s R_i^c uv and \mathcal{M}, u \Vdash \varphi, \mathcal{M}, v \Vdash \varphi.$

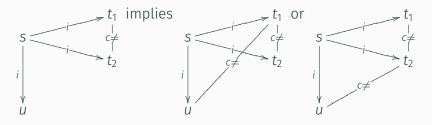
(1) $sR_i^c tu \iff sR_i^c ut$; (2) $sR_i^c uv$ only if $s \rightarrow_i u$ and $s \rightarrow_i v$; (3) $sR_i^c tu$ and $s \rightarrow_i v$ implies that $sR_i^c tv$ or $sR_i^c uv$ holds; (4) $sR_j^c tu$ for some $j \in I$, $s \rightarrow_i t$ and $s \rightarrow_i u$ implies $sR_i^c tu$; (5) $sR_i^c tu$ implies $t \neq u$.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

AN INTERESTING PROPERTY

$sR_i^ct_1t_2$ and $s \rightarrow_i u$ implies that at least one of $sR_i^ct_1u$ and $sR_i^ct_2u$ holds



We show that (4)(5) do not matter: For any set $\Gamma \cup \{\varphi\}$ of **MLKv**^r formulas: $\Gamma \Vdash_{\mathbb{C}_{1-5}} \varphi \iff \Gamma \Vdash_{\mathbb{C}_{1-3}} \varphi \iff t(\Gamma) \vDash t(\varphi)$ where *t* translates **MLKv**^r formulas back to **ELKv**^r.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

RECALL THE SYSTEM FOR ELKV^r.

	System ELKVR	Rules	
Axiom Sch	emas	MP	$\underline{\varphi,\varphi \to \psi}$
TAUT	all the instances of tautologies	NECK	$\psi \\ \varphi$
DISTK	$\mathcal{K}_i(p ightarrow q) ightarrow (\mathcal{K}_i p ightarrow \mathcal{K}_i q)$	NECK	$\frac{1}{\mathcal{K}_i \varphi}$
DISTKv ^r	$\mathcal{K}_i(p \to q) \to (\mathcal{K}v_i(q,c) \to \mathcal{K}v_i(p,c))$	SUB	$-\varphi$
Kv ^r ⊥	\mathcal{K} v _i (\perp , c)		$\begin{array}{c} \varphi[p/\psi] \\ \psi \leftrightarrow \chi \end{array}$
$Kv^r \vee$	$\hat{\mathcal{K}}_i(p \wedge q) \wedge \mathcal{K}v_i(p,c) \wedge \mathcal{K}v_i(q,c) \rightarrow \mathcal{K}v_i(p \vee q)$	q,RE	$\frac{\varphi \leftrightarrow \varphi[\psi/\gamma]}{\varphi \leftrightarrow \varphi[\psi/\gamma]}$
In the new l	2001200		, , , , , , , , , , , , , , , , , , , ,

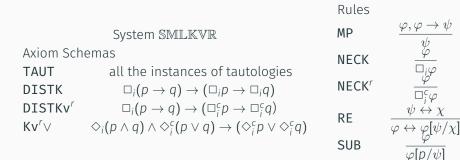
In the new language:

- DISTKV^r: $\Box(p \to q) \to (\Box_i^c \neg q \to \Box_i^c \neg p)$ equivalent to $\Box(p \to q) \to (\Box_i^c p \to \Box_i^c q)$ under SUB and RE.
- $\mathsf{Kv}^r \lor : \diamond(p \land q) \land \diamond_i^c(p \lor q) \to (\diamond_i^c p \lor \diamond_i^c q)$
- $\mathbf{Kv}^{r} \perp : \Box_{i}^{c} \top$

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A NEW LOOK AT THE AXIOMATIZATION



We replace $\Box_i^c \top$ by a necessitation rule **NECK**^r.

Theorem

SMLKVR is sound and complete w.r.t. \mathbb{C}_{1-3} (and \mathbb{C}_{1-5}).

A relatively easy canonical model construction suffices (3 pages).

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A NEW LOOK AT THE AXIOMATIZATION

		Rules	
	System SMLKVR	MP	$\frac{\varphi, \varphi \to \psi}{\varphi'}$
Axiom Sch		NECK	φ
TAUT	all the instances of tautologies		$\Box_i \varphi$
DISTK	$\Box_i(p \to q) \to (\Box_i p \to \Box_i q)$	NECK ^r	$\frac{1}{\Box_{i}^{c}\varphi}$
DISTKv ^r	$\Box_i(p \to q) \to (\Box_i^c p \to \Box_i^c q)$	RE	$\psi \leftrightarrow \chi$
Kv ^r ∨	$\diamond_i(p \land q) \land \diamond_i^c(p \lor q) \to (\diamond_i^c p \lor \diamond_i^c q)$		$\varphi \leftrightarrow \varphi[\psi/\chi]$
		SUB	$\frac{\varphi}{\varphi[p/\psi]}$
			r Lr / r J

Note that $\diamond_i^c(\varphi \lor \psi) \to (\diamond_i^c \varphi \lor \diamond_i^c \psi)$ does not hold. Moreover, $\Box_i^c(\varphi \to \psi) \to (\Box_i^c \varphi \to \Box_i^c \psi)$ does not hold neither, thus the logic is **not** normal.

However, this is only the appearance.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

DISGUISED NORMAL MODAL LOGIC

\diamond_i^c is essentially a **binary** diamond!

In **MLKvr** we only allow $\diamond_i^c(\varphi, \varphi)$. Let **MLKvb** be the language with $\diamond_i^c(\varphi, \psi)$.

 $\diamond_i^c(\varphi, \psi)$ has the standard semantics for (polyadic) normal modal logic:

$$M, s \Vdash \Diamond_i^c(\varphi, \psi) \iff \exists u, v: s.t. sR_i^cuv \text{ and } \mathcal{M}, u \vDash \varphi, \mathcal{M}, v \Vdash \psi.$$

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

THE GENERALIZATION DOES NOT INCREASE EXPRESSIVITY

Proposition

MLKvb is equally expressive as MLKvr over \mathbb{C}_{1-3} .

 $\diamond^c_i(\varphi,\psi)$ is equivalent to the disjunction of the following:

- $\cdot \,\, \diamondsuit_i^c \varphi \wedge \diamondsuit_i \psi$
- $\diamond_i^c \psi \land \diamond_i \varphi$
- $\cdot \, \diamond_i \varphi \wedge \diamond_i \psi \wedge \neg \diamond_i^{\mathsf{c}} \varphi \wedge \neg \diamond_i^{\mathsf{c}} \psi \wedge \diamond_i^{\mathsf{c}} (\varphi \lor \psi)$

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A NORMAL POLYADIC MODAL LOGIC

Axiom Sc	System SMLKVB hemas	Rules	$\varphi, \varphi \to \psi$
TAUT	all the instances of tautologies	MP	$\frac{\varphi, \varphi \neq \psi}{\psi}$
DISTK	$\Box_i(p \to q) \to (\Box_i p \to \Box_i q)$	NECK	$\frac{\overline{\varphi}}{\Box}$
DISTBK	$\Box_i^c(p \to q, r) \to (\Box_i^c(p, r) \to \Box_i^c(q, r))$	NECKvb	$\square_i \varphi \qquad $
SYM	$\Box_i^c(p,q) \to \Box_i^c(q,p)$	NECRVD	$\Box_i^c(\varphi,\psi)$
INCL	$\diamondsuit_i^c(p,q) \to \diamondsuit_i p$	SUB	φ
DISBK	$\diamond^c_i(p,q) \land \diamond_i r \to \diamond^c_i(p,r) \lor \diamond^c_i(q,r)$		$\varphi[p/\psi]$

Theorem

SMLKVB is sound and complete w.r.t. \mathbb{C}_{1-3} and \mathbb{C}_{1-5} .

SMLKVB can drive all the axioms in SMLKVR.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

THE COMPLETENESS PROOF IS NOW SIMPLY ROUTINE (ONE PAGE)

 $\mathcal{M}^{c} = \langle S, \{ \rightarrow_{i} : i \in I \}, \{ R_{i}^{c} : i \in I, c \in \mathbb{C} \}, V \rangle$

- S is the set of all maximal SMILKVB-consistent sets of MLKvb formulas,
- $s \rightarrow_i t \iff \{\varphi : \Box_i \varphi \in s\} \subseteq t$,
- $sR_i^ctu \iff$ (1) { $\varphi : \Box_i\varphi \in s$ } $\subseteq t \cap u$ and (2) for any $\Box_i^c(\varphi, \psi) \in s, \varphi \in t \text{ or } \psi \in u.$
- $V(s) = \{p : p \in s\}.$

SYM, INCL, and DISBK are canonical for the corresponding properties 1-3.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

ELKVR AS A NORMAL MODAL LOGIC

ELKv^r can be viewed as a disguised normal modal logic! Standard techniques apply:

- Canonical model for free.
- Bisimulation for free.
- ? Decision procedure

These will help us in solving problems about the original ELKv^r.

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

Tao Gu¹ and Yanjing Wang²:

Definition (Bisimulation)

Let $\mathcal{M}_1 = \langle S_1, \{ \rightarrow_i^1 : i \in I \}, \{ R_i^c : i \in I, c \in \mathbb{C} \}, V_1 \rangle, \mathcal{M}_2 = \langle S_2, \{ \rightarrow_i^2 : i \in I, c \in \mathbb{C} \}, \{ Q_i^c : i \in I \}, V_2 \rangle$ be two models for **MLKvb** (also for **MLKv**^r). A \mathbb{C} -bisimulation between \mathcal{M}_1 and \mathcal{M}_2 is a non-empty binary relation $Z \subseteq S_1 \times S_2$ such that for all $s_1 Z s_2$, the following conditions are satisfied:

Inv : $V_1(s_1) = V_2(s_2)$; Zig : $s_1 \rightarrow_i^1 t_1 \Rightarrow \exists t_2$ such that $s_2 \rightarrow_i^2 t_2$ and t_1Zt_2 ; Zag : $s_2 \rightarrow_i^2 t_2 \Rightarrow \exists t_1$ such that $s_1 \rightarrow_i^1 t_1$ and t_1Zt_2 ; Kvb-Zig : $s_1R_i^c t_1u_1 \Rightarrow \exists t_2, u_2 \in S_2$ such that t_1Zt_2, u_1Zu_2 and $s_2Q_i^c t_2u_2$; Kvb-Zag : $s_2Q_i^c t_2u_2 \Rightarrow \exists t_1, u_1 \in S_1$ such that t_1Zt_2, u_1Zu_2 and

Tao Gu¹ and Yanjing Wang²:

"Knowing value" logic as a normal modal logic

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

A SIMPER LOGIC

Plaza's unconditional language:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \mathcal{K}_{i}\varphi \mid \mathcal{K}v_{i}C$$

is essentially:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Box_i \varphi \mid \Box_i^c \bot$$

		Rules	
	System SMLKV	MP	$\underline{\varphi,\varphi\rightarrow\psi}$
Axiom Schemas			$\psi_{\mathcal{G}}$
TAUT	all the instances of tautologies	NECK	$\frac{r}{\Box_i \varphi}$
DISTK	$\Box_i(p ightarrow q) ightarrow (\Box_i p ightarrow \Box_i q)$	SUB	$\frac{\varphi'}{\varphi'}$
INCLT	$\Diamond_i^c \top \rightarrow \Diamond_i \top$		$\begin{array}{c} \varphi[p/\psi] \\ \psi \leftrightarrow \chi \end{array}$
		RE	

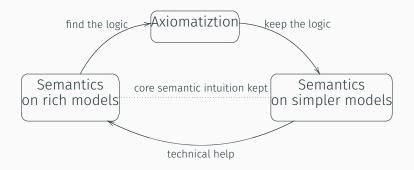
Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

CONCLUSIONS

SIMPLIFY THE SEMANTICS WHILE KEEPING THE LOGIC

To restore the balance between the language and model:



Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University

SOME FUTURE DIRECTIONS

- Generalize it to other frames classes.
- Simplify the semantics for other knowing-X logics.

Thank you for your attention!

A survey paper on knowing-wh logics: http://arxiv.org/abs/1605.01995.

Tao Gu¹ and Yanjing Wang²:

1 ILLC University of Amsterdam, 2 Department of Philosophy, Peking University