## A Paraconsistent View on B and S5

Arnon Avron and Anna Zamansky

### Paraconsistency

In classical logic (and most other logics), the explosive non-contradiction principle

### $\varphi,\neg\varphi\vdash\psi$

allows us to derive any formula out of a contradiction. This makes any inconsistent theory trivial, and so no sensible reasoning can take place in the presence of contradictions.

Paraconsistent logics do allow non-trivial inconsistent theories,
 i.e., in a logic L there are formulas φ, ψ, such that

$$\varphi, \neg \varphi \not\vdash_{\mathsf{L}} \psi$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

## The fathers of paraconsistent logic



S. Jaśkowski, 1948: to enable practical inferences.



N.C.A. da Costa, 1963: ...PL should be rich enough ...PL should contain as much as possible of classical logic.

#### Definition

Let **L** be a logic for  $\mathcal{L}$ . A (primitive or defined) connective  $\circ$  of **L** is a *consistency operator* with respect to  $\neg$  if: (b)  $\vdash_{\mathsf{L}} (\circ\psi \land \neg\psi \land\psi) \supset \varphi$  for every  $\psi, \varphi \in \mathcal{W}(\mathcal{L})$ .  $\circ$  is a *strong consistency operator* if it is a consistency operator which satisfies also (**k**)  $\circ\psi \lor (\neg\psi \land\psi)$  for every  $\psi \in \mathcal{W}(\mathcal{L})$ .

#### Definition

**L** is a C-system if it is paraconsistent and has a strong consistency operator  $\circ$ .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

## The basic C-system: BK

#### Definition

The logic **BK** is obtained by extending  $CL^+$  with the axioms **(b)** and **(k)**.

Family of C-systems: extensions of  ${\bf B}{\bf K}$  with various subsets of the following axioms:

#### **Replacement Property**

Let  $\mathbf{L} = \langle \mathcal{L}, \vdash_{\mathbf{L}} \rangle$  be a logic.

- Formulas  $\psi, \varphi \in \mathcal{W}(\mathcal{L})$  are *equivalent* in **L**, denoted by  $\psi \dashv \vdash_{\mathsf{L}} \varphi$ , if  $\psi \vdash_{\mathsf{L}} \varphi$  and  $\varphi \vdash_{\mathsf{L}} \psi$ .
- Formulas ψ, φ ∈ W(L) are congruent (or indistinguishable) in L, if for every formula σ and atom p it holds that σ[ψ/p] ⊣⊢<sub>L</sub> σ[φ/p].
- L has the *replacement property* if any two formulas which are equivalent in L are congruent in it.

Question: Which C-systems with "nice" negation have this property?

A pair  $\langle \mathcal{L}, \vdash \rangle$ , where  $\mathcal{L}$  is a propositional language, and  $\vdash$  is a relation between sets of formulas of  $\mathcal{L}$  and formulas of  $\mathcal{L}$  that satisfies:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\begin{array}{lll} \mbox{Reflexivity:} & \mbox{if } \varphi \in \mathcal{T} \mbox{ then } \mathcal{T} \vdash \varphi. \\ \mbox{Monotonicity:} & \mbox{if } \mathcal{T} \vdash \varphi \mbox{ and } \mathcal{T} \subseteq \mathcal{T}' \mbox{ then } \mathcal{T}' \vdash \varphi. \\ \mbox{Transitivity:} & \mbox{if } \mathcal{T} \vdash B \mbox{ and } \mathcal{T}, B \vdash \varphi \mbox{ then } \mathcal{T} \vdash \varphi. \\ \mbox{Structurality:} & \mbox{} \mathcal{T} \vdash \varphi \mbox{ then } \sigma(\mathcal{T}) \vdash \sigma(\varphi) \\ \mbox{Consistency} & p \not\vdash q \end{array}$ 

$$\mathcal{L}_{\mathit{CL}^+} = \{\land,\lor,\supset\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $IL^+$  is the minimal logic L in  $\mathcal{L}_{\mathit{CL}^+}$  such that:

$$\blacksquare \ \mathcal{T} \vdash_{\mathsf{L}} A \supset B \text{ iff } \mathcal{T}, A \vdash_{\mathsf{L}} B$$

$$\blacksquare \mathcal{T} \vdash_{\mathsf{L}} A \land B \text{ iff } \mathcal{T} \vdash_{\mathsf{L}} A \text{ and } \mathcal{T} \vdash_{\mathsf{L}} B$$

 $\blacksquare \ \mathcal{T}, A \lor B \vdash_{\mathsf{L}} C \text{ iff } \mathcal{T}, A \vdash_{\mathsf{L}} C \text{ and } \mathcal{T}, B \vdash_{\mathsf{L}} C$ 

**CL**<sup>+</sup> is **IL**<sup>+</sup> extended with the axiom  $A \lor (A \supset B)$ .

### ¬-classical Logics

$$\mathcal{L}_{CL} = \{\land, \lor, \supset, \neg\}$$

С

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A propositional logic  $\bm{L}=\langle \mathcal{L},\vdash_{\bm{L}}\rangle$  is  $\neg\text{-classical}$  if

- $\mathcal{L}_{CL} \subseteq \mathcal{L}$
- the  $\mathcal{L}_{CL^+}$ -fragment of **L** is **CL**<sup>+</sup>
- L satisfies:

$$T \vdash_{\mathsf{L}} A \supset B \text{ iff } \mathcal{T}, A \vdash_{\mathsf{L}} B$$

$$\mathcal{T} \vdash_{\mathsf{L}} A \land B \text{ iff } \mathcal{T} \vdash_{\mathsf{L}} A \text{ and } \mathcal{T} \vdash_{\mathsf{L}} B$$

$$\mathcal{T}, A \lor B \vdash_{\mathsf{L}} C \text{ iff } \mathcal{T}, A \vdash_{\mathsf{L}} C \text{ and } \mathcal{T}, B \vdash_{\mathsf{L}}$$

### Paraconsistent Logics

A ¬-classical logic is **paraconsistent** if  $\nvdash_{\mathsf{L}} (p \land \neg p) \supset q$ .

# Strongly Paraconsistent Logics

### A $\neg$ -classical logic is **strongly paraconsistent** if:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\blacksquare \not\vdash_{\mathsf{L}} (p \land \neg p) \supset \neg q$$

$$\blacksquare \not\vdash_{\mathsf{L}} p \supset \neg p$$

$$\blacksquare \not\vdash_{\mathsf{L}} \neg p \supset p.$$

•  $\neg$  is **complete** :  $\mathcal{T} \vdash_{\mathsf{L}} \varphi$  whenever  $\mathcal{T}, \psi \vdash_{\mathsf{L}} \varphi$  and  $\mathcal{T}, \neg \psi \vdash_{\mathsf{L}} \varphi$ .

- ¬ is right-involutive:  $\varphi \vdash_{\mathsf{L}} \neg \neg \varphi$ .
- $\neg$  is left-involutive:  $\neg \neg \varphi \vdash_{\mathsf{L}} \varphi$ .
- $\neg$  is contrapositive:  $\neg \varphi \vdash_{\mathsf{L}} \neg \psi$  whenever  $\psi \vdash_{\mathsf{L}} \varphi$ .

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Proof:**  $p \land \neg p \vdash_{\mathsf{L}} p \text{ and } p \land \neg p \vdash_{\mathsf{L}} \neg p$ 

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

### **Proof:** $p \land \neg p \vdash_{\mathsf{L}} p \text{ and } p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity, $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ .

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### **Proof:**

 $p \land \neg p \vdash_{\mathsf{L}} p$  and  $p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity,  $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ . Then  $p \land \neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ 

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### **Proof:**

 $p \land \neg p \vdash_{\mathsf{L}} p \text{ and } p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity,  $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ . Then  $p \land \neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ Obviously,  $\neg (p \land \neg p) \vdash_{\mathsf{L}} \neg (p \land \neg p)$ 

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

#### **Proof:**

 $p \land \neg p \vdash_{\mathsf{L}} p$  and  $p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity,  $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ . Then  $p \land \neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ Obviously,  $\neg (p \land \neg p) \vdash_{\mathsf{L}} \neg (p \land \neg p)$ By completeness,  $\vdash_{\mathsf{L}} \neg (p \land \neg p)$  and so also  $q \vdash_{\mathsf{L}} \neg (p \land \neg p)$ 

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

#### **Proof:**

 $p \land \neg p \vdash_{\mathsf{L}} p$  and  $p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity,  $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ . Then  $p \land \neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ Obviously,  $\neg (p \land \neg p) \vdash_{\mathsf{L}} \neg (p \land \neg p)$ By completeness,  $\vdash_{\mathsf{L}} \neg (p \land \neg p)$  and so also  $q \vdash_{\mathsf{L}} \neg (p \land \neg p)$ By contrapositivity,  $\neg \neg (p \land \neg p) \vdash_{\mathsf{L}} \neg q$ 

A  $\neg$ -classical logic in which  $\neg$  is complete, right-involutive, and contrapositive cannot be strongly paraconsistent.

#### Proof:

 $p \land \neg p \vdash_{\mathsf{L}} p$  and  $p \land \neg p \vdash_{\mathsf{L}} \neg p$ By contrapositivity,  $\neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ . Then  $p \land \neg p \vdash_{\mathsf{L}} \neg (p \land \neg p)$ Obviously,  $\neg (p \land \neg p) \vdash_{\mathsf{L}} \neg (p \land \neg p)$ By completeness,  $\vdash_{\mathsf{L}} \neg (p \land \neg p)$  and so also  $q \vdash_{\mathsf{L}} \neg (p \land \neg p)$ By contrapositivity,  $\neg \neg (p \land \neg p) \vdash_{\mathsf{L}} \neg q$ By right-involutiveness,  $p \land \neg p \vdash_{\mathsf{L}} \neg q$ 

### CLuN : $CL^+$ and [t] $\neg \psi \lor \psi$ (completeness) (Batens, 1998)

 $\begin{array}{ll} C_{min}: & CLuN \text{ and } [c] \neg \neg \psi \supset \psi \text{ (completeness and left-involutivity)} \\ & (Carnielli, Coniglio and Marcos, 2007) \end{array}$ 

...and either right-involutivity or contrapositivity (BUT NOT BOTH!)

Can we construct a C-system with replacement property (and nice negation)?

Possible solution: adding axioms that ensure replacement condition:

$$\varphi \supset \psi, \psi \supset \varphi \vdash_{\mathsf{L}} \sigma[\psi/p] \supset \sigma[\varphi/p]$$

#### Proposition

Let **CAR** be the logic which is obtained from **CLuN** by adding  $(\psi \supset \varphi) \land (\varphi \supset \psi) \supset (\neg \psi \supset \neg \varphi)$  as axiom. Then **CAR** is not strongly paraconsistent.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Refinement: allow inference of of  $\neg \varphi \supset \neg \psi$  from  $\varphi \supset \psi$  and  $\psi \supset \varphi$  only when the premises are **theorems**.
- This can be done by including this rule in the corresponding proof systems not as a rule of derivation, but just as a rule of proof.
- Rule of proof: a rule that is used only to define the set of axioms of the system, but not its consequence relation.
- To make ¬ also contrapositive, we will adopt as a rule of proof the inference of ¬φ ⊃ ¬ψ from just ψ ⊃ φ.

#### Reminder

**L** has the *replacement property* if any two formulas which are equivalent in **L** are congruent in it.

#### Proposition

Let **L** be a  $\neg$ -classical logic in  $\mathcal{L}_{CL}$  which extends  $\mathbb{L}^+$ , in which  $\vdash_{\mathsf{L}} \neg \varphi \supset \neg \psi$  whenever  $\vdash_{\mathsf{L}} \psi \supset \varphi$ . Then **L** has the replacement property.

Th(NB) is the minimal set S of formulas in  $\mathcal{L}_{CL}$ , such that:

- **1** S includes all axioms of  $HC_{min}$ .
- **2** S is closed under [MP] and the following rule:

$$[CP] \quad \frac{\vdash \psi \supset \varphi}{\vdash \neg \varphi \supset \neg \psi}$$

#### Definition

*HNB* is the Hilbert-type system whose set of axioms is Th(NB) and has [MP] for  $\supset$  as its sole rule of inference.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ Minimal extension of **CL**<sup>+</sup> in *L*<sub>CL</sub> in which ¬ is complete, contrapositive, and left-involutive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- strongly paraconsistent
- has the replacement property
- decidable
- is a C-system
- is the modal logic **B** in disguise!

• The system *GNB* is obtained from *LK* by replacing  $([\neg \Rightarrow])$  by:

$$[\neg \Rightarrow]_B \quad \frac{\mathsf{\Gamma}, \neg \Delta \Rightarrow \psi}{\neg \psi \Rightarrow \neg \mathsf{\Gamma}, \Delta}$$

(version of system proposed in Takano'92 and studied in Wansing'02. )

- *GNB* does not admit cut-elimination:  $\vdash_{GNB} \neg (p \lor q), \neg (p \lor q) \rightarrow r \Rightarrow r$ , but no cut-free proof.
- However, a weaker version of cut-elimination does hold, and implies decidability of NB.

(日)

#### $\langle W, R, \nu \rangle$ is called a **NB**-frame for $\mathcal{L}_{CL}$ , if:

- W is a nonempty (finite) set (of "worlds")
- $\blacksquare$  R is a reflexive and symmetric relation on W

• 
$$\nu: W \times \mathcal{W}(\mathcal{L}_{CL}) \rightarrow \{t, f\}$$
 satisfies the following conditions:

• 
$$\nu(w, \psi \land \varphi) = t \text{ iff } \nu(w, \psi) = t \text{ and } \nu(w, \varphi) = t.$$

- $\nu(w, \psi \lor \varphi) = t$  iff  $\nu(w, \psi) = t$  or  $\nu(w, \varphi) = t$ .
- $\nu(w, \psi \supset \varphi) = t$  iff  $\nu(w, \psi) = f$  or  $\nu(w, \varphi) = t$ .
- $\nu(w, \neg \psi) = t$  iff there exists  $w' \in W$  such that wRw', and  $\nu(w', \psi) = f$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Definition

Let  $\langle W, R, \nu \rangle$  be a **NB**-frame.

- A formula  $\varphi$  is *true* in a world  $w \in W$   $(w \Vdash \varphi)$  if  $\nu(w, \varphi) = t$ .
- A sequent  $s = \Gamma \Rightarrow \Delta$  is true in a world  $w \in W$   $(w \Vdash s)$  if  $\nu(w, \varphi) = f$  for some  $\varphi \in \Gamma$ , or  $\nu(w, \varphi) = t$  for some  $\varphi \in \Delta$ .
- A formula  $\varphi$  is *valid* in  $\langle W, R, \nu \rangle$  ( $\langle W, R, \nu \rangle \models \varphi$ ) if it is true in every world  $w \in W$ .
- A sequent *s* is valid in  $\langle W, R, \nu \rangle$  ( $\langle W, R, \nu \rangle \models s$ ) if it is true in every world  $w \in W$ .

(日)

## Semantic Consequence

#### Definition

- Let  $\mathcal{T} \cup \{\varphi\}$  be a set of formulas in  $\mathcal{L}_{CL}$ .  $\varphi$  semantically follows in **NB** from  $\mathcal{T}$  if for every **NB**-frame  $\langle W, R, \nu \rangle$  and every  $w \in W$ : if  $w \Vdash \psi$  for every  $\psi \in \mathcal{T}$  then  $w \Vdash \varphi$ .
- Let  $S \cup \{s\}$  be a set of sequents in  $\mathcal{L}_{CL}$ . *s* semantically follows in **NB** from *S* if for every **NB**-frame  $\mathcal{W}$ , if  $\mathcal{W} \models s'$  for every  $s' \in S$ , then  $\mathcal{W} \models s$ . *s* is **NB**-valid if *s* semantically follows in **NB** from  $\emptyset$  (that is, *s* is valid in every **NB**-frame).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Definition

A proof in **G** of *s* from *S* is called *analytic* if every formula occurring in it belongs to the set of subformulas of formulas in  $S \cup \{s\}$ .

#### Theorem

If s semantically follows in **NB** from S then s has an analytic proof in GNB from S.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Corollary

NB is decidable.

#### Reminder:

A strong consistency operator with respect to  $\neg$  satisfies:

**(b)** 
$$\vdash_{\mathsf{L}} (\circ \psi \land \neg \psi \land \psi) \supset \varphi \text{ for every } \psi, \varphi \in \mathcal{W}(\mathcal{L}).$$

• (k) 
$$\vdash_{\mathsf{L}} \circ \psi \lor (\neg \psi \land \psi)$$

**NB** has a strong consistency operator, which is **unique** (up to congruence):

$$\circ \varphi =_{def} (\varphi \land \neg \varphi) \supset \neg (\varphi \supset \varphi)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$\begin{array}{ll} (\mathbf{c}) & \neg \neg \varphi \supset \varphi \\ (\mathbf{n}^{\mathbf{l}}_{\wedge}) & \neg (\varphi \land \psi) \supset (\neg \varphi \lor \neg \psi) \\ (\mathbf{n}^{\mathbf{l}}_{\vee}) & \neg (\varphi \lor \psi) \supset (\neg \varphi \land \neg \psi) \\ (\mathbf{n}^{\mathbf{l}}_{\supset}) & \neg (\varphi \supset \psi) \supset (\varphi \land \neg \psi) \\ (\mathbf{a}_{\wedge}) & (\circ \varphi \land \circ \psi) \supset \circ (\varphi \land \psi) \\ (\mathbf{a}_{\vee}) & (\circ \varphi \land \circ \psi) \supset \circ (\varphi \lor \psi) \\ (\mathbf{l}) & \neg (\varphi \land \neg \varphi) \supset \circ \varphi \\ (\mathbf{i}_{1}) & \neg \circ \varphi \supset \varphi \end{array}$$

$$\begin{array}{lll} (\mathbf{e}) & \varphi \supset \neg \neg \varphi \\ (\mathbf{n}_{\wedge}^{\mathbf{r}}) & (\neg \varphi \lor \neg \psi) \supset \neg (\varphi \land \psi) \\ (\mathbf{n}_{\vee}^{\mathbf{r}}) & (\neg \varphi \land \neg \psi) \supset \neg (\varphi \lor \psi) \\ (\mathbf{n}_{\supset}^{\mathbf{r}}) & (\varphi \land \neg \psi) \supset \neg (\varphi \supset \psi) \\ (\mathbf{a}_{\neg}) & \circ \varphi \supset \circ \neg \varphi \\ (\mathbf{a}_{\supset}) & (\circ \varphi \land \circ \psi) \supset \circ (\varphi \supset \psi) \\ (\mathbf{d}) & \neg (\neg \varphi \land \varphi) \supset \circ \varphi \\ (\mathbf{i}_{2}) & \underline{\neg \circ \varphi \supset \neg \varphi} \end{array}$$

## NB is the modal logic B!

- Modal logic **B**:
  - The language of **B** is usually taken to be  $\{\land, \lor, \supset, \mathsf{F}, \Box\}$  (or  $\{\land, \lor, \supset, \neg, \Box\}$ , where  $\neg$  denotes the *classical* negation).
  - Its semantics is given by Kripke frames:
    - $\blacksquare$  accessibility relation R reflexive and symmetric
    - notion of a 'Kripke frame' is defined like in **NB**, except that instead of the clause there for ¬ we have a clause for □:

 $\nu(w, \Box \psi) = t$  iff  $\nu(w', \psi) = t$  for every  $w' \in W$  s.t. wRw'.

■ Languages of **B** and **NB** have the same expressive power, and ¬ and □ are interdefinable:

In the language of NB:

 $\Box \varphi =_{def} \sim \neg \varphi, \text{ where } \sim \psi =_{def} \psi \supset \mathsf{F} \text{ and } \mathsf{F} =_{def} \neg (p_1 \supset p_1).$ 

In the language of B:

$$\neg \varphi =_{\mathit{def}} \sim \Box \varphi$$

- Simpler language: NB really has only two basic connectives: ⊃ and ¬, while the standard presentation of B needs ⊃, F, and □.
- **Simpler Hilbert-style calculus**: the standard system for **B** is obtained from *HCL* by the addition of:
  - the necessitation rule (if  $\vdash \varphi$  then  $\vdash \Box \varphi$ ).
  - three axioms:
    - (K)  $\Box(\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi)$
    - (T)  $\Box \varphi \supset \varphi$
    - **(B)**  $\varphi \supset \Box \diamond \varphi$ , where  $\diamond \varphi =_{def} \sim \Box \sim \varphi$ .

The system for **NB** is obtained by the addition of one rule of proof, and just two simple and natural axioms.

- By adding the axiom (i<sub>2</sub>) to NB, we obtain another interesting logic, NS5.
- Studied by Béziau (2002), Batens (2002) and Osorio et al (2014).
- NS5 is a strongly paraconsistent decidable logic with a complete, left-involutive and contrapositive negation and the replacement property.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

**NS5** is equivalent to the famous **S5**.

# Summary

We studied two logics with the following properties:

- paraconsistent and yet have a nice negation: complete, left-involutive and contrapositive.
- decidable
- enjoy the replacement property
- provide alternative presentations of two famous modal logics.
- A general method of turning modal logics into paraconsistent C-systems by taking  $\neg \psi =_{def} \sim \Box \psi$  (where  $\sim$  is the classical negation).
- What other interesting paraconsistent logics can be obtained?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Summary

We studied two logics with the following properties:

- paraconsistent and yet have a nice negation: complete, left-involutive and contrapositive.
- decidable
- enjoy the replacement property
- provide alternative presentations of two famous modal logics.
- A general method of turning modal logics into paraconsistent C-systems by taking  $\neg \psi =_{def} \sim \Box \psi$  (where  $\sim$  is the classical negation).
- What other interesting paraconsistent logics can be obtained?
- Stay tuned: another investigation of paraconsistent logics from a modal viewpoint - upcoming talk by J. Marcos tomorrow (Lahav, Marcos and Zohar, 2016)...