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Theorem T

i. T* is not expressible.

ii. If G1 holds, then T is not expressible.

iii. If G and G5 holds, then T is not expressible.
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An abstract Tarski-like theorem

Theorem T

i. T* is not expressible.

ii. If G1 holds, then T is not expressible.

iii. If G and G5 holds, then T is not expressible.

Proof of i. by D: If it is expressible, then T has a Gédel
sentence. This sentence belongs to 7 iff its Gédel number
belongs to T L.e., it is true iff it is false.

Proofs of ii. and iii. by modus tollens from i. and the conditions.

Andras Maté Godel 23. Febr.



Consistency, decidability and completeness

Andras Maté Godel 23. Febr.



Consistency, decidability and completeness

L is consistent iff P and R are disjoint; inconsistent otherwise.

Andras Maté Godel 23. Febr.



Consistency, decidability and completeness

L is consistent iff P and R are disjoint; inconsistent otherwise.

Correct systems are always consistent, but not the other way.

Andras Maté Godel 23. Febr.



Consistency, decidability and completeness

L is consistent iff P and R are disjoint; inconsistent otherwise.
Correct systems are always consistent, but not the other way.

Sentence S is decidable iff it is either provable or refutable;
undecidable otherwise.

Andras Maté Godel 23. Febr.



Consistency, decidability and completeness

L is consistent iff P and R are disjoint; inconsistent otherwise.
Correct systems are always consistent, but not the other way.

Sentence S is decidable iff it is either provable or refutable;
undecidable otherwise.

L is complete iff every sentence is decidable; incomplete
otherwise.

Andras Maté Godel 23. Febr.



Two GT-like theorems

Andras Maté Godel 23. Febr.



Two GT-like theorems

Theorem 1.
If £ is correct and P* is expressible, then £ is incomplete.
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Two GT-like theorems

Theorem 1.
If £ is correct and P* is expressible, then £ is incomplete.

Theorem 1.° (Dual of Theorem 1.)
If £ is correct and R* is expressible, then £ is incomplete.

Proof for Theorem 1.°:

If K expresses R*, then Ky(k) is true iff k € R* iff d(k) € R
But the Gédel-number of Ki(k) is just d(k).

Therefore, Ky (k) is true iff it is refutable. By correctness, it is
false but not refutable.

Corollary: If G holds and R is expressible, then L is
incomplete.
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Some exercises

Are the sets (A)* and (A*) always the same?

The predicate H represents A iff for every n,
Hn)eP+<ned

Prove that if R* is representable and L is consistent, then £ is
incomplete.
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The predicate H represents A iff for every n,
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Are the sets (A)* and (A*) always the same?

The predicate H represents A iff for every n,
Hn)eP+<ned

Prove that if R* is representable and L is consistent, then £ is
incomplete.

Prove the following: If there is a representable set that contains
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Some exercises

Are the sets (A)* and (A*) always the same?

The predicate H represents A iff for every n,
Hn)eP+<ned

Prove that if R* is representable and L is consistent, then £ is
incomplete.

Prove the following: If there is a representable set that contains
R* and disjoint from P*, then £ is incomplete.

Be A represented by Hp,, ANP*=(, R*C A

h e P*<d(h) e P+~ Hp(h) e P+ heA

Therefore, h ¢ P*, h¢ A, h ¢ R*

Consequently, d(h), the Gédel-number of Hy(h) is

¢ Pand ¢ R.
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Two exercises for homework

Be L a correct system where P* is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H' s.t. for every n,
H'(n) is provable iff H(n) is refutable.

Prove that £ is incomplete.
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For any predicate H there is a predicate H' s.t. for every n,
H'(n) is provable iff H(n) is refutable.
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Suppose that the following conditions hold in L:
o The predicate E7 expresses P.
o If E, is a predicate that names A then Fj, expresses A.

o If F, is a predicate that names A then Fj3,1 expresses A*.
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Two exercises for homework

Be L a correct system where P* is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H' s.t. for every n,
H'(n) is provable iff H(n) is refutable.

Prove that £ is incomplete.

Suppose that the following conditions hold in L:
o The predicate E7 expresses P.
o If E, is a predicate that names A then Fj, expresses A.
o If F, is a predicate that names A then Fj3,1 expresses A*.
@ Find numbers a and b s.t. E4(b) is true but not provable.

Find the two solution for that both numbers are less than
100.
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Two exercises for homework

Be L a correct system where P* is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H' s.t. for every n,
H'(n) is provable iff H(n) is refutable.

Prove that £ is incomplete.

Suppose that the following conditions hold in L:
o The predicate E7 expresses P.
o If E, is a predicate that names A then Fj, expresses A.
o If F, is a predicate that names A then Fj3,1 expresses A*.
@ Find numbers a and b s.t. E4(b) is true but not provable.

Find the two solution for that both numbers are less than
100.

@ Prove that there are infinitely many such pairs (a, b).
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Two exercises for homework

Be L a correct system where P* is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H' s.t. for every n,
H'(n) is provable iff H(n) is refutable.

Prove that £ is incomplete.

Suppose that the following conditions hold in L:
o The predicate E7 expresses P.
o If E, is a predicate that names A then Fj, expresses A.
o If F, is a predicate that names A then Fj3,1 expresses A*.
@ Find numbers a and b s.t. E4(b) is true but not provable.

Find the two solution for that both numbers are less than
100.

@ Prove that there are infinitely many such pairs (a, b).

@ Suppose that Ejg is a predicate. Find (¢, d) s.t. E.(d) is a
Godel sentence of the set named by FEqg.
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The language Lg: Basic symbols
Alphabet:

07 /(7 )7 f7 1y Uy Ty, =y vv = Sa ﬁ

Numerals:
0, 0,0 0", ...

fry fr, for: function symbols with the following intended
meanings and abbreviations:

flxy) = x+y

frlzy) s x-y

fr(zy) : zEy(: 2Y)

Variables: wv1, vo, v3..., as abbreviations for:

(v). (00), (o) ...
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Terms:

@ Variables and numerals are terms.




Terms:
@ Variables and numerals are terms.
Q tll, (tl + tg), (tl . tg), (tlEtQ) are terms.
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Formulas:
t1 = to and t1 < t9 are atomic formulas.
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Terms:

@ Variables and numerals are terms.

Q tll, (tl + tg), (tl . tg), (tlEtQ) are terms.
Terms containing no variables are called closed terms or
constants.

Formulas:
t1 = to and t1 < t9 are atomic formulas.
-F, (F — G) are formulas and for any ¢, Vv; F' is a formula, too.

Free and bounded occurrences of a variable v;:

o In terms and atomic formulas, every occurrence is free.

e In formulas —=F and (F — Q) free occurrences are the same

as in F resp. in F and G.

o In Vu; I, v; has no free occurrences and all of its
occurrences are called bounded.
If j # i, every free occurrence of v; in F' remains free in
VUJ'F .
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Syntax, continuation

Formulas with no free occurrence of any variable are called
sentences or closed formulas.
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Syntax, continuation

Formulas with no free occurrence of any variable are called
sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: @ for 0" if
the number of the commas is n.

Substitution (numeral for variable):

If F(v;) is a formula with the single variable with free
occurrences (single free variable) v;, then F'(n) is the sentence
where all the free occurrences of v; are substituted with n.
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Syntax, continuation

Formulas with no free occurrence of any variable are called
sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: @ for 0" if
the number of the commas is n.

Substitution (numeral for variable):

If F(v;) is a formula with the single variable with free
occurrences (single free variable) v;, then F'(n) is the sentence
where all the free occurrences of v; are substituted with n.
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Syntax, continuation

Formulas with no free occurrence of any variable are called
sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: @ for 0" if
the number of the commas is n.

Substitution (numeral for variable):

If F(v;) is a formula with the single variable with free
occurrences (single free variable) v;, then F'(n) is the sentence
where all the free occurrences of v; are substituted with n.

If F(vi,,viy,...v;,) is a formula all the free variables of which
are v;,, Vs, Vi, , then F(l_ﬁ, l_cg, ... Z:n) is the sentence where every

v 18 substituted with k;.

F(viy, vig, . .. v, ) s regular iff every v;; is vj.
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Additions to the syntax

The degree of a formula is the number of logical constant
occurrences contained.
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We can prove theorems for every formula by induction on the
degrees.
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The degree of a formula is the number of logical constant
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We can prove theorems for every formula by induction on the
degrees.

We use the logical symbols V, A, <>, 3 as abbreviations on the
usual way. Further abbreviations:
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Additions to the syntax

The degree of a formula is the number of logical constant
occurrences contained.

We can prove theorems for every formula by induction on the
degrees.

We use the logical symbols V, A, <>, 3 as abbreviations on the
usual way. Further abbreviations:
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Additions to the syntax

The degree of a formula is the number of logical constant
occurrences contained.

We can prove theorems for every formula by induction on the
degrees.

We use the logical symbols V, A, <>, 3 as abbreviations on the
usual way. Further abbreviations:

tl 7é tQ for —|t1 = tg;
ty < to for t1 < to Aty F# to;
t'2 for t1Ety;

(Vv; < t)F for Yv;(v; <t — F) and limited existential
quantification on the similar way.
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Finishing the language Lpg

Substitution (variable for variable)
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Finishing the language Lpg

Substitution (variable for variable)

Let F(v1) be a formula with one free variable. F(v;) (i # 1) is
the following formula:

Andras Maté Godel 23. Febr.



Finishing the language Lpg

Substitution (variable for variable)

Let F(v1) be a formula with one free variable. F(v;) (i # 1) is
the following formula:

o If v; has no bounded occurrences in F(v1), the formula
where every free occurrence of vy is substituted by v;;
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Finishing the language Lpg

Substitution (variable for variable)

Let F(v1) be a formula with one free variable. F(v;) (i # 1) is
the following formula:

o If v; has no bounded occurrences in F(v1), the formula
where every free occurrence of vy is substituted by v;;

e If v; does occur in F'(v1), then take the smallest j s.t. v;
does not occur in F'(v1), substitute every (bounded)
occurrence of v; with v;, and then proceed with the
resulting formula as in the first clause.
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Finishing the language Lpg

Substitution (variable for variable)

Let F(v1) be a formula with one free variable. F(v;) (i # 1) is
the following formula:

o If v; has no bounded occurrences in F(v1), the formula
where every free occurrence of vy is substituted by v;;

e If v; does occur in F'(v1), then take the smallest j s.t. v;
does not occur in F'(v1), substitute every (bounded)
occurrence of v; with v;, and then proceed with the
resulting formula as in the first clause.

With n-variable regular formulas F'(vi,ve,...v,) and
substituting variables v;,, vi,, ... v;, , the procedure is similar.
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Denotation and truth in Lg

We can define the denotation of a constant term of Lg on the
trivial way:
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Denotation and truth in Lg

We can define the denotation of a constant term of Lg on the
trivial way:
The numeral i denotes the number n.
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Denotation and truth in Lg

We can define the denotation of a constant term of Lg on the
trivial way:

The numeral n denotes the number n.

If ¢ denotes n, then ¢’ denotes n + 1; (¢1 + ¢2) denotes the sum
of of the numbers denoted by ¢ and ca, etc.
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trivial way:

The numeral n denotes the number n.

If ¢ denotes n, then ¢’ denotes n + 1; (¢1 + ¢2) denotes the sum
of of the numbers denoted by ¢ and ca, etc.

We have a similarly trivial definition of truth for the sentences
of £ E-

Andras Maté Godel 23. Febr.



Denotation and truth in Lg

We can define the denotation of a constant term of Lg on the
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true iff ¢; denotes a number less or equal than the number
denoted by cs.

Logical constants work on the usual way. E.g.:

Vu; F' is true iff for every number n, F'(n) is true.

F(n) is of lower degree than Vv, F', therefore induction
guarantees that this definition works.
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