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Yo formulas

Atomic Xy formulas are of the form
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Yo formulas

Atomic Xy formulas are of the form

c1+co=cg, ¢1-ca=c3, ¢ =cCo,c1 <y, Where ¢q, co, c3 are
numerals or variables.
Yo formulas (inductive definition):
Q@ Atomic X formulas are Y formulas.
Q If F and G are X formulas, then so are =F and F' — G.
@ If Fis a Xy formula, v; is a variable and ¢ is either a

numeral or a variable different from v;, then (Vv; < c¢)F'is a
Yo formula.

Yo formulas contain only bounded quantifiers. A relation is Xg
iff it is expressible by a ¥ formula. Xy relations are called
constructive arithmetic relations.

Yo sentences are effectively decidable.

Andras Maté Godel 22th March



> and X formulas

Andras Maté Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.

Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.

¥, formulas (inductive definition):

Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.
¥, formulas (inductive definition):

Q > formulas are ¥ formulas.

Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.
¥, formulas (inductive definition):

Q > formulas are ¥ formulas.

Q If Fis X, then Ju; F' is X, too (for any v;).

Andras Maté Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.
¥, formulas (inductive definition):
Q > formulas are ¥ formulas.
Q If Fis X, then Ju; F' is X, too (for any v;).
@ If Fis X, then (Jv; < ¢)F and (Yv; < ¢)F are X-s, too. (cis
either a numeral or a variable different from v;.)

Andras Maté Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.
¥, formulas (inductive definition):
Q > formulas are ¥ formulas.
Q If Fis X, then Ju; F' is X, too (for any v;).
@ If Fis X, then (Jv; < ¢)F and (Yv; < ¢)F are X-s, too. (cis
either a numeral or a variable different from v;.)

@ If F and G are ¥ formulas, then so are F'V G and FAG. If
Fis Xy, then FF — G is X, too.

Andras Maté Godel 22th March



> and X formulas

Fup1F(v1,v2, ..., Vn, Upt1) is a 3q formula iff
F(vi,v2, ..., Un, Upt1) 1s Xo.
¥, formulas (inductive definition):
Q > formulas are ¥ formulas.
Q If Fis X, then Ju; F' is X, too (for any v;).
@ If Fis X, then (Jv; < ¢)F and (Yv; < ¢)F are X-s, too. (cis
either a numeral or a variable different from v;.)

@ If F and G are ¥ formulas, then so are F'V G and FAG. If
Fis Xy, then FF — G is X, too.

The relations expressible by ¥ resp. ¥ formulas are X1 resp. X
relations. Every X relation is X or X1 (later). They are the
recursively enumerable relations.
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Concatenation to a prime base

Goal: to prove that ¥ = z is arithmetic. In the arithmetization
of the syntactic notions we used Powy(z). If b is a prime, then
Powy(x) holds iff every proper divisor of x is divisible by b.
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Concatenation to a prime base

Goal: to prove that ¥ = z is arithmetic. In the arithmetization
of the syntactic notions we used Powy(z). If b is a prime, then
Powy(x) holds iff every proper divisor of x is divisible by b.
If p is a prime, then the following relations are q:

Q@ zdivy+ Fz<y)(z-z=y)

Q Powy(z) <> Vz<z)((zdivaAz#1) = pdiv 2)

Q@ y=7p"® & (Pow,(y) Ny >2Ay>1)A (V2 <

y)~(Powp(2) Nz >x Nz > 1)

For any p prime number, z *, y = z is Xo.

x*pyzszplp(y)+yzz(—>(3w1SZ)(HUJQSZ)(U}IZ
plp(y)/\wQ:x~’w1/\w2+y:z>
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Concatenation to a prime base (continuation)

The relations By, vEyy, ©P,y are Xo.

Just copy the proof of the analogous statement from the
previous class (with p instead of b and X instead of Arithmetic).
X1 kp T *p ... *kp Ty =y and T *p T2 *p ... ¥y TPy are both g
(for n > 2). On the same way.
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Where we are?

We know that prime-based concatenation and the relations
begins with, ends with, s a part of are arithmetic, moreover,
they are Y.

From these facts and the proofs of the Arithmeticity of the
syntactic notions it follows that they are all ¥ (inclusive Py and
RE).

It follows that Pp is arithmetic, too (although not 3).

To prove that the adjoint (A*) of every arithmetic set (A) is
arithmetic, too, we need to prove that ¥ = z is arithmetic.
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The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be
coded by a constructive (i.e., ¥g) function K.
Finite Set Lemma: There is a ¥ relation K(z,y, 2) s. t.

o for any finite sequence of ordered pairs of natural numbers
((a1,b1),...(an,by)), there is a number z s.t. K(z,y, z) iff
(z,y) is one of the (a;, b;)-s;

e for any z,y, z, if K(x,y,z) then z,y < z.

Proof:
(Let us identify natural numbers with their 13-ary expansion.)

Frame is a number of the form 2¢2, where 1(¢) holds (it means
that ¢ is a string consisting of 1’s only).

1(z) < (Vy < z)(yPz — 1Py)
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Be

0 = ((a1,b1),...(an, b)) an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a
part of some a; or b;.
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Proof of the Finite Set Lemma (continuation)

Be

0 = ((a1,b1),...(an, b)) an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a
part of some a; or b;.

The number ffai1foi1ff... ffa,fb.f[f is a sequence number,,e,,
of 6.

x is a maximal frame of y (x mf y) iff = is a frame, x Py and no
frame part of y is longer than x. mf is Yg:

x mf y <> xPyA(Fz < y)(1(2)Az = 222A(—Fw < y)(1(w)A2zw2Py))

K(z,y,2) < (Gw < 2)(w mf z A wwzwywwPz A wPz A wPy)

If z is a sequence number,,, of 6, then (K(x,y, z) holds iff
(x,y) is a member of 0).

Obviously, for any triple of natural numbers (z,y, z), if
K(z,y,z) holds, then z,y < z.
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Exponentiation is arithmetic

E-Theorem: The relation ¥ = z is arithmetic.
Proof:
z¥ = z holds iff there is a S set of ordered pairs s.t.
0 (y,2) €5;
@ For every (a,b) € S, (a,b) = (0,1) or there is a (¢,d) € S
s.t. (a,b) = (c+1,d-x)
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E-Theorem: The relation ¥ = z is arithmetic.
Proof:
z¥ = z holds iff there is a S set of ordered pairs s.t.
0 (y,2) €5;
@ For every (a,b) € S, (a,b) = (0,1) or there is a (¢,d) € S
s.t. (a,b) = (c+1,d-x)

2y =2«
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Exponentiation is arithmetic

E-Theorem: The relation ¥ = z is arithmetic.
Proof:
z¥ = z holds iff there is a S set of ordered pairs s.t.
0 (y,2) €5;
@ For every (a,b) € S, (a,b) = (0,1) or there is a (¢,d) € S
s.t. (a,b) = (c+1,d-x)

2y =2«
Jw(K(z,y,w) A (Va < w)(Vb < w)(K(a,b,w) —
((a=0Ab=1)V(Fe<a)(Fd<b)(a=c+1Ab=d"x))))

We have now proven that exponentiation is arithmetic with the
help of the ¥ relation K encoding finite sequences of ordered
pairs. But things become simpler if we have a function encoding
the finite sequences of numbers.
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Beta-functions

B(x,y) is a Beta-function iff for every finite sequence
(ag,a1,...,a,) there is a number w s.t.

B(w,()) = ao,ﬁ(w, 1) =day,.. .,B(w,n) = Qn-
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Beta-functions

B(x,y) is a Beta-function iff for every finite sequence
(ag,a1,...,a,) there is a number w s.t.

B(’LU,O) = G’Ovﬁ(w7 1) =day,.. 'aﬁ(wan) = Qn-
Theorem: There is a YXg Beta-function.

Be B(w, i) the smallest k s.t. K(i,k,w) if there is a such k and
B(w,i) = 0 otherwise.

B(UJ, x) =Y <
(K(z,y,w)A(Vz < y)(=K(z, z,w)))V(~(Fz < w)K(x, z,w)\y = 0),

therefore B(w, ) =y is Xy.

Be w a sequence numbery,e,, for (0, ao), (1,a1),...(n,ay). For
each i <n, K(i,a;,w) holds and there is no other m s.t.
K(i,m,w). Therefore 5(w,i) = a;.
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E-theorem via Beta-function:

Y =2+
Sw(B(w,y) = 2 A (vn < y)(Blw,n + 1) = Aw,n) - )
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Theorems

E-theorem via Beta-function:

2y =2
Sw(B(w,y) = 2 A (vn < y)(Blw,n + 1) = Aw,n) - )

Adjoint set lemma: If A is arithmetic resp. X, then A* is
arithmetic resp. ¥, too.
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Theorems

E-theorem via Beta-function:

=z
Fw(B(w,y) =z A (Vn <y)(Bw,n+1) = B(w,n) - z))
Adjoint set lemma: If A is arithmetic resp. X, then A* is
arithmetic resp. ¥, too.

In the proof of this lemma for Arithmetic sets, we had a 13* =y
relation and an unbounded existential quantifier as a prefix.
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Theorems

E-theorem via Beta-function:

2y =2
Sw(B(w,y) = 2 A (vn < y)(Blw,n + 1) = Aw,n) - )

Adjoint set lemma: If A is arithmetic resp. X, then A* is
arithmetic resp. ¥, too.

In the proof of this lemma for Arithmetic sets, we had a 13* =y
relation and an unbounded existential quantifier as a prefix.

Tarski’s theorem for £ 4:
The T4 set of the G71 numbers of true arithmetic sentences is
not arithmetic.

If it were, then T4 and ’fj; were arithmetic, too. Therefore, T's
would have a G7] sentence and this sentence were true iff it were
not true.
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First Incompleteness Theorem for P.A.
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First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.

Because Pr and Rp are ¥, P, and R}, are X, too. ]5;5 is
arithmetic, therefore Pp has an arithmetic G?1 sentence H (h)
(where H(vy) is the formula expressing Pg). Tt is true iff it is
not provable in P.E. By correctness, it is true and not provable

in P.E. — even less in P.A. —=H(h) is false, therefore it is not
provable in P.A. Q.e.d.
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First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.

Because Pr and Rp are ¥, P, and R}, are X, too. ]55 is
arithmetic, therefore Pp has an arithmetic G?1 sentence H (h)
(where H(vy) is the formula expressing Pg). Tt is true iff it is
not provable in P.E. By correctness, it is true and not provable

in P.E. — even less in P.A. —=H(h) is false, therefore it is not
provable in P.A. Q.e.d.

Another way to the theorem: With some modifications of the
definitions and proofs leading to the incompleteness of P.E., we
could prove that P} is arithmetic.

An excercise for homework (easy but important):
We know that the above sentence H(h) is true (let us call it G).
Let us add it to the axioms of P.A. The resulting system P.A

+G is correct. Is it complete?
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Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Y set and relation is
¥1. Therefore, P} and R’ are ¥;.

Y1 sets and relations are the recursively enumerable sets resp.
relations. A set or relation is recursive if both the set/relation
itself and its complement is ;.

Intuitively, a set is recursively enumerable if there is an
automata (recursive function, Turing-machine, Markov
algorithm) that produces all and only its members as outputs.
In other words, every member of the set occurs as its output
after a finitely long time.

Recursive sets are decidable: after a finite time, each member of
our domain occurs either as the output of the automata
enumerating the set or as the output of the automata
enumerating its complement.
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Some philosophy

We know that P.A. is correct.

We know that P.A. is incomplete because £ 4 contains a
sentence G which is true iff it is not provable and P.A. is correct.

L 4 contains the sentence =P(k) (where k is the G?1 number of
the sentence 0 = 0') which is true iff P.A. is consistent. (Let us
call it consis.)

We know that P.A. is consistent because it is correct.
But how do we know all that?

Hilbert’s program was: let us prove theorems about
mathematical theories by finitary means (= using only bounded
quantifiers ). Obvious candidate for a suitable framework: a
finitary fragment of P.A.
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The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of
mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument
that was not finitary.

We know by reliable means only that P.A. is incomplete provided
that it is correct.

We want to prove that — instead of correctness — it is enough to
assume the w-consistency, and even simple consistency of P.A.
(Definition of w-consistency comes next time.)

Second incompleteness theorem: consis is true iff it is not
provable. If it is true, then a fortiori it cannot be provable in
some fragment of P.A.

What would we gain if we could prove consis?

Nothing. It would be something like the Truth-teller.
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