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G is true, P.A.+¬G is ω-inconsistent

If S is consistent and every true Σ0-sentence is provable, then

every provable Σ0-sentence is true.

If S is consistent, every true Σ0 sentence is provable, the

A(v1, v2) Σ0 formula enumerates P ∗ and the Gödel number of

∀v2¬A(v1, v2) is a, then G = ∀v2¬A(ā, v2) is true. Because:

G is not provable, therefore a ̸∈ P ∗. Because A(v1, v2)
enumerates P ∗, for any n, the sentences A(ā, n̄) are refutable

and therefore the sentences ¬A(ā, n̄) are provable. So they are

all true and hence G = ∀v2¬A(ā, v2) is true, too.

Consequence: if P.A. is consistent, then G is true.

Let us extend P.A. with the axiom ¬G. This system is not

correct, it is consistent but not ω-consistent (if P.A. was
consistent).
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and therefore the sentences ¬A(ā, n̄) are provable. So they are
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Consequence: if P.A. is consistent, then G is true.

Let us extend P.A. with the axiom ¬G. This system is not

correct, it is consistent but not ω-consistent (if P.A. was
consistent).

András Máté Gödel 19th April



G is true, P.A.+¬G is ω-inconsistent

If S is consistent and every true Σ0-sentence is provable, then

every provable Σ0-sentence is true.

If S is consistent, every true Σ0 sentence is provable, the

A(v1, v2) Σ0 formula enumerates P ∗ and the Gödel number of

∀v2¬A(v1, v2) is a, then G = ∀v2¬A(ā, v2) is true. Because:
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The ω-incompleteness theorem

A system is ω-incomplete if for some formula F (x) with the

sole variable x, the sentences F (0̄), . . . , F (n̄) are all provable

but ∀xF (x) is not provable.

According to the previous slide, just this is the case with

¬A(ā, v2) on the place of F (x). Therefore

Theorem: If P.A. is consistent, then it is ω-incomplete.

A plausible generalization: if S is consistent, axiomatizable and

every true Σ0-sentence is provable, then it is ω-incomplete.
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Homeworks

1 If X is a sentence with the Gödel number x, be P (X̄) the
sentence P (x̄) (just another notation). The Σ1 formula

P (v1) expresses P , the set of Gödel numbers of provable

sentences. I.e., for any sentence X, P (X̄) is true i� X is

provable. If X is a Σ0 sentence and it is true, then it is

provable. Therefore, for any X Σ0 sentence, X → P (X̄) is
true. Show that it is provable, too.

2 Show that every true Σ1 sentence is provable in P.A.

(Therefore, for any X Σ1 sentence, the sentence X → P (X̄)
is true.)

3 Prove that not every sentence of the form X → P (X̄)
(where X is any sentence) is provable in P.A., if P.A. is

correct.
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A toy Gödel proof

After László Kalmár.

Enumerate the one-variable open terms of our language:

k0(x), k1(x), . . . , kn(x), . . .

Each of them receives an ordinal (i.e. Gödel) number.

Consider the inequalities of the form kn(l) ̸= m and arrange

them in a two-dimensional table on the following way:

k0(x) ̸= 0 k0(x) ̸= 1 . . . k0(x) ̸= n . . .
k1(x) ̸= 0 k1(x) ̸= 1 . . . k1(x) ̸= n . . .

...

kn(x) ̸= 0 kn(x) ̸= 1 . . . kn(x) ̸= n . . .

The red formulas are the diagonal sentences. The nth of them

says that the value of the nth term never equals to its own

Gödel number.
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Kalmár's toy proof continued

Now consider the proofs in the language, and choose among

them the proofs proving diagonal formulas. Enumerate them in

a sequence: P0, P1, . . . , Pn, . . ..
De�ne the following function d: d(n) = k i� Pn proves the kth
diagonal formula. d is expressible by an one-variable term (≈
d, P, P ∗ are all expressible, even Σ0 ). Be its Gödel number g.
The gth diagonal sentence (G) says that d doesn't take g as a

value, i. e. that the gth diagonal sentence has no proof. In other

words: `I am not provable'.

Assumed that our arithmetics does not prove false Σ1 sentences,

incompleteness follows. If G were false, then it would be

provable � therefore it is true. But in this case, it is not provable

and its negation is not provable, either, because ¬G is false.

This consideration proves incompleteness assuming truth and

needs expressibility. To prove it from ω-consistency we needed

representability and from simple consistency, we will need

separability.
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