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Our next goal: the Gödel-Rosser theorem

Remember the last two axiom schemes of the system (R):

Ω4 v1 ≤ n̄ ↔ v1 = 0̄ ∨ . . . ∨ v1 = n̄

Ω5 v1 ≤ n̄ ∨ n̄ ≤ v1

A system S is an extension of Ω4 and Ω5 i� all formulas of

Ω4 and Ω5 are provable in S.
Our goal for now in details:

Theorem R: Every simply consistent axiomatizable extension

of Ω4 and Ω5 in which all Σ1 sets are enumerable is incomplete.

Consequences:

1 If a system is a consistent axiomatizable extension of

Ω4 and Ω5 in which all true Σ0 sentences are provable, then

it is incomplete.

2 If a system is a consistent axiomatizable extension of (R),
then it is incomplete.

3 If P.A. is consistent, then it is incomplete.
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One more abstract incompleteness theorem

Theorem 1.: Let H(v1) be a formula representing some A
superset of R∗ disjoint from P ∗ in S, its Gödel number h. Then
H(h̄) is undecidable.

H(h̄) is provable i� h ∈ A (representation). But H(h̄) is
provable i� h ∈ P ∗ (diagonal formula property). Therefore,

h ∈ A i� h ∈ P ∗. But A and P ∗ are disjoint, hence h ̸∈ P ∗ and

h ̸∈ A. R∗ is a subset of A, therefore h ̸∈ R∗. H(h̄) is neither
provable nor refutable.
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Separation, separability

F (v1) separates set A from set B i� for all n ∈ A, F (n̄) is
provable and for all n ∈ B, F (n̄) is refutable. A is separable

from B i� there exists a such formula F (v1).

Lemma: If F (v1) separates A from B and our system is

consistent, then F (v1) represents some A′ superset of A which is

disjoint from B.

A ⊆ A′ because for all n ∈ A, F (n̄) is provable. If n ∈ A′ ∩B,

then F (n̄) is both provable and refutable, against consistency.

Theorem 2.: If Eh = H(v1) separates R
∗ from P ∗ in S and S

is consistent, then H(h̄) is undecidable.

Obvious consequence of Theorem 1 and the Lemma.
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Rosser systems

We'll show that R∗ is separable from P ∗ in any system S in

which all true Σ0 sentences and all formulas of the schemes Ω4

and Ω5 are provable.

Separability generalized for relations:

F (v1, . . . , vn) separates the n-ary relation R1 from R2 in S if for

all numbers k1, . . . , kn, if R1(k1, . . . , kn) holds, then
R1(k̄1, . . . , k̄n) is provable and if R2(k1, . . . , kn) holds, then
R1(k̄1, . . . , k̄n) is refutable.

S is a Rosser system for sets resp. n-ary relations if for any two

Σ1 sets A and B resp. any two n-ary Σ1 relations R1 and R2

A−B is separable from B −A resp. R1 −R2 is separable from

R2 −R1.

S is a Rosser system if it is a Rosser system for sets and for all

n-ary relations.
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The Separation Lemma

Lemma S. If all formulas of of Ω4 and Ω5 are provable in S,
then for any two sets A and B enumerable in S, B −A is

separable from A−B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B.

The formula separating B −A from A−B is this:

∀y(A(x, y) → (∃z ≤ y)B(x, z))

Proof: Suppose �rst n ∈ B −A.
Then n ∈ B, and for some k, B(n̄, k̄) is provable.
n /∈ A, therefore for every m ≤ k, A(n̄, m̄) is refutable.
By Ω4, (∀y ≤ k̄)¬A(n̄, y) is provable.
Hence y ≤ k̄ → ¬A(n̄, y)is provable.
By propositional logic, A(n̄, y) → ¬y ≤ k̄ is provable.

By Ω5, A(n̄, y) → k̄ ≤ y is provable.

Propositional logic: A(n̄, y) → (k̄ ≤ y ∧B(n̄, k̄)) is provable.
First-order logic: A(n̄, y) → (∃z ≤ y)B(n̄, z) is provable.
Therefore, ∀y(A(n̄, y) → (∃z ≤ y)B(n̄, z))) is provable.
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Separation lemma, proof continued

Suppose now n ∈ A−B.

n ∈ A, therefore for some k, A(n̄, k̄) is provable.
n /∈ B, for all m ≤ k, B(n̄, m̄) is refutable.
By Ω4, (∀z ≤ k)¬B(n̄, z) is provable.
First-order logic: ¬(A(n̄, k̄) → (∃z ≤ k̄)B(n̄, z)) is provable.
FOL again: ∀y(A(n̄, y) → (∃z ≤ y)B(n̄, z)) is refutable.

The generalization of lemma S for relations goes the same way.

We proved: If every true Σ0 sentence is provable in S, then every

Σ1 set and relation is enumerable. (12.04., proposition A2).

Together with lemma S, this gives the following

Theorem 3.: Any extension of Ω4 and Ω5 in which all true Σ0

sentences are provable is a Rosser system.

Therefore, (R), (Q) and P.A. are Rosser systems.
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Rosser's undecidable sentence

Theorem 4. If S is a simply consistent system in which both

P ∗ and R∗ are enumerable and all formulas of Ω4 and Ω5 are

provable, then S is incomplete.

If the conditions hold, then P ∗ and R∗ are disjoint enumerable

sets, hence according to Lemma S, they are separable.

Incompleteness follows from Theorem 2. of this class.

If A(x, y) enumerates P ∗ and B(x, y) enumerates R∗, then �

according to the proof of Lemma S � the formula

∀y(A((x, y) → (∃z ≤ y)B(x, z))

separates R∗ from P ∗.

If the Gödel number of this formula is h, then by Theorem 2. of

this class, the following sentence is undecidable:

∀y(A((h̄, y) → (∃z ≤ y)B(h̄, z))
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Rosser's theorem

Now we can prove Theorem R on the �rst slide of this class:

Every simply consistent axiomatizable extension of Ω4 and Ω5

in which all Σ1 sets are enumerable is incomplete.

If S is a system for which the conditions hold, then P ∗ and R∗

are both Σ1 (axiomatizability)

Therefore, they are both enumerable and all the conditions of

Theorem 2. hold.

The undecidable sentence is the same as on the previous slide.
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An (informal) interpretation of the Gödel sentence

Gödel's undecidable sentence:

∀v2¬A(ā, v2), (G)

where A(x, y) enumerates P ∗.

A(n̄, k̄) can be understood as saying: `The number k witnesses

that the nth diagonal sentence is provable'. If a diagonal

sentence is provable, then there is a number (provably)

witnessing it.

Then (G) says: `No number witnesses that the ath diagonal

sentence is provable', where the ath diagonal sentence is (G)

itself. In other words: 'I am not provable'.
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Then (G) says: `No number witnesses that the ath diagonal

sentence is provable', where the ath diagonal sentence is (G)

itself. In other words: 'I am not provable'.

András Máté Gödel 26th April



Interpretation of Rosser's undecidable sentence

Rosser's undecidable sentence:

∀y(A((h̄, y) → (∃z ≤ y)B(h̄, z)) (R)

where A(x, y) enumerates P ∗ and B(x, y) enumerates R∗ (i.e.,

the ordinals of refutable diagonal sentences) and (R) is the hth
diagonal sentence.

Interpretation (on the same line): `If any number witnesses that

I am provable, than there is a number less or equal to it

witnessing that I am refutable'. I.e., `If I'm provable, then the

system is inconsistent.'

András Máté Gödel 26th April



Interpretation of Rosser's undecidable sentence

Rosser's undecidable sentence:

∀y(A((h̄, y) → (∃z ≤ y)B(h̄, z)) (R)

where A(x, y) enumerates P ∗ and B(x, y) enumerates R∗ (i.e.,

the ordinals of refutable diagonal sentences) and (R) is the hth
diagonal sentence.

Interpretation (on the same line): `If any number witnesses that

I am provable, than there is a number less or equal to it

witnessing that I am refutable'. I.e., `If I'm provable, then the

system is inconsistent.'

András Máté Gödel 26th April



Interpretation of Rosser's undecidable sentence

Rosser's undecidable sentence:

∀y(A((h̄, y) → (∃z ≤ y)B(h̄, z)) (R)

where A(x, y) enumerates P ∗ and B(x, y) enumerates R∗ (i.e.,

the ordinals of refutable diagonal sentences) and (R) is the hth
diagonal sentence.

Interpretation (on the same line): `If any number witnesses that

I am provable, than there is a number less or equal to it

witnessing that I am refutable'. I.e., `If I'm provable, then the

system is inconsistent.'

András Máté Gödel 26th April


