The Gödel-Rosser theorem

András Máté

$26\mathrm{th}$ April2024

András Máté Gödel 26th April

András Máté Gödel 26th Apr

★課 ▶ ★ 臣 ▶ ★ 臣

Remember the last two axiom schemes of the system (R):

$$\Omega_4 \quad v_1 \le \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n}$$

$$\Omega_5 \quad v_1 < \bar{n} \lor \bar{n} < v_1$$

A system S is an extension of Ω_4 and Ω_5 iff all formulas of Ω_4 and Ω_5 are provable in S.

Remember the last two axiom schemes of the system (R):

$$\Omega_4 \ v_1 \le \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n}$$

 $\Omega_5 \ v_1 \le \bar{n} \lor \bar{n} \le v_1$

A system S is an extension of Ω_4 and Ω_5 iff all formulas of Ω_4 and Ω_5 are provable in S.

Our goal for now in details:

Theorem R: Every simply consistent axiomatizable extension of Ω_4 and Ω_5 in which all Σ_1 sets are enumerable is incomplete.

Remember the last two axiom schemes of the system (R):

$$\Omega_4 \ v_1 \le \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n}$$

$$\Omega_5 \ v_1 \le \bar{n} \lor \bar{n} \le v_1$$

A system S is an extension of Ω_4 and Ω_5 iff all formulas of Ω_4 and Ω_5 are provable in S.

Our goal for now in details:

Theorem R: Every simply consistent axiomatizable extension of Ω_4 and Ω_5 in which all Σ_1 sets are enumerable is incomplete.

Consequences:

- If a system is a consistent axiomatizable extension of Ω₄ and Ω₅ in which all true Σ₀ sentences are provable, then it is incomplete.
- **2** If a system is a consistent axiomatizable extension of (R), then it is incomplete.
- **③** If P.A. is consistent, then it is incomplete.

One more abstract incompleteness theorem

András Máté Gödel 26th Apr

Theorem 1.: Let $H(v_1)$ be a formula representing some A superset of R^* disjoint from P^* in S, its Gödel number h. Then $H(\bar{h})$ is undecidable.

Theorem 1.: Let $H(v_1)$ be a formula representing some A superset of R^* disjoint from P^* in S, its Gödel number h. Then $H(\bar{h})$ is undecidable.

 $H(\bar{h})$ is provable iff $h \in A$ (representation). But $H(\bar{h})$ is provable iff $h \in P^*$ (diagonal formula property). Therefore, $h \in A$ iff $h \in P^*$. But A and P^* are disjoint, hence $h \notin P^*$ and $h \notin A$. R^* is a subset of A, therefore $h \notin R^*$. $H(\bar{h})$ is neither provable nor refutable.

Separation, separability

András Máté Gödel 26th April

▲ 同 ▶ ▲ 臣

Lemma: If $F(v_1)$ separates A from B and our system is consistent, then $F(v_1)$ represents some A' superset of A which is disjoint from B.

Lemma: If $F(v_1)$ separates A from B and our system is consistent, then $F(v_1)$ represents some A' superset of A which is disjoint from B.

 $A \subseteq A'$ because for all $n \in A$, $F(\bar{n})$ is provable. If $n \in A' \cap B$, then $F(\bar{n})$ is both provable and refutable, against consistency.

Lemma: If $F(v_1)$ separates A from B and our system is consistent, then $F(v_1)$ represents some A' superset of A which is disjoint from B.

 $A \subseteq A'$ because for all $n \in A$, $F(\bar{n})$ is provable. If $n \in A' \cap B$, then $F(\bar{n})$ is both provable and refutable, against consistency.

Theorem 2.: If $E_h = H(v_1)$ separates R^* from P^* in S and S is consistent, then $H(\bar{h})$ is undecidable.

Lemma: If $F(v_1)$ separates A from B and our system is consistent, then $F(v_1)$ represents some A' superset of A which is disjoint from B.

 $A \subseteq A'$ because for all $n \in A$, $F(\bar{n})$ is provable. If $n \in A' \cap B$, then $F(\bar{n})$ is both provable and refutable, against consistency.

Theorem 2.: If $E_h = H(v_1)$ separates R^* from P^* in S and S is consistent, then $H(\bar{h})$ is undecidable.

Obvious consequence of Theorem 1 and the Lemma.

Rosser systems

András Máté Gödel 26th April

- 4 同 ト 4 臣 ト 4 臣

E

Rosser systems

We'll show that R^* is separable from P^* in any system S in which all true Σ_0 sentences and all formulas of the schemes Ω_4 and Ω_5 are provable.

We'll show that R^* is separable from P^* in any system S in which all true Σ_0 sentences and all formulas of the schemes Ω_4 and Ω_5 are provable.

Separability generalized for relations: $F(v_1, \ldots, v_n)$ separates the *n*-ary relation R_1 from R_2 in S if for all numbers k_1, \ldots, k_n , if $R_1(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is provable and if $R_2(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is refutable.

★掃♪ ★注♪ ★注♪

We'll show that R^* is separable from P^* in any system S in which all true Σ_0 sentences and all formulas of the schemes Ω_4 and Ω_5 are provable.

Separability generalized for relations:

 $F(v_1, \ldots, v_n)$ separates the *n*-ary relation R_1 from R_2 in S if for all numbers k_1, \ldots, k_n , if $R_1(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is provable and if $R_2(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is refutable.

S is a Rosser system for sets resp. *n*-ary relations if for any two Σ_1 sets \overline{A} and \overline{B} resp. any two *n*-ary Σ_1 relations R_1 and R_2 A-B is separable from B-A resp. R_1-R_2 is separable from R_2-R_1 .

We'll show that R^* is separable from P^* in any system S in which all true Σ_0 sentences and all formulas of the schemes Ω_4 and Ω_5 are provable.

Separability generalized for relations:

 $F(v_1, \ldots, v_n)$ separates the *n*-ary relation R_1 from R_2 in S if for all numbers k_1, \ldots, k_n , if $R_1(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is provable and if $R_2(k_1, \ldots, k_n)$ holds, then $R_1(\bar{k}_1, \ldots, \bar{k}_n)$ is refutable.

S is a Rosser system for sets resp. *n*-ary relations if for any two Σ_1 sets \overline{A} and \overline{B} resp. any two *n*-ary Σ_1 relations R_1 and R_2 A-B is separable from B-A resp. R_1-R_2 is separable from R_2-R_1 .

 \mathcal{S} is a Rosser system if it is a Rosser system for sets and for all n-ary relations.

(本部) (本語) (本語) (三語

András Máté Gödel 26th April

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

 $\forall y (A(x,y) \to (\exists z \leq y) B(x,z))$

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \le y) B(x,z))$$

Proof: Suppose first $n \in B - A$.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \le y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some $k, B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k, A(\bar{n}, \bar{m})$ is refutable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y \leq \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \rightarrow (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y \leq \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable. By propositional logic, $A(\bar{n}, y) \rightarrow \neg y \leq \bar{k}$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \rightarrow (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y \leq \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable. By propositional logic, $A(\bar{n}, y) \rightarrow \neg y \leq \bar{k}$ is provable. By Ω_5 , $A(\bar{n}, y) \rightarrow \bar{k} \leq y$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \rightarrow (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y \leq \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable. By propositional logic, $A(\bar{n}, y) \rightarrow \neg y \leq \bar{k}$ is provable. By Ω_5 , $A(\bar{n}, y) \rightarrow \bar{k} \leq y$ is provable. Propositional logic: $A(\bar{n}, y) \rightarrow (\bar{k} \leq y \land B(\bar{n}, \bar{k}))$ is provable.

▲御▶ ▲ 臣▶ ▲ 臣▶

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \to (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some k, $B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every $m \leq k$, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y \leq \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y \leq \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable. By propositional logic, $A(\bar{n}, y) \rightarrow \neg y \leq \bar{k}$ is provable. By Ω_5 , $A(\bar{n}, y) \rightarrow \bar{k} \leq y$ is provable. Propositional logic: $A(\bar{n}, y) \rightarrow (\bar{k} \leq y \land B(\bar{n}, \bar{k}))$ is provable. First-order logic: $A(\bar{n}, y) \rightarrow (\exists z \leq y)B(\bar{n}, z)$ is provable.

Lemma S. If all formulas of of Ω_4 and Ω_5 are provable in S, then for any two sets A and B enumerable in S, B - A is separable from A - B.

Be A(x, y) and B(x, y) the formulas enumerating A resp. B. The formula separating B - A from A - B is this:

$$\forall y (A(x,y) \rightarrow (\exists z \leq y) B(x,z))$$

Proof: Suppose first $n \in B - A$. Then $n \in B$, and for some $k, B(\bar{n}, \bar{k})$ is provable. $n \notin A$, therefore for every m < k, $A(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall y < \bar{k}) \neg A(\bar{n}, y)$ is provable. Hence $y < \bar{k} \rightarrow \neg A(\bar{n}, y)$ is provable. By propositional logic, $A(\bar{n}, y) \rightarrow \neg y \leq \bar{k}$ is provable. By Ω_5 , $A(\bar{n}, y) \to \bar{k} \leq y$ is provable. Propositional logic: $A(\bar{n}, y) \to (\bar{k} \leq y \land B(\bar{n}, \bar{k}))$ is provable. First-order logic: $A(\bar{n}, y) \to (\exists z \leq y) B(\bar{n}, z)$ is provable. Therefore, $\forall y(A(\bar{n}, y) \to (\exists z \leq y)B(\bar{n}, z)))$ is provable.

András Máté Gödel 26th April

Suppose now $n \in A - B$.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg (A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg (A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y (A(\bar{n}, y) \rightarrow (\exists z \leq y)B(\bar{n}, z))$ is refutable. Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg (A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y(A(\bar{n}, y) \rightarrow (\exists z \leq y)B(\bar{n}, z))$ is refutable. The generalization of lemma S for relations goes the same way. Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg (A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y(A(\bar{n}, y) \rightarrow (\exists z \leq y)B(\bar{n}, z))$ is refutable. The generalization of lemma S for relations goes the same way. Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, \bar{k})$ is provable. $n \notin B$, for all $m \leq k$, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z \leq k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg (A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y (A(\bar{n}, y) \rightarrow (\exists z \leq y)B(\bar{n}, z))$ is refutable. The generalization of lemma S for relations goes the same way. We proved: If every true Σ_0 sentence is provable in \mathcal{S} , then every Σ_1 set and relation is enumerable. (12.04., proposition A_2).

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, k)$ is provable. $n \notin B$, for all m < k, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z < k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg(A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y (A(\bar{n}, y) \rightarrow (\exists z \leq y) B(\bar{n}, z))$ is refutable. The generalization of lemma S for relations goes the same way. We proved: If every true Σ_0 sentence is provable in \mathcal{S} , then every Σ_1 set and relation is enumerable. (12.04., proposition A₂). Together with lemma S, this gives the following **Theorem 3.**: Any extension of Ω_4 and Ω_5 in which all true Σ_0 sentences are provable is a Rosser system.

Suppose now $n \in A - B$. $n \in A$, therefore for some k, $A(\bar{n}, k)$ is provable. $n \notin B$, for all m < k, $B(\bar{n}, \bar{m})$ is refutable. By Ω_4 , $(\forall z < k) \neg B(\bar{n}, z)$ is provable. First-order logic: $\neg(A(\bar{n}, \bar{k}) \rightarrow (\exists z \leq \bar{k})B(\bar{n}, z))$ is provable. FOL again: $\forall y (A(\bar{n}, y) \rightarrow (\exists z \leq y) B(\bar{n}, z))$ is refutable. The generalization of lemma S for relations goes the same way. We proved: If every true Σ_0 sentence is provable in \mathcal{S} , then every Σ_1 set and relation is enumerable. (12.04., proposition A₂). Together with lemma S, this gives the following **Theorem 3.**: Any extension of Ω_4 and Ω_5 in which all true Σ_0 sentences are provable is a Rosser system. Therefore, (R), (Q) and P.A. are Rosser systems.

・ 同 ト ・ ヨ ト ・

András Máté Gödel 26th April

Theorem 4. If S is a simply consistent system in which both P^* and R^* are enumerable and all formulas of Ω_4 and Ω_5 are provable, then S is incomplete.

Theorem 4. If S is a simply consistent system in which both P^* and R^* are enumerable and all formulas of Ω_4 and Ω_5 are provable, then S is incomplete.

If the conditions hold, then P^* and R^* are disjoint enumerable sets, hence according to Lemma S, they are separable. Incompleteness follows from Theorem 2. of this class.

If A(x, y) enumerates P^* and B(x, y) enumerates R^* , then – according to the proof of Lemma S – the formula

$$\forall y (A((x,y) \to (\exists z \le y) B(x,z))$$

separates R^* from P^* .

Theorem 4. If S is a simply consistent system in which both P^* and R^* are enumerable and all formulas of Ω_4 and Ω_5 are provable, then S is incomplete.

If the conditions hold, then P^* and R^* are disjoint enumerable sets, hence according to Lemma S, they are separable. Incompleteness follows from Theorem 2. of this class. If A(x, y) enumerates P^* and B(x, y) enumerates R^* , then –

according to the proof of Lemma S – the formula

$$\forall y (A((x,y) \to (\exists z \leq y) B(x,z))$$

separates R^* from P^* .

If the Gödel number of this formula is h, then by Theorem 2. of this class, the following sentence is undecidable:

$$\forall y (A((\bar{h}, y) \to (\exists z \le y) B(\bar{h}, z)))$$

Rosser's theorem

András Máté Gödel 26th April

E

If S is a system for which the conditions hold, then P^* and R^* are both Σ_1 (axiomatizability)

If S is a system for which the conditions hold, then P^* and R^* are both Σ_1 (axiomatizability)

Therefore, they are both enumerable and all the conditions of Theorem 2. hold.

If S is a system for which the conditions hold, then P^* and R^* are both Σ_1 (axiomatizability)

Therefore, they are both enumerable and all the conditions of Theorem 2. hold.

The undecidable sentence is the same as on the previous slide.

An (informal) interpretation of the Gödel sentence

András Máté Gödel 26th Apri

→ 聞 ▶ → 臣 ▶ → 臣 ▶

An (informal) interpretation of the Gödel sentence

Gödel's undecidable sentence:

$$\forall v_2 \neg A(\bar{a}, v_2), \tag{G}$$

▲御▶ ▲ 臣▶ ▲ 臣

where A(x, y) enumerates P^* .

Gödel's undecidable sentence:

$$\forall v_2 \neg A(\bar{a}, v_2), \tag{G}$$

where A(x, y) enumerates P^* .

 $A(\bar{n}, \bar{k})$ can be understood as saying: 'The number k witnesses that the *n*th diagonal sentence is provable'. If a diagonal sentence is provable, then there is a number (provably) witnessing it.

Gödel's undecidable sentence:

$$\forall v_2 \neg A(\bar{a}, v_2), \tag{G}$$

where A(x, y) enumerates P^* .

 $A(\bar{n}, \bar{k})$ can be understood as saying: 'The number k witnesses that the *n*th diagonal sentence is provable'. If a diagonal sentence is provable, then there is a number (provably) witnessing it.

Then (G) says: 'No number witnesses that the *a*th diagonal sentence is provable', where the *a*th diagonal sentence is (G) itself. In other words: 'I am not provable'.

Interpretation of Rosser's undecidable sentence

András Máté Gödel 26th Apri

$$\forall y(A((\bar{h}, y) \to (\exists z \le y)B(\bar{h}, z))$$
 (R)

where A(x, y) enumerates P^* and B(x, y) enumerates R^* (i.e., the ordinals of refutable diagonal sentences) and (R) is the *h*th diagonal sentence.

$$\forall y(A((\bar{h}, y) \to (\exists z \le y)B(\bar{h}, z))$$
 (R)

where A(x, y) enumerates P^* and B(x, y) enumerates R^* (i.e., the ordinals of refutable diagonal sentences) and (R) is the *h*th diagonal sentence.

Interpretation (on the same line): 'If any number witnesses that I am provable, than there is a number less or equal to it witnessing that I am refutable'. I.e., 'If I'm provable, then the system is inconsistent.'