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Definability, complete representability

Next and last aim: G&del’s second incompleteness theorem, i.e.,
the unprovability of consistency.
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Definability, complete representability

Next and last aim: G&del’s second incompleteness theorem, i.e.,
the unprovability of consistency.

F(v1,...,v,) defines the relation R(z1,...,x,) in the system S
if for any numbers a1, ..., ay:

(1) If R(a1,...,ay), then F(ay,...,a,) is provable;

(2) If R(ay,...,an), then F(ay,...,a,) is refutable.
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Definability, complete representability

Next and last aim: G&del’s second incompleteness theorem, i.e.,
the unprovability of consistency.

F(v1,...,v,) defines the relation R(z1,...,x,) in the system S
if for any numbers a1, ..., ay:

(1) If R(a1,...,ay), then F(ay,...,a,) is provable;
(2) If R(ay,...,an), then F(ay,...,a,) is refutable.
F(v1,...,v,) completely represents R(x1,...,xy) if F

represents R and —F represents R. Le. if the ‘if-then’-s above
can be changed to ‘iff’-s.
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Definability, complete representability

Next and last aim: G&del’s second incompleteness theorem, i.e.,
the unprovability of consistency.

F(v1,...,v,) defines the relation R(z1,...,x,) in the system S
if for any numbers a1, ..., ay:

(1) If R(a1,...,ay), then F(ay,...,a,) is provable;

(2) If R(ay,...,an), then F(ay,...,a,) is refutable.
F(v1,...,v,) completely represents R(x1,...,xy) if F

represents R and —F represents R. Le. if the ‘if-then’-s above
can be changed to ‘iff’-s.

If § is consistent and F' defines R, then F' completely represents
R.
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Definability, complete representability

Next and last aim: G&del’s second incompleteness theorem, i.e.,
the unprovability of consistency.

F(v1,...,v,) defines the relation R(z1,...,x,) in the system S
if for any numbers a1, ..., ay:

(1) If R(a1,...,ay), then F(ay,...,a,) is provable;

(2) If R(ay,...,an), then F(ay,...,a,) is refutable.
F(v1,...,v,) completely represents R(x1,...,xy) if F

represents R and —F represents R. Le. if the ‘if-then’-s above
can be changed to ‘iff’-s.

If § is consistent and F' defines R, then F' completely represents
R.

Proof: If F(ay,...,ay) is provable, then, by consistency, it is not
refutable. Therefore, by (2), R(a1,...,a,) does not hold, i. e.,
R(ai,...,a,) holds. So the converse of the conditional (1) is

proved. The converse of (2) goes on the same way.
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Recursivity and definability

A set or relation is recursive if both the set/relation itself and
its complement is X1 (i.e., recursively enumerable).
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Recursivity and definability

A set or relation is recursive if both the set/relation itself and
its complement is X1 (i.e., recursively enumerable).

Observation: the fqrmula F defines the relation R iff F
separates R from R.
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Recursivity and definability

A set or relation is recursive if both the set/relation itself and
its complement is X1 (i.e., recursively enumerable).

Observation: the fqrmula F defines the relation R iff F
separates R from R.

Be S a Rosser system and R a recursive relation. Then R and R
are both X1, therefore separable, therefore R is definable.
Consequently (using the proposition proved on the previous
slide):
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Recursivity and definability

A set or relation is recursive if both the set/relation itself and
its complement is X1 (i.e., recursively enumerable).

Observation: the fqrmula F defines the relation R iff F
separates R from R.

Be S a Rosser system and R a recursive relation. Then R and R
are both X1, therefore separable, therefore R is definable.

Consequently (using the proposition proved on the previous
slide):

O If S is a Rosser system, then all recursive relations are

definable.

@ If S is a consistent Rosser system, then all recursive
relations are completely representable.

Andras Maté Godel 3rd May



Recursivity and definability

A set or relation is recursive if both the set/relation itself and
its complement is X1 (i.e., recursively enumerable).

Observation: the fqrmula F defines the relation R iff F
separates R from R.

Be S a Rosser system and R a recursive relation. Then R and R
are both X1, therefore separable, therefore R is definable.
Consequently (using the proposition proved on the previous
slide):

O If S is a Rosser system, then all recursive relations are
definable.

@ If S is a consistent Rosser system, then all recursive
relations are completely representable.

Therefore:
Theorem 1. All recursive relations are definable in (R), and, a
fortiori, in every extension of (R), including (@) and P.A.
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Strong definability

F(v1,...,0n,ny1) weakly defines the function f(x1,...,x,) if
it defines the relation f(x1,...,2n) = Tpt1-
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Strong definability

F(v1,...,0n,ny1) weakly defines the function f(x1,...,x,) if
it defines the relation f(x1,...,2n) = Tpt1-

F strongly defines f if F' weakly defines f and in addition, if
f(a1,...,a,) = b, then the following sentence is provable:

Vi1 (F(@1, ..., Gn, Vps1) = Ungp1 = b).
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Strong definability

F(v1,...,0n,ny1) weakly defines the function f(x1,...,x,) if
it defines the relation f(x1,...,2n) = Tpt1-

F strongly defines f if F' weakly defines f and in addition, if
f(a1,...,a,) = b, then the following sentence is provable:

Vi1 (F(@1, ..., Gn, Vps1) = Ungp1 = b).

Theorem 2. If f(z) is strongly defined by the formula
F(v1,v2), then for any formula G(v1), there is a formula H(v;)
s.t. for any n, the sentence H(n) <> G(f(n)) is provable.
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Strong definability

F(v1,...,0n,ny1) weakly defines the function f(x1,...,x,) if
it defines the relation f(x1,...,2n) = Tpt1-

F strongly defines f if F' weakly defines f and in addition, if
f(a1,...,a,) = b, then the following sentence is provable:

Vi1 (F(@1, ..., Gn, Vps1) = Ungp1 = b).

Theorem 2. If f(z) is strongly defined by the formula
F(v1,v2), then for any formula G(v1), there is a formula H(v;)
s.t. for any n, the sentence H(n) <> G(f(n)) is provable.

We will show that Jva(F'(v1,v2) A G(v2)) works as H(vy).
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Strong definability

F(v1,...,0n,ny1) weakly defines the function f(x1,...,x,) if
it defines the relation f(x1,...,2n) = Tpt1-

F strongly defines f if F' weakly defines f and in addition, if
f(a1,...,a,) = b, then the following sentence is provable:

Vi1 (F(@1, ..., Gn, Vps1) = Ungp1 = b).

Theorem 2. If f(z) is strongly defined by the formula
F(v1,v2), then for any formula G(v1), there is a formula H(v;)
s.t. for any n, the sentence H(n) <> G(f(n)) is provable.

We will show that Jva(F'(v1,v2) A G(v2)) works as H(vy).

Be n and m such that f(n) = m. We should prove that

H(n) <+ G(m) is provable.
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Proof of Theorem 2.
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).
G(m) — (F(n,m) A G(m)) is provable (FOL).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).

G(m) — (F(n,m) A G(m)) is provable (FOL).

G(m) = Jua(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable
(FOL).

2. F(n,vy) — v = m is provable (strong definability).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).

G(m) — (F(n,m) A G(m)) is provable (FOL).

G(m) — Jue(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable
(FOL)

2. F(n,vy) — v = m is provable (strong definability).
(F(n,v2) A G(va)) = (v2 = m A G(vg)) is provable (FOL).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).
G(m) — (F(n,m) A G(m)) is provable (FOL).
G(m) — Jue(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable

(
(va =m A G(v2)) = G(m) is provable (FOL truism).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).

G(m) — (F(n,m) A G(m)) is provable (FOL).

G(m) — Jue(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable
(FOL)

=m A G(v2)) = G(m) is provable (FOL truism).
F(n,v9) A G(v2)) — G(m) is provable (propositional logic).
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).

G(m) — (F(n,m) A G(m)) is provable (FOL).

G(m) — Jue(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable
(FOL)

n )) = (v2 = m A G(v2)) is provable (FOL).
(va =m A G(v2)) = G(m) is provable (FOL truism).
(F(n,v2) A G(vg)) — G(m) is provable (propositional logic).

Fua(F (0, v2) A G(v2)) = G(m) (i.e., H(n) — G(m)) is provable
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Proof of Theorem 2.

1. F(n,m) is provable (F' defines f).

G(m) — (F(n,m) A G(m)) is provable (FOL).

G(m) — Jue(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable
(FOL).

: 2)
(F(ﬁ,vg /\ G(v )) (v = m A G(vg)) is provable (FOL).
(vg = G(v2)) — G(m) is provable (FOL truism).
(F(n, 2) G(v2)) — G(m) is provable (propositional logic).
Fua(F (0, v2) A G(v2)) = G(m) (i.e., H(n) — G(m)) is provable

From 1. and 2. it follows by propositional logic that
(F(n,v2) A G(v2)) <+ G(m) is provable, and that’s what we
wanted to prove.
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Proof of Theorem 2.

is provable (F' defines f).
F(n,m) A G(m)) is provable (FOL).
va(F(n,v2) A G(v2)), i.e., G(m) — H(n) is provable

Q-
—~
|

-~

: 2)
(F(ﬁ,vg /\ G(v )) (v = m A G(vg)) is provable (FOL).
(vg = G(v2)) — G(m) is provable (FOL truism).
(F(n, 2) G(v2)) — G(m) is provable (propositional logic).
Fua(F (0, v2) A G(v2)) = G(m) (i.e., H(n) — G(m)) is provable

From 1. and 2. it follows by propositional logic that
(F(n,v2) A G(v2)) <+ G(m) is provable, and that’s what we
wanted to prove.

We could generalize the theorem for n-ary functions.
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A corollary of Theorem 2.
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then
@ For any representable set A, the set f~1(A) is

representable, too.
© For any definable set A, the set f~1(A) is definable, too.
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.
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A corollary of Theorem 2.
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@ For any representable set A, the set f~1(A) is
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© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v;) the formula
corresponding to it by Theorem 2. Then for any n,
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
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1. Be G(v1) the formula representing A and H(v;) the formula
corresponding to it by Theorem 2. Then for any n,

ne f7HA)iff f(n) € A
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v;) the formula

corresponding to it by Theorem 2. Then for any n,
n € f7YH(A)iff f(n) € A, iff G(f(n)) is provable,
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.
1. Be G(v1) the formula representing A and H(v;) the formula
corresponding to it by Theorem 2. Then for any n,
ne f~U(A)iff f(n) € A, iff G(f(n)) is provable, iff H(n) is
provable.
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v;) the formula
corresponding to it by Theorem 2. Then for any n,

ne f~U(A)iff f(n) € A, iff G(f(n)) is provable, iff H(n) is
provable.

Therefore H(v1) represents f~1(A).
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A corollary of Theorem 2.

If f(x) is strongly definable in S, then

@ For any representable set A, the set f~1(A) is

representable, too.

© For any definable set A, the set f~1(A) is definable, too.
By Theorem 2., for any formula G(vy), there is a formula H (vq)
such that for any n, H(n) <+ G(f(n)) is provable. Therefore,
H () is provable iff G(f(n)) is provable and H(7) is refutable iff
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v;) the formula
corresponding to it by Theorem 2. Then for any n,

ne f~U(A)iff f(n) € A, iff G(f(n)) is provable, iff H(n) is
provable.

Therefore H(v1) represents f~1(A).

2. To prove that definability of A implies definability of f~!(A)
we need to show that in that case H(v1) represents f~1(A) and

—H (v1) represents f~1(A). The former was proven above, the

latter coes on the same way.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(z1,...,2n) = Tp41 is recursive.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(z1,...,2n) = Tp41 is recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(z1,...,2n) = Tp41 is recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(z1,...,2n) = Tp41 is recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.

We prove it for functions of one argument only; the
generalization is easy.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(x1,...,2,) = xpyq i recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.

We prove it for functions of one argument only; the
generalization is easy.

Be F(x,y) a formula that weakly defines f. Be G(z,y) the
formula F'(z,y) AVz(F(x,z) =y < z). We show that G
strongly defines f. Be n an arbitrary number and m = f(n).
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(x1,...,2,) = xpyq i recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.

We prove it for functions of one argument only; the
generalization is easy.

Be F(x,y) a formula that weakly defines f. Be G(z,y) the
formula F'(z,y) AVz(F(x,z) =y < z). We show that G
strongly defines f. Be n an arbitrary number and m = f(n).

1. For any k < m, F(n, k) — m < k is provable.
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(x1,...,2,) = xpyq i recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.

We prove it for functions of one argument only; the
generalization is easy.

Be F(x,y) a formula that weakly defines f. Be G(z,y) the
formula F'(z,y) AVz(F(x,z) =y < z). We show that G
strongly defines f. Be n an arbitrary number and m = f(n).
1. For any k <m, F(n, k) — m < k is provable. Because for
k < m, F(n,k) is refutable, and for £k = m, m < k is provable
(by Q).
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Strong definability of recursive functions

A function f(x1,...,z,) is recursive if the relation
f(x1,...,2,) = xpyq i recursive.

Theorem 3. All recursive functions are strongly definable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of {24 and €25 are provable in §, then any function
weakly definable is strongly definable, too.

We prove it for functions of one argument only; the
generalization is easy.

Be F(x,y) a formula that weakly defines f. Be G(z,y) the
formula F'(z,y) AVz(F(x,z) =y < z). We show that G
strongly defines f. Be n an arbitrary number and m = f(n).
1. For any k <m, F(n, k) — m < k is provable. Because for
k < m, F(n,k) is refutable, and for £k = m, m < k is provable
(by s).

Hence, z <m — (F(n,z) — m < z) is provable (using €4).
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Proof of the lemma continued
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Proof of the lemma continued

m <z — (F(n,z) = m < z) is provable (by propositional logic).
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Proof of the lemma continued
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Proof of the lemma continued

m <z — (F(n,z) = m < z) is provable (by propositional logic).
F(n,z) — m < z is provable (using Q).
Vz(F(n,z) — m < z) is provable (by FOL).
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Proof of the lemma continued

<z— (F(n,z) — m < z) is provable (by propositional logic).
n,z) — m < z is provable (using Q5).

(n,z) = m < z) is provable (by FOL).

m) is provable because F' weakly defines f, and therefore
,m) AVz(F(n,z) - m < z), i.e,, G(n,m) is provable.
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Proof of the lemma continued

n,m) is provable because F' weakly defines f, and therefore
n,m) AVz(F(n,z) — m < z), i.e.,, G(n,m) is provable.

2. For any k # m, F(n, k) is refutable, but G(n, k) — F(n, k) is
provable by propositional logic, therefore G(n, k) is refutable.
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Proof of the lemma continued

n,m) is provable because F' weakly defines f, and therefore
n,m) AVz(F(n,z) — m < z), i.e.,, G(n,m) is provable.

2. For any k # m, F(n, k) is refutable, but G(n, k) — F(n, k) is
provable by propositional logic, therefore G(n, k) is refutable.
By 1. and 2., we proved that G weakly defines f. For the
additional condition of strong definition, we show first that
G(n,y) — y < m is provable.
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Proof of the lemma continued

n,m) is provable because F' weakly defines f, and therefore
n,m) AVz(F(n,z) — m < z), i.e.,, G(n,m) is provable.

2. For any k # m, F(n, k) is refutable, but G(n, k) — F(n, k) is
provable by propositional logic, therefore G(n, k) is refutable.
By 1. and 2., we proved that G weakly defines f. For the
additional condition of strong definition, we show first that
G(n,y) — y < m is provable.

G(n,y) = Vz(F(n,z) — y < z) is provable (FOL)
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Proof of the lemma continued

n,m) is provable because F' weakly defines f, and therefore
n,m) AVz(F(n,z) — m < z), i.e.,, G(n,m) is provable.

2. For any k # m, F(n, k) is refutable, but G(n, k) — F(n, k) is
provable by propositional logic, therefore G(n, k) is refutable.
By 1. and 2., we proved that G weakly defines f. For the
additional condition of strong definition, we show first that
G(n,y) — y < m is provable.

G(n,y) = Vz(F(n,z) — y < z) is provable (FOL)

G(n,y) = (F(n,m) — y <m) is provable (FOL).
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Proof of the lemma continued

n,m) is provable because F' weakly defines f, and therefore
n,m) AVz(F(n,z) - m < z), i.e., G(n,m) is provable.

2. For any k # m, F(n, k) is refutable, but G(n, k) — F(n, k) is
provable by propositional logic, therefore G (7, k) is refutable.
By 1. and 2., we proved that G weakly defines f. For the
additional condition of strong definition, we show first that
G(n,y) — y < m is provable.

G(n,y) = Vz(F(n,z) — y < z) is provable (FOL)

G(n,y) = (F(n,m) — y <m) is provable (FOL).

F(n,m) is provable (weak def.), and therefore G(n,y) — y < m
is provable (propositional logic).
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Proof of the lemma continued 2.
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.
If K = m, then k = m is provable.
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.

If K =m, then k = m is provable.

Hence for every k < m, G(n, k) — k = m is provable.
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.

If k = m, then k = m is provable.

Hence for every k < m, G(n, k) — k = m is provable.
Then y <m — (G(n,y) — y = m) is provable (using €4).
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.

If k = m, then k = m is provable.

Hence for every k < m, G(n, k) — k = m is provable.

Then y <m — (G(n,y) — y = m) is provable (using €4).

From this formula and the formula proved on the previous slide,
G(n,y) — y = m follows by propositional logic.

Therefore (by (FOL), Yy(G(n,y) — y = m) is provable. And
this is the additional condition for strong definability.
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Proof of the lemma continued 2.

If k < m, then F(n, k) is refutable and therefore G(7, k) is
refutable, too.

If k = m, then k = m is provable.

Hence for every k < m, G(n, k) — k = m is provable.

Then y <m — (G(n,y) — y = m) is provable (using €4).

From this formula and the formula proved on the previous slide,
G(n,y) — y = m follows by propositional logic.

Therefore (by (FOL), Yy(G(n,y) — y = m) is provable. And
this is the additional condition for strong definability.

From this lemma and Theorem 1., Theorem 3. follows.
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A proposition, a consequence and a homework
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A proposition, a consequence and a homework

Proposition: For any function f(z1,...,x,), if the relation
f(z1,...,2n) = Tp41 is Xy, then f is recursive.
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A proposition, a consequence and a homework

Proposition: For any function f(z1,...,x,), if the relation
f(z1,...,xn) = Tpy1 is 31, then f is recursive.

We need only that the complement of the relation is 31, too.
But f(x1,...,2n) # Tpe1 is equivalent with

Jy(f(x1,...,2n) =y Ay # xpy1) and the latter is a X, therefore
>1 formula.
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A proposition, a consequence and a homework

Proposition: For any function f(z1,...,x,), if the relation
f(z1,...,xn) = Tpy1 is 31, then f is recursive.

We need only that the complement of the relation is 31, too.
But f(x1,...,2n) # Tpe1 is equivalent with

Jy(f(x1,...,2n) =y Ay # xpy1) and the latter is a X, therefore
>1 formula.

The diagonal function d(x) is X1. Therefore, by the above
proposition, it is recursive, and by Theorem 3., it is strongly
definable in (R) and in its extensions.
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A proposition, a consequence and a homework

Proposition: For any function f(z1,...,x,), if the relation
f(z1,...,xn) = Tpy1 is 31, then f is recursive.

We need only that the complement of the relation is 31, too.
But f(x1,...,2n) # Tpe1 is equivalent with

Jy(f(x1,...,2n) =y Ay # xpy1) and the latter is a X, therefore
>1 formula.

The diagonal function d(x) is X1. Therefore, by the above
proposition, it is recursive, and by Theorem 3., it is strongly
definable in (R) and in its extensions.

Homework: Show that for the complete theory N,
representability, definability and complete representability all
coincide. Is this true for P.A., too? (Is the set P* completely
representable in P.A.7)
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