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De�nability, complete representability

Next and last aim: Gödel's second incompleteness theorem, i.e.,
the unprovability of consistency.

F (v1, . . . , vn) de�nes the relation R(x1, . . . , xn) in the system S
if for any numbers a1, . . . , an:

(1) If R(a1, . . . , an), then F (ā1, . . . , ān) is provable;

(2) If R̃(a1, . . . , an), then F (ā1, . . . , ān) is refutable.

F (v1, . . . , vn) completely represents R(x1, . . . , xn) if F

represents R and ¬F represents R̃. I.e. if the `if-then'-s above
can be changed to `i�'-s.

If S is consistent and F de�nes R, then F completely represents
R.

Proof: If F (ā1, . . . , ān) is provable, then, by consistency, it is not
refutable. Therefore, by (2), R̃(a1, . . . , an) does not hold, i. e.,
R(a1, . . . , an) holds. So the converse of the conditional (1) is
proved. The converse of (2) goes on the same way.
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Proof: If F (ā1, . . . , ān) is provable, then, by consistency, it is not
refutable. Therefore, by (2), R̃(a1, . . . , an) does not hold, i. e.,
R(a1, . . . , an) holds. So the converse of the conditional (1) is
proved. The converse of (2) goes on the same way.

András Máté Gödel 3rd May



Recursivity and de�nability

A set or relation is recursive if both the set/relation itself and
its complement is Σ1 (i.e., recursively enumerable).

Observation: the formula F de�nes the relation R i� F
separates R from R̃.

Be S a Rosser system and R a recursive relation. Then R and R̃
are both Σ1, therefore separable, therefore R is de�nable.
Consequently (using the proposition proved on the previous
slide):

1 If S is a Rosser system, then all recursive relations are
de�nable.

2 If S is a consistent Rosser system, then all recursive
relations are completely representable.

Therefore:
Theorem 1. All recursive relations are de�nable in (R), and, a
fortiori, in every extension of (R), including (Q) and P.A.
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Strong de�nability

F (v1, . . . , vn, vn+1) weakly de�nes the function f(x1, . . . , xn) if
it de�nes the relation f(x1, . . . , xn) = xn+1.

F strongly de�nes f if F weakly de�nes f and in addition, if
f(a1, . . . , an) = b, then the following sentence is provable:

∀vn+1(F (ā1, . . . , ān, vn+1) → vn+1 = b̄).

Theorem 2. If f(x) is strongly de�ned by the formula
F (v1, v2), then for any formula G(v1), there is a formula H(v1)
s.t. for any n, the sentence H(n̄) ↔ G(f(n)) is provable.

We will show that ∃v2(F (v1, v2) ∧G(v2)) works as H(v1).
Be n and m such that f(n) = m. We should prove that
H(n̄) ↔ G(m̄) is provable.
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Proof of Theorem 2.

1. F (n̄, m̄) is provable (F de�nes f).
G(m̄) → (F (n̄, m̄) ∧G(m̄)) is provable (FOL).
G(m̄) → ∃v2(F (n̄, v2) ∧G(v2)), i.e., G(m̄) → H(n̄) is provable
(FOL).

2. F (n̄, v2) → v2 = m̄ is provable (strong de�nability).
(F (n̄, v2) ∧G(v2)) → (v2 = m̄ ∧G(v2)) is provable (FOL).
(v2 = m̄ ∧G(v2)) → G(m̄) is provable (FOL truism).
(F (n̄, v2) ∧G(v2)) → G(m̄) is provable (propositional logic).
∃v2(F (n̄, v2) ∧G(v2)) → G(m̄) (i.e., H(n̄) → G(m̄)) is provable
(FOL).

From 1. and 2. it follows by propositional logic that
(F (n̄, v2) ∧G(v2)) ↔ G(m̄) is provable, and that's what we
wanted to prove.

We could generalize the theorem for n-ary functions.
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A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,

n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A,

i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable,

i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.

Therefore H(v1) represents f
−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



A corollary of Theorem 2.

If f(x) is strongly de�nable in S, then
1 For any representable set A, the set f−1(A) is

representable, too.
2 For any de�nable set A, the set f−1(A) is de�nable, too.

By Theorem 2., for any formula G(v1), there is a formula H(v1)
such that for any n, H(n̄) ↔ G(f(n)) is provable. Therefore,
H(n̄) is provable i� G(f(n)) is provable and H(n̄) is refutable i�
G(f(n)) is refutable.

1. Be G(v1) the formula representing A and H(v1) the formula
corresponding to it by Theorem 2. Then for any n,
n ∈ f−1(A) i� f(n) ∈ A, i� G(f(n)) is provable, i� H(n) is
provable.
Therefore H(v1) represents f

−1(A).

2. To prove that de�nability of A implies de�nability of f−1(A)
we need to show that in that case H(v1) represents f

−1(A) and

¬H(v1) represents f̃−1(A). The former was proven above, the
latter goes on the same way.

András Máté Gödel 3rd May



Strong de�nability of recursive functions

A function f(x1, . . . , xn) is recursive if the relation
f(x1, . . . , xn) = xn+1 is recursive.

Theorem 3. All recursive functions are strongly de�nable in
(R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all
formulas of Ω4 and Ω5 are provable in S, then any function
weakly de�nable is strongly de�nable, too.

We prove it for functions of one argument only; the
generalization is easy.

Be F (x, y) a formula that weakly de�nes f . Be G(x, y) the
formula F (x, y) ∧ ∀z(F (x, z) → y ≤ z). We show that G
strongly de�nes f . Be n an arbitrary number and m = f(n).

1. For any k ≤ m, F (n̄, k̄) → m̄ ≤ k̄ is provable. Because for
k < m, F (n̄, k̄) is refutable, and for k = m, m̄ ≤ k̄ is provable
(by Ω5).
Hence, z ≤ m̄ → (F (n̄, z) → m̄ ≤ z) is provable (using Ω4).
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Proof of the lemma continued
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Proof of the lemma continued 2.

If k < m, then F (n̄, k̄) is refutable and therefore G(n̄, k̄) is
refutable, too.
If k = m, then k̄ = m̄ is provable.
Hence for every k ≤ m, G(n̄, k̄) → k̄ = m̄ is provable.
Then y ≤ m → (G(n̄, y) → y = m̄) is provable (using Ω4).
From this formula and the formula proved on the previous slide,
G(n̄, y) → y = m̄ follows by propositional logic.
Therefore (by (FOL), ∀y(G(n̄, y) → y = m̄) is provable. And
this is the additional condition for strong de�nability.

From this lemma and Theorem 1., Theorem 3. follows.
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A proposition, a consequence and a homework

Proposition: For any function f(x1, . . . , xn), if the relation
f(x1, . . . , xn) = xn+1 is Σ1, then f is recursive.

We need only that the complement of the relation is Σ1, too.
But f(x1, . . . , xn) ̸= xn+1 is equivalent with
∃y(f(x1, . . . , xn) = y ∧ y ̸= xn+1) and the latter is a Σ, therefore
Σ1 formula.

The diagonal function d(x) is Σ1. Therefore, by the above
proposition, it is recursive, and by Theorem 3., it is strongly
de�nable in (R) and in its extensions.

Homework: Show that for the complete theory N ,
representability, de�nability and complete representability all
coincide. Is this true for P.A., too? (Is the set P ∗ completely
representable in P.A.?)
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