Recursivity of the diagonal function

András Máté

3rd May 2024

András Máté Gödel 3rd May

47 ▶ ◀

András Máté Gödel 3rd May

▲ □ ► < □ ►</p>

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

- (1) If $R(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is provable;
- (2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to 'iff'-s.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to 'iff'-s.

If S is consistent and F defines R, then F completely represents R.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to 'iff'-s.

If \mathcal{S} is consistent and F defines R, then F completely represents R.

Proof: If $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable, then, by consistency, it is not refutable. Therefore, by (2), $\tilde{R}(a_1, \ldots, a_n)$ does not hold, i. e., $R(a_1, \ldots, a_n)$ holds. So the converse of the conditional (1) is proved. The converse of (2) goes on the same way.

András Máté Gödel 3rd May

A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from \tilde{R} .

A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from \tilde{R} .

Be S a Rosser system and R a recursive relation. Then R and \tilde{R} are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from \tilde{R} .

Be S a Rosser system and R a recursive relation. Then R and \tilde{R} are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

- If S is a Rosser system, then all recursive relations are definable.
- **2** If S is a consistent Rosser system, then all recursive relations are completely representable.

A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from \tilde{R} .

Be S a Rosser system and R a recursive relation. Then R and \tilde{R} are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

- If S is a Rosser system, then all recursive relations are definable.
- **2** If S is a consistent Rosser system, then all recursive relations are completely representable.

Therefore:

Theorem 1. All recursive relations are definable in (R), and, a *fortiori*, in every extension of (R), including (Q) and P.A.

Strong definability

András Máté Gödel 3rd May

- 4 回 ト - 4 三 ト - 4

F strongly defines f if F weakly defines f and in addition, if $f(\overline{a_1, \ldots, a_n}) = \overline{b}$, then the following sentence is provable:

$$\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).$$

F strongly defines f if F weakly defines f and in addition, if $f(\overline{a_1,\ldots,a_n}) = b$, then the following sentence is provable:

$$\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).$$

Theorem 2. If f(x) is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(\overline{f(n)})$ is provable.

→ 同 ト → 臣 ト → 臣 ト

F strongly defines f if F weakly defines f and in addition, if $f(\overline{a_1,\ldots,a_n}) = b$, then the following sentence is provable:

$$\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).$$

Theorem 2. If f(x) is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(\overline{f(n)})$ is provable. We will show that $\exists v_2(F(v_1, v_2) \land G(v_2))$ works as $H(v_1)$.

→ 同 ト → 臣 ト → 臣 ト

F strongly defines f if F weakly defines f and in addition, if $f(\overline{a_1,\ldots,a_n}) = b$, then the following sentence is provable:

$$\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).$$

Theorem 2. If f(x) is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(\overline{f(n)})$ is provable. We will show that $\exists v_2(F(v_1, v_2) \land G(v_2))$ works as $H(v_1)$. Be n and m such that f(n) = m. We should prove that $H(\bar{n}) \leftrightarrow G(\bar{m})$ is provable.

|▲圖▶||▲圖▶||▲圖▶|

András Máté Gödel 3rd May

E

1. $F(\bar{n}, \bar{m})$ is provable (F defines f).

- 4 伊 ト 4 三 ト 4

1. $F(\bar{n}, \bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \land G(\bar{m}))$ is provable (FOL).

A (1) < (1) < (1) </p>

1. $F(\bar{n},\bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n},\bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n},v_2) \land G(v_2)), \text{ i.e.}, G(\bar{m}) \to H(\bar{n})$ is provable (FOL).

1. $F(\bar{n},\bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n},\bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n},v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n}) \text{ is provable}$ (FOL).

2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability).

1. $F(\bar{n},\bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n},\bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n},v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n}) \text{ is provable}$ (FOL).

2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL).

1. $F(\bar{n}, \bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n}) \text{ is provable}$ (FOL). 2. $F(\bar{n}, v_2) \to v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \land G(v_2)) \to (v_2 = \bar{m} \land G(v_2))$ is provable (FOL).

 $(v_2 = \overline{m} \wedge G(v_2)) \rightarrow G(\overline{m})$ is provable (FOL truism).

1. $F(\bar{n},\bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n},\bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n},v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n}) \text{ is provable}$ (FOL). 2. $F(\bar{n},v_2) \to v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n},v_2) \land G(v_2)) \to (v_2 = \bar{m} \land G(v_2)) \text{ is provable (FOL).}$ $(v_2 = \bar{m} \land G(v_2)) \to G(\bar{m}) \text{ is provable (FOL truism).}$

 $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (propositional logic).

・ 何 ト ・ ヨ ト ・ ヨ ト

1. $F(\bar{n}, \bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \to v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \land G(v_2)) \to (v_2 = \bar{m} \land G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \land G(v_2)) \to G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ (i.e., $H(\bar{n}) \to G(\bar{m})$) is provable (FOL).

1. $F(\bar{n}, \bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \to v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \land G(v_2)) \to (v_2 = \bar{m} \land G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \land G(v_2)) \to G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ (i.e., $H(\bar{n}) \to G(\bar{m})$) is provable (FOL).

From 1. and 2. it follows by propositional logic that $(F(\bar{n}, v_2) \wedge G(v_2)) \leftrightarrow G(\bar{m})$ is provable, and that's what we wanted to prove.

1. $F(\bar{n}, \bar{m})$ is provable (F defines f). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \land G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \land G(v_2)), \text{ i.e., } G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \to v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \land G(v_2)) \to (v_2 = \bar{m} \land G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \land G(v_2)) \to G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \land G(v_2)) \to G(\bar{m})$ (i.e., $H(\bar{n}) \to G(\bar{m})$) is provable

(FOL).

From 1. and 2. it follows by propositional logic that $(F(\bar{n}, v_2) \wedge G(v_2)) \leftrightarrow G(\bar{m})$ is provable, and that's what we wanted to prove.

We could generalize the theorem for n-ary functions.

András Máté Gödel 3rd May

・ロト ・四ト ・ヨト ・

-

- If f(x) is strongly definable in \mathcal{S} , then
 - For any representable set A, the set $f^{-1}(A)$ is representable, too.
 - **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $\underline{G(v_1)}$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(\overline{f(n)})$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(\overline{f(n)})$ is refutable.

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $\underline{G(v_1)}$, there is a formula $H(v_1)$ such that for any $n, H(\underline{\bar{n}}) \leftrightarrow G(\overline{f(n)})$ is provable. Therefore, $H(\underline{\bar{n}})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\overline{n})$ is refutable iff $G(\overline{f(n)})$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n,

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $\underline{G(v_1)}$, there is a formula $H(v_1)$ such that for any $n, H(\underline{\bar{n}}) \leftrightarrow G(\overline{f(n)})$ is provable. Therefore, $H(\underline{\bar{n}})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\overline{n})$ is refutable iff $G(\overline{f(n)})$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n, $n \in f^{-1}(A)$ iff $f(n) \in A$,

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $\underline{G(v_1)}$, there is a formula $H(v_1)$ such that for any $n, H(\underline{\bar{n}}) \leftrightarrow G(\overline{f(n)})$ is provable. Therefore, $H(\underline{\bar{n}})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\overline{n})$ is refutable iff $G(\overline{f(n)})$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n, $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable,

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(\bar{f}(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\bar{f}(n))$ is provable and $H(\bar{n})$ is refutable iff $G(\bar{f}(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n, $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff H(n) is provable.

▲ □ ► < □ ►</p>

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(\bar{f}(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\bar{f}(n))$ is provable and $H(\bar{n})$ is refutable iff $G(\bar{f}(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n, $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff H(n) is provable.

Therefore $H(v_1)$ represents $f^{-1}(A)$.

(4月) (1日) (4

If f(x) is strongly definable in \mathcal{S} , then

- For any representable set A, the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $\underline{G(v_1)}$, there is a formula $H(v_1)$ such that for any $n, H(\underline{\bar{n}}) \leftrightarrow G(\overline{f(n)})$ is provable. Therefore, $H(\underline{\bar{n}})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\overline{n})$ is refutable iff $G(\overline{f(n)})$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n, $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff H(n) is provable.

Therefore $H(v_1)$ represents $f^{-1}(A)$.

2. To prove that definability of A implies definability of $f^{-1}(A)$ we need to show that in that case $H(v_1)$ represents $f^{-1}(A)$ and $\neg H(v_1)$ represents $\widetilde{f^{-1}(A)}$. The former was proven above, the latter goes on the same way.

András Máté 🛛 Gödel 3rd May

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be F(x, y) a formula that weakly defines f. Be G(x, y) the formula $F(x, y) \land \forall z (F(x, z) \to y \leq z)$. We show that G strongly defines f. Be n an arbitrary number and m = f(n).

→ 同 ト → 三 ト →

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be F(x, y) a formula that weakly defines f. Be G(x, y) the formula $F(x, y) \land \forall z (F(x, z) \to y \leq z)$. We show that Gstrongly defines f. Be n an arbitrary number and m = f(n). 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable.

(本間) (本語) (本)

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be F(x, y) a formula that weakly defines f. Be G(x, y) the formula $F(x, y) \land \forall z (F(x, z) \to y \leq z)$. We show that Gstrongly defines f. Be n an arbitrary number and m = f(n). 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable. Because for k < m, $F(\bar{n}, \bar{k})$ is refutable, and for k = m, $\bar{m} \leq \bar{k}$ is provable (by Ω_5).

▲掃▶ ▲注▶ ▲注▶

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in \mathcal{S} , then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be F(x, y) a formula that weakly defines f. Be G(x, y) the formula $F(x, y) \land \forall z (F(x, z) \to y \leq z)$. We show that Gstrongly defines f. Be n an arbitrary number and m = f(n). 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable. Because for k < m, $F(\bar{n}, \bar{k})$ is refutable, and for k = m, $\bar{m} \leq \bar{k}$ is provable (by Ω_5).

Hence, $z \leq \bar{m} \to (F(\bar{n}, z) \to \bar{m} \leq z)$ is provable (using Ω_4).

András Máté Gödel 3rd May

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic).

- 4 目 ト - 4 日 ト - 4

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \rightarrow \bar{m} \leq z$ is provable (using Ω_5).

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \rightarrow \bar{m} \leq z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL).

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \rightarrow \bar{m} \leq z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z(F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. $\overline{m} \leq z \rightarrow (F(\overline{n}, z) \rightarrow \overline{m} \leq z)$ is provable (by propositional logic). $F(\overline{n}, z) \rightarrow \overline{m} \leq z$ is provable (using Ω_5). $\forall z(F(\overline{n}, z) \rightarrow \overline{m} \leq z)$ is provable (by FOL). $F(\overline{n}, \overline{m})$ is provable because F weakly defines f, and therefore $F(\overline{n}, \overline{m}) \wedge \forall z(F(\overline{n}, z) \rightarrow \overline{m} \leq z)$, i.e., $G(\overline{n}, \overline{m})$ is provable. 2. For any $k \neq m$, $F(\overline{n}, \overline{k})$ is refutable, but $G(\overline{n}, \overline{k}) \rightarrow F(\overline{n}, \overline{k})$ is provable by propositional logic, therefore $G(\overline{n}, \overline{k})$ is refutable. $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} < z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \to \bar{m} < z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n},\bar{m}) \wedge \forall z (F(\bar{n},z) \rightarrow \bar{m} < z)$, i.e., $G(\bar{n},\bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \rightarrow F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y < \bar{m}$ is provable.

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \to \bar{m} < z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n},\bar{m}) \wedge \forall z (F(\bar{n},z) \rightarrow \bar{m} < z)$, i.e., $G(\bar{n},\bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \rightarrow F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y \leq \bar{m}$ is provable. $G(\bar{n}, y) \to \forall z (F(\bar{n}, z) \to y < z)$ is provable (FOL)

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \to \bar{m} < z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n},\bar{m}) \wedge \forall z (F(\bar{n},z) \rightarrow \bar{m} < z)$, i.e., $G(\bar{n},\bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \rightarrow F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y < \bar{m}$ is provable. $G(\bar{n}, y) \to \forall z (F(\bar{n}, z) \to y < z)$ is provable (FOL) $G(\bar{n}, y) \to (F(\bar{n}, \bar{m}) \to y < \bar{m})$ is provable (FOL).

★掃▶ ★理▶ ★理▶ …

 $\bar{m} \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z(F(\bar{n}, z) \to \bar{m} < z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n},\bar{m}) \wedge \forall z (F(\bar{n},z) \rightarrow \bar{m} < z)$, i.e., $G(\bar{n},\bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \rightarrow F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y < \bar{m}$ is provable. $G(\bar{n}, y) \to \forall z (F(\bar{n}, z) \to y \leq z)$ is provable (FOL) $G(\bar{n}, y) \to (F(\bar{n}, \bar{m}) \to y < \bar{m})$ is provable (FOL). $F(\bar{n},\bar{m})$ is provable (weak def.), and therefore $G(\bar{n},y) \to y < \bar{m}$ is provable (propositional logic).

András Máté Gödel 3rd May

If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too.

If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If k = m, then $\bar{k} = \bar{m}$ is provable. If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If k = m, then $\bar{k} = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If k = m, then $\bar{k} = \bar{m}$ is provable. Hence for every $k \le m$, $G(\bar{n}, \bar{k}) \to \bar{k} = \bar{m}$ is provable. Then $y \le m \to (G(\bar{n}, y) \to y = \bar{m})$ is provable (using Ω_4). If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If k = m, then $\bar{k} = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. Then $y \leq m \rightarrow (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable (using Ω_4). From this formula and the formula proved on the previous slide, $G(\bar{n}, y) \rightarrow y = \bar{m}$ follows by propositional logic. Therefore (by (FOL), $\forall y(G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable. And this is the additional condition for strong definability. If k < m, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If k = m, then $\bar{k} = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. Then $y \leq m \rightarrow (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable (using Ω_4). From this formula and the formula proved on the previous slide, $G(\bar{n}, y) \rightarrow y = \bar{m}$ follows by propositional logic. Therefore (by (FOL), $\forall y(G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable. And this is the additional condition for strong definability. From this lemma and Theorem 1., Theorem 3. follows.

András Máté 🛛 Gödel 3rd May

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive.

→ 冊 ▶ → 臣 ▶ → 臣 ▶

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1, \ldots, x_n) = y \land y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1, \ldots, x_n) = y \land y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

The diagonal function d(x) is Σ_1 . Therefore, by the above proposition, it is recursive, and by Theorem 3., it is strongly definable in (R) and in its extensions.

▲御▶ ▲注▶ ★注▶

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1, \ldots, x_n) = y \land y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

The diagonal function d(x) is Σ_1 . Therefore, by the above proposition, it is recursive, and by Theorem 3., it is strongly definable in (R) and in its extensions.

Homework: Show that for the complete theory \mathcal{N} , representability, definability and complete representability all coincide. Is this true for P.A., too? (Is the set P^* completely representable in P.A.?)

イロト イヨト イヨト イヨト 三日