Recursivity of the diagonal function

András Máté

3rd May 2024

András Máté [Gödel 3rd May](#page-0-0)

4 0 8

 $\left\{ \left| \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right\} \right\}$

э

András Máté [Gödel 3rd May](#page-0-0)

 $2Q$

Þ

 \leftarrow \exists \rightarrow \leftarrow \exists \rightarrow

 \leftarrow

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1, \ldots, a_n)$, then $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 QQ

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1, \ldots, a_n)$, then $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to iff .

つひひ

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1, \ldots, a_n)$, then $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to iff .

If S is consistent and F defines R, then F completely represents R.

Next and last aim: Gödel's second incompleteness theorem, i.e., the unprovability of consistency.

 $F(v_1, \ldots, v_n)$ defines the relation $R(x_1, \ldots, x_n)$ in the system S if for any numbers a_1, \ldots, a_n :

(1) If $R(a_1, \ldots, a_n)$, then $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable;

(2) If $\tilde{R}(a_1,\ldots,a_n)$, then $F(\bar{a}_1,\ldots,\bar{a}_n)$ is refutable.

 $F(v_1, \ldots, v_n)$ completely represents $R(x_1, \ldots, x_n)$ if F represents R and $\neg F$ represents \tilde{R} . I.e. if the 'if-then'-s above can be changed to iff .

If S is consistent and F defines R, then F completely represents R.

Proof: If $F(\bar{a}_1, \ldots, \bar{a}_n)$ is provable, then, by consistency, it is not refutable. Therefore, by (2), $\tilde{R}(a_1, \ldots, a_n)$ does not hold, i. e., $R(a_1, \ldots, a_n)$ holds. So the converse of the conditional (1) is proved. The converse of (2) goes on the sa[m](#page-5-0)e [way.](#page-0-0)

András Máté [Gödel 3rd May](#page-0-0)

4 D F

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 \rightarrow ÷ $2Q$

目

A set or relation is recursive if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

 290

A set or relation is recursive if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from R .

 290

A set or relation is recursive if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from R .

Be S a Rosser system and R a recursive relation. Then R and R are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

つひひ

A set or relation is recursive if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from R .

Be S a Rosser system and R a recursive relation. Then R and R are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

- \bullet If S is a Rosser system, then all recursive relations are definable.
- \bullet If S is a consistent Rosser system, then all recursive relations are completely representable.

つひひ

A set or relation is recursive if both the set/relation itself and its complement is Σ_1 (i.e., recursively enumerable).

Observation: the formula F defines the relation R iff F separates R from R .

Be S a Rosser system and R a recursive relation. Then R and R are both Σ_1 , therefore separable, therefore R is definable. Consequently (using the proposition proved on the previous slide):

- \bullet If S is a Rosser system, then all recursive relations are definable.
- \bullet If S is a consistent Rosser system, then all recursive relations are completely representable.

Therefore:

Theorem 1. All recursive relations are definable in (R) , and, a fortiori, in every extension of (R) (R) , includi[ng](#page-11-0) (Q) (Q) (Q) [and P.A.](#page-0-0)

 QQ

Strong definability

András Máté [Gödel 3rd May](#page-0-0)

È

Þ \rightarrow $\,$

K ロト K 倒 ト K 走 ト

 299

 $\left\{ \left\{ \left. \left| \left. \left| \left. \left| \left. \left| \right. \right| \right| \right| \right| \right\} \right| \right\} \left\{ \left. \left| \left. \left| \left. \right| \right| \right| \right\} \right\} \right\}$

 298

F strongly defines f if F weakly defines f and in addition, if $f(a_1, \ldots, a_n) = b$, then the following sentence is provable:

$$
\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).
$$

← イヨト → 同ト →

 QQ

F strongly defines f if F weakly defines f and in addition, if $f(a_1, \ldots, a_n) = b$, then the following sentence is provable:

$$
\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).
$$

Theorem 2. If $f(x)$ is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(f(\bar{n}))$ is provable.

母 > x ヨ > x

F strongly defines f if F weakly defines f and in addition, if $f(a_1, \ldots, a_n) = b$, then the following sentence is provable:

$$
\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).
$$

Theorem 2. If $f(x)$ is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(f(n))$ is provable. We will show that $\exists v_2(F(v_1, v_2) \wedge G(v_2))$ works as $H(v_1)$.

(A) + (B) + (B

F strongly defines f if F weakly defines f and in addition, if $f(a_1, \ldots, a_n) = b$, then the following sentence is provable:

$$
\forall v_{n+1}(F(\bar{a}_1,\ldots,\bar{a}_n,v_{n+1})\to v_{n+1}=\bar{b}).
$$

Theorem 2. If $f(x)$ is strongly defined by the formula $F(v_1, v_2)$, then for any formula $G(v_1)$, there is a formula $H(v_1)$ s.t. for any n, the sentence $H(\bar{n}) \leftrightarrow G(\bar{f}(n))$ is provable. We will show that $\exists v_2(F(v_1, v_2) \wedge G(v_2))$ works as $H(v_1)$. Be n and m such that $f(n) = m$. We should prove that $H(\bar{n}) \leftrightarrow G(\bar{m})$ is provable.

(御) メミンメミン

András Máté [Gödel 3rd May](#page-0-0)

メロトメ 御 トメ ミトメ ミト

重

 299

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*).

メロト メタト メミト メミト

目

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL).

 \leftarrow

→ 伊 ▶ → 君 ▶ → 君 ▶

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2)),$ i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL).

K 倒 ▶ (K ヨ ▶ (K ヨ ▶

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar m) \to (F(\bar n, \bar m) \wedge G(\bar m))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2)),$ i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL).

2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability).

 QQQ

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2))$, i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL).

 QQQ

(@) > (±) (±)

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2))$, i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (FOL truism).

(@) > (±) (±)

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2))$, i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (propositional logic).

(A) → (E → (E →)

 Ω

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2)),$ i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL). $(v_2 = \overline{m} \wedge G(v_2)) \rightarrow G(\overline{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ (i.e., $H(\bar{n}) \rightarrow G(\bar{m})$) is provable (FOL).

- ← 何 ト → ヨ ト → ヨ ト ー

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2)),$ i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ (i.e., $H(\bar{n}) \rightarrow G(\bar{m})$) is provable (FOL).

From 1. and 2. it follows by propositional logic that $(F(\bar{n}, v_2) \wedge G(v_2)) \leftrightarrow G(\bar{m})$ is provable, and that's what we wanted to prove.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

1. $F(\bar{n}, \bar{m})$ is provable (*F* defines *f*). $G(\bar{m}) \to (F(\bar{n}, \bar{m}) \wedge G(\bar{m}))$ is provable (FOL). $G(\bar{m}) \to \exists v_2(F(\bar{n}, v_2) \wedge G(v_2)),$ i.e., $G(\bar{m}) \to H(\bar{n})$ is provable (FOL). 2. $F(\bar{n}, v_2) \rightarrow v_2 = \bar{m}$ is provable (strong definability). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow (v_2 = \bar{m} \wedge G(v_2))$ is provable (FOL). $(v_2 = \bar{m} \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (FOL truism). $(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ is provable (propositional logic). $\exists v_2(F(\bar{n}, v_2) \wedge G(v_2)) \rightarrow G(\bar{m})$ (i.e., $H(\bar{n}) \rightarrow G(\bar{m})$) is provable (FOL).

From 1. and 2. it follows by propositional logic that $(F(\bar{n}, v_2) \wedge G(v_2)) \leftrightarrow G(\bar{m})$ is provable, and that's what we wanted to prove.

We could generalize the theorem for n -ary functions.

イ母 ト イヨ ト イヨ ト

András Máté [Gödel 3rd May](#page-0-0)

 299

Ε \rightarrow

メロト メタト メミトメ

÷

If $f(x)$ is strongly definable in S, then

- **1** For any representable set A , the set $f^{-1}(A)$ is representable, too.
- **2** For any definable set A, the set $f^{-1}(A)$ is definable, too.

 298

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(f(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(\bar{f}(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n ,

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any n, $H(\bar{n}) \leftrightarrow G(f(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n , $n \in f^{-1}(A)$ iff $f(n) \in A$,

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any n, $H(\bar{n}) \leftrightarrow G(f(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n , $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable,

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any n, $H(\bar{n}) \leftrightarrow G(f(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n , $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff $H(n)$ is provable.

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any n, $H(\bar{n}) \leftrightarrow G(f(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n , $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff $H(n)$ is provable.

Therefore $H(v_1)$ represents $f^{-1}(A)$.

4母 ト 4日 ト 4

If $f(x)$ is strongly definable in S, then

1 For any representable set A , the set $f^{-1}(A)$ is representable, too.

2 For any definable set A, the set $f^{-1}(A)$ is definable, too.

By Theorem 2., for any formula $G(v_1)$, there is a formula $H(v_1)$ such that for any $n, H(\bar{n}) \leftrightarrow G(\bar{f}(n))$ is provable. Therefore, $H(\bar{n})$ is provable iff $G(\overline{f(n)})$ is provable and $H(\bar{n})$ is refutable iff $G(f(n))$ is refutable.

1. Be $G(v_1)$ the formula representing A and $H(v_1)$ the formula corresponding to it by Theorem 2. Then for any n , $n \in f^{-1}(A)$ iff $f(n) \in A$, iff $G(\overline{f(n)})$ is provable, iff $H(n)$ is provable.

Therefore $H(v_1)$ represents $f^{-1}(A)$.

2. To prove that definability of A implies definability of $f^{-1}(A)$ we need to show that in that case $H(v_1)$ represents $f^{-1}(A)$ and $\neg H(v_1)$ represents $f^{-1}(A)$. The former was proven above, the latter goes on the same way.

 298

András Máté [Gödel 3rd May](#page-0-0)

 \Box

 \blacktriangleright \blacktriangleleft

 $2Q$

Þ

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

 QQ

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

つひひ

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be $F(x, y)$ a formula that weakly defines f. Be $G(x, y)$ the formula $F(x, y) \wedge \forall z (F(x, z) \rightarrow y \leq z)$. We show that G strongly defines f. Be n an arbitrary number and $m = f(n)$.

K 御 と K 君 と K 君 と

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be $F(x, y)$ a formula that weakly defines f. Be $G(x, y)$ the formula $F(x, y) \wedge \forall z (F(x, z) \rightarrow y \leq z)$. We show that G strongly defines f. Be n an arbitrary number and $m = f(n)$. 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable.

→ 伊 ▶ → 君 ▶ → 君 ▶

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be $F(x, y)$ a formula that weakly defines f. Be $G(x, y)$ the formula $F(x, y) \wedge \forall z (F(x, z) \rightarrow y \leq z)$. We show that G strongly defines f. Be n an arbitrary number and $m = f(n)$. 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable. Because for $k < m, F(\bar{n}, \bar{k})$ is refutable, and for $k = m, \bar{m} \leq \bar{k}$ is provable $(by \Omega_5).$

メ御 トメ ヨ トメ ヨ トー

 QQ

A function $f(x_1, \ldots, x_n)$ is <u>recursive</u> if the relation $f(x_1,\ldots,x_n)=x_{n+1}$ is recursive.

Theorem 3. All recursive functions are strongly definable in (R) and in its extensions.

To prove Theorem 3., we need the following lemma: If all formulas of Ω_4 and Ω_5 are provable in S, then any function weakly definable is strongly definable, too.

We prove it for functions of one argument only; the generalization is easy.

Be $F(x, y)$ a formula that weakly defines f. Be $G(x, y)$ the formula $F(x, y) \wedge \forall z (F(x, z) \rightarrow y \leq z)$. We show that G strongly defines f. Be n an arbitrary number and $m = f(n)$. 1. For any $k \leq m$, $F(\bar{n}, \bar{k}) \to \bar{m} \leq \bar{k}$ is provable. Because for $k < m, F(\bar{n}, \bar{k})$ is refutable, and for $k = m, \bar{m} \leq \bar{k}$ is provable $(by \Omega_5).$

Hence,
$$
z \leq \bar{m} \to (F(\bar{n}, z) \to \bar{m} \leq z)
$$
 is provable (using Ω_4).

つひひ

Proof of the lemma continued

András Máté [Gödel 3rd May](#page-0-0)

 $2Q$

Ε \rightarrow

メロト メタト メミトメ

÷

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic).

→ 伊 ト イ君 ト イ君 ト

Ε

Proof of the lemma continued

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5).

 $2Q$

(@) () → () →

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL).

 298

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable.

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \to F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable.

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \to F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y \leq \bar{m}$ is provable.

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \to F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y \leq \bar{m}$ is provable. $G(\bar{n}, y) \rightarrow \forall z (F(\bar{n}, z) \rightarrow y \leq z)$ is provable (FOL)

母 ト ィヨ ト ィヨ

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \to F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y \leq \bar{m}$ is provable. $G(\bar{n}, y) \rightarrow \forall z (F(\bar{n}, z) \rightarrow y \leq z)$ is provable (FOL) $G(\bar{n}, y) \to (F(\bar{n}, \bar{m}) \to y \leq \bar{m})$ is provable (FOL).

AD > 4 E > 4 E >

 $m \leq z \rightarrow (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by propositional logic). $F(\bar{n}, z) \to \bar{m} \leq z$ is provable (using Ω_5). $\forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$ is provable (by FOL). $F(\bar{n}, \bar{m})$ is provable because F weakly defines f, and therefore $F(\bar{n}, \bar{m}) \wedge \forall z (F(\bar{n}, z) \rightarrow \bar{m} \leq z)$, i.e., $G(\bar{n}, \bar{m})$ is provable. 2. For any $k \neq m$, $F(\bar{n}, \bar{k})$ is refutable, but $G(\bar{n}, \bar{k}) \to F(\bar{n}, \bar{k})$ is provable by propositional logic, therefore $G(\bar{n}, k)$ is refutable. By 1. and 2., we proved that G weakly defines f. For the additional condition of strong definition, we show first that $G(\bar{n}, y) \to y \leq \bar{m}$ is provable. $G(\bar{n}, y) \rightarrow \forall z (F(\bar{n}, z) \rightarrow y \leq z)$ is provable (FOL) $G(\bar{n}, y) \to (F(\bar{n}, \bar{m}) \to y \leq \bar{m})$ is provable (FOL). $F(\bar{n}, \bar{m})$ is provable (weak def.), and therefore $G(\bar{n}, y) \to y \leq \bar{m}$ is provable (propositional logic).

メタト メミト メミト

Proof of the lemma continued 2.

András Máté [Gödel 3rd May](#page-0-0)

K ロト K 御 ト K 差 ト K

 $2Q$

 \mathbb{B} + Ε If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too.

 298

If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If $k = m$, then $\bar{k} = \bar{m}$ is provable.

If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If $k = m$, then $\bar{k} = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable.

András Máté [Gödel 3rd May](#page-0-0)

つひひ

If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If $k = m$, then $k = \overline{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. Then $y \leq m \to (G(\bar{n}, y) \to y = \bar{m})$ is provable (using Ω_4).

つひひ

If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If $k = m$, then $k = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. Then $y \leq m \rightarrow (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable (using Ω_4). From this formula and the formula proved on the previous slide, $G(\bar{n}, y) \rightarrow y = \bar{m}$ follows by propositional logic. Therefore (by (FOL), $\forall y (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable. And this is the additional condition for strong definability.

つひい

If $k < m$, then $F(\bar{n}, \bar{k})$ is refutable and therefore $G(\bar{n}, \bar{k})$ is refutable, too. If $k = m$, then $k = \bar{m}$ is provable. Hence for every $k \leq m$, $G(\bar{n}, \bar{k}) \rightarrow \bar{k} = \bar{m}$ is provable. Then $y \leq m \rightarrow (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable (using Ω_4). From this formula and the formula proved on the previous slide, $G(\bar{n}, y) \rightarrow y = \bar{m}$ follows by propositional logic. Therefore (by (FOL), $\forall y (G(\bar{n}, y) \rightarrow y = \bar{m})$ is provable. And this is the additional condition for strong definability. From this lemma and Theorem 1., Theorem 3. follows.

つひい

A proposition, a consequence and a homework

András Máté [Gödel 3rd May](#page-0-0)

 $2Q$

目

 $\left\{ \left\{ \left. \left| \left. \left| \left. \left| \left. \left| \right. \right| \right| \right| \right| \right\} \right| \right\} \left\{ \left\{ \left. \left| \left. \left| \left. \right| \right| \right| \right\} \right| \right\} \right\}$

 \Box

A proposition, a consequence and a homework

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive.

K 御 と K 唐 と K 唐 と

A proposition, a consequence and a homework

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1, \ldots, x_n) = y \land y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

AD > 4 E > 4 E >

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1,\ldots,x_n)=y \wedge y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

The diagonal function $d(x)$ is Σ_1 . Therefore, by the above proposition, it is recursive, and by Theorem 3., it is strongly definable in (R) and in its extensions.

 $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$

Proposition: For any function $f(x_1, \ldots, x_n)$, if the relation $f(x_1, \ldots, x_n) = x_{n+1}$ is Σ_1 , then f is recursive. We need only that the complement of the relation is Σ_1 , too. But $f(x_1, \ldots, x_n) \neq x_{n+1}$ is equivalent with $\exists y(f(x_1,\ldots,x_n)=y \wedge y \neq x_{n+1})$ and the latter is a Σ , therefore Σ_1 formula.

The diagonal function $d(x)$ is Σ_1 . Therefore, by the above proposition, it is recursive, and by Theorem 3., it is strongly definable in (R) and in its extensions.

Homework: Show that for the complete theory \mathcal{N} . representability, definability and complete representability all coincide. Is this true for P.A., too? (Is the set P^* completely representable in P.A.?)

メタトメ ミトメモト