The Second Incompleteness Theorem

András Máté

10th May 2024

András Máté [Gödel 10th May](#page-88-0)

 \leftarrow

 $AB + AB$

András Máté [Gödel 10th May](#page-0-0)

 \leftarrow

 299

Þ

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any n, $H(\bar{n}) \leftrightarrow F(d(n))$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(d(n))$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(\overline{d(n)})$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable. $H[\bar{h}] \leftrightarrow H(\bar{h})$ is FOL-provable, therefore $H[\bar{h}] \leftrightarrow F(d(h))$ is provable.

K @ ▶ K 경 ▶ K 경

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function $d(x)$ is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(d(n))$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable. $H[\bar{h}] \leftrightarrow H(\bar{h})$ is FOL-provable, therefore $H[\bar{h}] \leftrightarrow F(d(h))$ is provable.

But the Gödel number of $H[\bar{h}]$ is $d(h)$, therefore $H[\bar{h}]$ is a fixed point for F.

 Ω

Gödel sentences_{new}

András Máté [Gödel 10th May](#page-0-0)

K ロト K 御 ト K 君 ト K 君 ト

È

母→ メミ→ メ

Earlier definition: the sentence X was a Gödel sentence for the set A if $(X$ is true iff A contains the Gödel number of X).

Earlier definition: the sentence X was a Gödel sentence for the set A if $(X$ is true iff A contains the Gödel number of X).

X is a Gödel sentence for A with respect to S if $(X$ is provable iff A contains the Gödel number of X).

Earlier definition: the sentence X was a Gödel sentence for the set A if $(X$ is true iff A contains the Gödel number of X).

X is a Gödel sentence for A with respect to S if $(X$ is provable iff A contains the Gödel number of X). The earlier definition can be read as defining the Gödel sentence with respect to N .

Acceptable functions

András Máté [Gödel 10th May](#page-0-0)

K ロト K 倒 ト K 走 ト

÷

 \rightarrow \rightarrow 299

Ε

 $f(x)$ is acceptable in ${\mathcal S}$ if for every representable set $A,\,f^{-1}(A)$ is representable, too.

 298

Theorem 2.: If $d(x)$ is acceptable, then every set A representable in S has a Gödel sentence.

Theorem 2.: If $d(x)$ is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable

Theorem 2.: If $d(x)$ is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$

Theorem 2.: If $d(x)$ is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$ iff $d(h) \in A$.

Theorem 2.: If $d(x)$ is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$ iff $d(h) \in A$. But $d(h)$ is just the Gödel number of $H[h]$. Q.e.d.

Truth predicates

András Máté [Gödel 10th May](#page-0-0)

イロト イ部ト イミト イ

È

 \mathbb{B} +

 \leftarrow

Theorem 3.: If S is correct, then there is no truth predicate for S.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X .

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X .

If S is correct, then this biconditional is true.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X .

If S is correct, then this biconditional is true. Therefore X is true iff $T(\overline{X})$ is true.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X .

If S is correct, then this biconditional is true.

Therefore X is true iff $T(\overline{X})$ is true.

It means that $T(v_1)$ expresses the set of Gödel numbers of true sentences.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X .

If S is correct, then this biconditional is true.

Therefore X is true iff $T(\overline{X})$ is true.

It means that $T(v_1)$ expresses the set of Gödel numbers of true sentences.

But according to Tarski's theorem, there is no such predicate.

つひつ

Another Tarski-like theorem

András Máté [Gödel 10th May](#page-0-0)

イロト イ部ト イモト イモト

 299

Ε

Theorem 4.: If S is consistent and $d(x)$ is strongly definable, then there is no truth predicate for S .

Theorem 4.: If S is consistent and $d(x)$ is strongly definable, then there is no truth predicate for S . Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

Theorem 4.: If S is consistent and $d(x)$ is strongly definable, then there is no truth predicate for S .

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.
Theorem 4. If S is consistent and $d(x)$ is strongly definable, then there is no truth predicate for S .

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.

For this sentence, $X \leftrightarrow \neg X$ is provable (propositional logic).

つひつ

Theorem 4. If S is consistent and $d(x)$ is strongly definable, then there is no truth predicate for S .

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.

For this sentence, $X \leftrightarrow \neg X$ is provable (propositional logic). Therefore S is inconsistent, against the assumption of the theorem.

つひひ

András Máté [Gödel 10th May](#page-0-0)

 \leftarrow 12 \rightarrow

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

÷

 \rightarrow \rightarrow 299

Ε

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y :

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

 P_2 $P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))$ is provable;

 P_3 $P(\overline{X}) \rightarrow P(\overline{P(\overline{X})})$ is provable.

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y :

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$
P_2 \colon P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))
$$
 is provable;

$$
P_3
$$
 $P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y :

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$
P_2 \colon P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))
$$
 is provable;

 P_3 $P(\overline{X}) \rightarrow P(\overline{P(\overline{X})})$ is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

If P.A. is ω -consistent, then $P(v_1)$ represents P, therefore in this case even a biconditional holds: X is provable iff $P(\overline{X})$ is provable. But simple consistency entails that $P(v_1)$ represents some superset of P and this is enough for P_1 .

つひひ

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y :

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$
P_2 \colon P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))
$$
 is provable;

 P_3 $P(\overline{X}) \rightarrow P(\overline{P(\overline{X})})$ is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

If P.A. is ω -consistent, then $P(v_1)$ represents P, therefore in this case even a biconditional holds: X is provable iff $P(\overline{X})$ is provable. But simple consistency entails that $P(v_1)$ represents some superset of P and this is enough for P_1 .

If P.A. is consistent, then a such $P(v_1)$ satisfies the conditions P_2 and P_3 , too, but the proof is more difficult; we skip it.

 Ω

András Máté [Gödel 10th May](#page-0-0)

 $2Q$

目

→ 伊 ▶ → 君 ▶ → 君 ▶

4 0 8

.

P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

.

→ 御き メモ おメモ お

4 . EL 19

 $2Q$

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

.

 $2Q$

- P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.
	- By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

.

K 倒 ▶ (K ヨ ▶ (K ヨ ▶

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

 P_5 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \rightarrow (P(\overline{Y}) \rightarrow P(\overline{Z})).$

 QQQ

AD > 4 E > 4 E

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By P_2 , $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.

 QQQ

AP > 4 B > 4 B >

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$
P_2
$$
, $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$

 $2Q$

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$
P_2
$$
, $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

 $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$ and $\left\{ \oplus \mathbb{R} \right.$

 QQQ

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$
P_2
$$
, $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then by P_5 , $P(\overline{X}) \to (P(\overline{P}(\overline{X})) \to P(\overline{Y}))$ is provable.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$
P_2
$$
, $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then by P_5 , $P(\overline{X}) \to (P(P(\overline{X})) \to P(\overline{Y}))$ is provable.

 P_3 says that $P(\overline{X}) \to P(P(\overline{X}))$ is provable.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \rightarrow Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$
P_5
$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z}))$.

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$
P_2
$$
, $P(\overline{Y} \to \overline{Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then by P_5 , $P(\overline{X}) \rightarrow (P(P(\overline{X})) \rightarrow P(\overline{Y}))$ is provable. P_3 says that $P(\overline{X}) \to P(P(\overline{X}))$ is provable. The claim follows by propositional lo[gic](#page-53-0).

András Máté [Gödel 10th May](#page-0-0)

メロトメ 御 トメ ミトメ ミト

È

 299

The system S is diagonalizable if every formula $F(v_1)$ has a xed point.

 298

The system S is diagonalizable if every formula $F(v_1)$ has a xed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

The system S is diagonalizable if every formula $F(v_1)$ has a xed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

The system S is diagonalizable if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

The system S is diagonalizable if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

 $1. \neg P(\overline{G})$ would be provable;

The system S is diagonalizable if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

- $1. \neg P(\overline{G})$ would be provable;
- 2. by $P_1, P(\overline{G})$ would be provable, too.

The system S is diagonalizable if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

- $1. \neg P(\overline{G})$ would be provable;
- 2. by P_1 , $P(\overline{G})$ would be provable, too.

Be \perp any sentence refutable in S (a logical falsity or as you like it; a traditional choice is $\overline{0} = \overline{1}$ '). consis is the sentence $\neg P(\bar{\perp})$.

∢伺 ▶ ∢ ヨ ▶ ∢ ヨ ▶

The system S is diagonalizable if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

- $1. \neg P(\overline{G})$ would be provable;
- 2. by P_1 , $P(\overline{G})$ would be provable, too.

Be \perp any sentence refutable in S (a logical falsity or as you like it; a traditional choice is $\overline{0} = \overline{1}$ '). consis is the sentence $\neg P(\bar{\perp})$.

If $P(v_1)$ is a correct provability predicate (i.e., it expresses the set P), then consis is true iff \perp is not provable iff S is consistent. In this sense, it 'expresses' the [co](#page-62-0)[nsi](#page-64-0)[s](#page-54-0)[t](#page-55-0)[e](#page-63-0)[n](#page-64-0)[cy](#page-0-0) [of](#page-88-0) S [.](#page-88-0)

 Ω

András Máté [Gödel 10th May](#page-0-0)

メロトメ 御 トメ ミトメ ミト

È

 299

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 \leftarrow

- 伊 ▶ . ◀ 로 ▶ . ◀

 $2Q$

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable. $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption.

母→ メミ→ メ

 298

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. ⊥ is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. ⊥ is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic, hence

 $G \to (P(\overline{G}) \to \bot)$ is provable, too.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. ⊥ is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too. By P_6 , $P(\overline{G}) \to P(\overline{\perp})$, and therefore the sentence $\neg P(\bar{\perp}) \rightarrow \neg P(\overline{G})$ is provable.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. ⊥ is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too.

By P_6 , $P(\overline{G}) \to P(\overline{\perp})$, and therefore the sentence

$$
\neg P(\bar{\perp}) \rightarrow \neg P(\overline{G})
$$
 is provable.

 $\neg P(\bar{G}) \rightarrow G$ is provable by assumption.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. ⊥ is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic.

 $G \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too.

By P_6 , $P(\overline{G}) \rightarrow P(\overline{\perp})$, and therefore the sentence

$$
\neg P(\bar{\perp}) \rightarrow \neg P(\overline{G})
$$
 is provable.

 $\neg P(\bar{G}) \rightarrow G$ is provable by assumption.

By propositional logic, the provability of consis $\rightarrow G$ follows. From this lemma and Theorem 5., we can prove an abstract form of the second incompleteness theorem (next slide).

個 ト イミト イモト
The Second Incompleteness Theorem in an abstract form

András Máté [Gödel 10th May](#page-0-0)

 $2Q$

Þ

Theorem 6. If S is diagonalizable and consistent, then consis is not provable.

 298

Theorem 6. If S is diagonalizable and consistent, then consis is not provable.

Because S is diagonalizable, $\neg P(v_1)$ has a fixed point – be it G. Then $G \leftrightarrow \neg P(\overline{G})$ is provable. By Theorem 5., G is not provable. But if consis were provable, then by the key lemma, G were provable, too \sim contradiction.

つひひ

Theorem 6. If S is diagonalizable and consistent, then consis is not provable.

Because S is diagonalizable, $\neg P(v_1)$ has a fixed point – be it G. Then $G \leftrightarrow \neg P(\overline{G})$ is provable. By Theorem 5., G is not provable. But if consis were provable, then by the key lemma, G were provable, too \sim contradiction.

If S is P.A., then there is a Σ_1 formula $P(v_1)$ expressing the set P. If P.A. is consistent, then the sentence consis is true, but the above argument shows that it is not provable. This consideration needs that $P(v_1)$ is a provability predicate because the key lemma needs it.

つひつ

András Máté [Gödel 10th May](#page-0-0)

 $2Q$

Ε

イロト イ押ト イミト イミト

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

つひつ

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable.

つひひ

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable. Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

つひひ

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable. Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X .

 $X \leftrightarrow (P(\overline{X}) \rightarrow Y)$, and therefore $X \rightarrow (P(\overline{X}) \rightarrow Y)$ is provable.

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable. Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X .

 $X \leftrightarrow (P(\overline{X}) \rightarrow Y)$, and therefore $X \rightarrow (P(\overline{X}) \rightarrow Y)$ is provable. By P_6 , $P(\overline{X}) \rightarrow P(\overline{Y})$ is provable.

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X .

 $X \leftrightarrow (P(\overline{X}) \rightarrow Y)$, and therefore $X \rightarrow (P(\overline{X}) \rightarrow Y)$ is provable. By P_6 , $P(\overline{X}) \rightarrow P(\overline{Y})$ is provable. From this and the hypothesis follows that $P(\overline{X}) \to Y$ is

provable.

伊 ▶ イミ ▶ イモ

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X .

 $X \leftrightarrow (P(\overline{X}) \rightarrow Y)$, and therefore $X \rightarrow (P(\overline{X}) \rightarrow Y)$ is provable. By P_6 , $P(\overline{X}) \rightarrow P(\overline{Y})$ is provable.

From this and the hypothesis follows that $P(\overline{X}) \to Y$ is provable.

From the fixed point property now follows that X is provable.

メタト メミト メミト

 Ω

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If S is a diagonalizable system and for the sentence Y, $P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X .

 $X \leftrightarrow (P(\overline{X}) \rightarrow Y)$, and therefore $X \rightarrow (P(\overline{X}) \rightarrow Y)$ is provable. By P_6 , $P(\overline{X}) \to P(\overline{Y})$ is provable.

From this and the hypothesis follows that $P(\overline{X}) \to Y$ is provable.

From the fixed point property now follows that X is provable. By P_1 , $P(\overline{X})$ is provable, and by modus ponens, Y is provable.

 Ω

The 2nd incompleteness theorem from Löb's theorem

András Máté [Gödel 10th May](#page-0-0)

Þ

 \rightarrow

 $2Q$

The 2nd incompleteness theorem from Löb's theorem

Assume that consis, i.e. $\neg P(\perp)$ is provable.

 298

Assume that consis, i.e. $\neg P(\perp)$ is provable. Then $P(\perp) \to \perp$ is provable.

 298

Assume that consis, i.e. $\neg P(\perp)$ is provable.

Then $P(\perp) \to \perp$ is provable.

Hence, by Löb's theorem, \perp is provable, therefore S is inconsistent.