The Second Incompleteness Theorem

András Máté

 $10\mathrm{th}$ May 2024

András Máté 🛛 Gödel 10th May

András Máté 🛛 Gödel 10th May

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(\overline{d(n)})$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(\overline{d(n)})$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable.

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in \mathcal{S} if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(\overline{d(n)})$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable. $H[\bar{h}] \leftrightarrow H(\bar{h})$ is FOL-provable, therefore $H[\bar{h}] \leftrightarrow F(\overline{d(h)})$ is provable.

米部ト 米国ト 米国ト

The numeral for Gödel number of the expression X will be denoted as \overline{X} .

If $F(v_1)$ is a formula and the Gödel number of the expression X is x, then $F(\overline{X})$ is the sentence $F(\overline{x})$.

The sentence X is called a fixed point of the formula $F(v_1)$ in S if $X \leftrightarrow F(\overline{X})$ is provable.

Theorem 1.: If the diagonal function d(x) is strongly definable in S, then every formula $F(v_1)$ has a fixed point.

Be $F(v_1)$ an arbitrary formula.

According to Theorem 2. of the previous class, there is a formula $H(v_1)$ s. t. for any $n, H(\bar{n}) \leftrightarrow F(\overline{d(n)})$ is provable. Be h the Gödel number of $H(v_1)$. $H(\bar{h}) \leftrightarrow F(\overline{d(h)})$ is provable. $H[\bar{h}] \leftrightarrow H(\bar{h})$ is FOL-provable, therefore $H[\bar{h}] \leftrightarrow F(\overline{d(h)})$ is provable.

But the Gödel number of $H[\bar{h}]$ is d(h), therefore $H[\bar{h}]$ is a fixed point for F.

$G\ddot{o}del \ sentences_{new}$

András Máté 🛛 Gödel 10th May

1

Earlier definition: the sentence X was a Gödel sentence for the set A if (X is true iff A contains the Gödel number of X).

Earlier definition: the sentence X was a Gödel sentence for the set A if (X is true iff A contains the Gödel number of X).

X is a Gödel sentence for A with respect to S if (X is provable iff A contains the Gödel number of X).

Earlier definition: the sentence X was a Gödel sentence for the set A if (X is true iff A contains the Gödel number of X).

X is a Gödel sentence for A with respect to S if (X is provable iff A contains the Gödel number of X).

The earlier definition can be read as defining the Gödel sentence with respect to \mathcal{N} .

Acceptable functions

András Máté 🛛 Gödel 10th May

▲ 同 ▶ ▲ 臣

f(x) is acceptable in S if for every representable set A, $f^{-1}(A)$ is representable, too.

Theorem 2.: If d(x) is acceptable, then every set A representable in S has a Gödel sentence.

Theorem 2.: If d(x) is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable

Theorem 2.: If d(x) is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$

Theorem 2.: If d(x) is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$ iff $d(h) \in A$.

Theorem 2.: If d(x) is acceptable, then every set A representable in S has a Gödel sentence.

Let $H_h(v_1)$ represent $d^{-1}(A)$. Then $H[\overline{h}]$ is provable iff $H(\overline{h})$ is provable iff $h \in d^{-1}(A)$ iff $d(h) \in A$. But d(h) is just the Gödel number of $H[\overline{h}]$. Q.e.d.

Truth predicates

András Máté 🛛 Gödel 10th May

Theorem 3.: If S is correct, then there is no truth predicate for S.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X.

If \mathcal{S} is correct, then this biconditional is true.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X.

If \mathcal{S} is correct, then this biconditional is true.

Therefore X is true iff $T(\overline{X})$ is true.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X.

If \mathcal{S} is correct, then this biconditional is true.

Therefore X is true iff $T(\overline{X})$ is true.

It means that $T(v_1)$ expresses the set of Gödel numbers of true sentences.

Theorem 3.: If S is correct, then there is no truth predicate for S.

Assume $T(v_1)$ is a truth predicate, i.e. $X \leftrightarrow T(\overline{X})$ is provable for any X.

If \mathcal{S} is correct, then this biconditional is true.

Therefore X is true iff $T(\overline{X})$ is true.

It means that $T(v_1)$ expresses the set of Gödel numbers of true sentences.

But according to Tarski's theorem, there is no such predicate.

Another Tarski-like theorem

András Máté Gödel 10th May

1

Theorem 4.: If S is consistent and d(x) is strongly definable, then there is no truth predicate for S.

Theorem 4.: If S is consistent and d(x) is strongly definable, then there is no truth predicate for S. Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable. **Theorem 4.**: If S is consistent and d(x) is strongly definable, then there is no truth predicate for S.

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.

Theorem 4.: If S is consistent and d(x) is strongly definable, then there is no truth predicate for S.

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.

For this sentence, $X \leftrightarrow \neg X$ is provable (propositional logic).

Theorem 4.: If S is consistent and d(x) is strongly definable, then there is no truth predicate for S.

Assume that $T(v_1)$ is a truth predicate. Then for any X, $X \leftrightarrow T(\overline{X})$ is provable.

But according to Theorem 1., $\neg T(v_1)$ has a fixed point, i.e. a sentence X for which $X \leftrightarrow \neg T(\overline{X})$ is provable.

For this sentence, $X \leftrightarrow \neg X$ is provable (propositional logic). Therefore \mathcal{S} is inconsistent, against the assumption of the theorem.

András Máté 🛛 Gödel 10th May

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y:

- P_1 If X is provable, then $P(\overline{X})$ is provable, too;
- $P_2 \ P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y})) \text{ is provable};$
- $P_3 P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable.

 $P(v_1)$ is a provability predicate for S, if for any sentences X and Y:

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$P_2 \ P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))$$
 is provable;

$$P_3 \ P(\overline{X}) \to P(\overline{P(\overline{X})})$$
 is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

 $P(v_1)$ is a provability predicate for \mathcal{S} , if for any sentences X and Y:

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$P_2 \ P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))$$
 is provable;

 $P_3 \ P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

If P.A. is ω -consistent, then $P(v_1)$ represents P, therefore in this case even a biconditional holds: X is provable iff $P(\overline{X})$ is provable. But simple consistency entails that $P(v_1)$ represents some superset of P and this is enough for P_1 .

 $P(v_1)$ is a provability predicate for \mathcal{S} , if for any sentences X and Y:

 P_1 If X is provable, then $P(\overline{X})$ is provable, too;

$$P_2 \ P(\overline{X \to Y}) \to (P(\overline{X}) \to P(\overline{Y}))$$
 is provable;

 $P_3 \ P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable.

If $P(v_1)$ is a Σ_1 formula that expresses the set P (of the Gödel numbers of provable sentences) in P.A. and P.A. is consistent, then P_1 holds for it.

If P.A. is ω -consistent, then $P(v_1)$ represents P, therefore in this case even a biconditional holds: X is provable iff $P(\overline{X})$ is provable. But simple consistency entails that $P(v_1)$ represents some superset of P and this is enough for P_1 .

If P.A. is consistent, then a such $P(v_1)$ satisfies the conditions P_2 and P_3 , too, but the proof is more difficult; we skip it.

András Máté 🛛 Gödel 10th May

→ 聞 ト → 臣 ト → 臣 ト

.

P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

.

★掃▶ ★注▶ ★注▶

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

 $\begin{array}{l} P_5 \ \text{If } X \to (Y \to Z) \text{ is provable, then so is} \\ P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})). \end{array}$

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By P_2 , $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.

A (10) < A (10) </p>

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By P_2 , $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable. By propositional logic, the claim follows.

▲ 同 ▶ → 目 ▶ →

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is
 $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y} \to \overline{Z})$ is provable, too.

By
$$P_2$$
, $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows

By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

(4 冊 ト 4 三 ト 4 三 ト

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$P_2$$
, $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

Assume the condition. Then by P_5 , $P(\overline{X}) \to (P(\overline{P(\overline{X})}) \to P(\overline{Y}))$ is provable.

< 同 > < 回 > < 回 > <

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$P_2$$
, $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

Assume the condition. Then by
$$P_5$$
,
 $P(\overline{X}) \to (P(\overline{P(\overline{X})}) \to P(\overline{Y}))$ is provable.
 P_3 says that $P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable.

・ 同 ト ・ ヨ ト ・ ヨ ト

 P_4 If $X \to Y$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$. Assume the condition. Then, by P_1 , $P(\overline{X \to Y})$ is provable, too.

By P_2 and propositional logic, $P(\overline{X}) \to P(\overline{Y})$ is provable.

$$P_5$$
 If $X \to (Y \to Z)$ is provable, then so is
 $P(\overline{X}) \to (P(\overline{Y}) \to P(\overline{Z})).$

Assume the condition. Then, by P_4 , $P(\overline{X}) \to P(\overline{Y \to Z})$ is provable, too.

By
$$P_2$$
, $P(\overline{Y \to Z}) \to (P(\overline{Y}) \to P(\overline{Z}))$ is provable.
By propositional logic, the claim follows.

 P_6 If $X \to (P(\overline{X}) \to Y)$ is provable, then so is $P(\overline{X}) \to P(\overline{Y})$.

Assume the condition. Then by P_5 , $P(\overline{X}) \to (P(\overline{P(\overline{X})}) \to P(\overline{Y}))$ is provable. P_3 says that $P(\overline{X}) \to P(\overline{P(\overline{X})})$ is provable. The claim follows by propositional logic.

András Máté 🛛 Gödel 10th May

1

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

1. $\neg P(\overline{G})$ would be provable;

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

- 1. $\neg P(\overline{G})$ would be provable;
- 2. by P_1 , $P(\overline{G})$ would be provable, too.

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

- 1. $\neg P(\overline{G})$ would be provable;
- 2. by P_1 , $P(\overline{G})$ would be provable, too.

Be \perp any sentence refutable in S (a logical falsity or as you like it; a traditional choice is $(\bar{0} = \bar{1})$. consist is the sentence $\neg P(\bar{\perp})$).

★ 聞 ▶ ★ 注 ▶ ★ 注 ▶

The system S is <u>diagonalizable</u> if every formula $F(v_1)$ has a fixed point.

In the following, if not declared otherwise, we are working within some given system S and $P(v_1)$ is a provability predicate for S.

Theorem 5.: If G is a fixed point of $\neg P(v_1)$ and S is consistent, then G is not provable.

By assumption, $G \leftrightarrow \neg P(\overline{G})$ is provable. If G were provable, then:

1. $\neg P(\overline{G})$ would be provable;

2. by P_1 , $P(\overline{G})$ would be provable, too.

Be \perp any sentence refutable in S (a logical falsity or as you like it; a traditional choice is $(\bar{0} = \bar{1})$. consist is the sentence $\neg P(\bar{\perp})$).

If $P(v_1)$ is a correct provability predicate (i.e., it expresses the set P), then **consis** is true iff \perp is not provable iff S is consistent. In this sense, it 'expresses' the consistency of S.

András Máté Gödel 10th May

<ロト < 聞 > < 臣 > < 臣 >

E

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable. $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. \bot is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. \bot is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \rightarrow \bot)$ is provable by propositional logic, hence

 $G \to (P(\overline{G}) \to \bot)$ is provable, too.

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. \bot is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too. By P_6 , $P(\overline{G}) \to P(\overline{\bot})$, and therefore the sentence $\neg P(\overline{\bot}) \to \neg P(\overline{G})$ is provable.

< 同 > < 回 > < 回 >

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. \bot is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic. $G \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too. By $P_6, P(\overline{G}) \to P(\overline{\bot})$, and therefore the sentence

$$\neg P(\bot) \rightarrow \neg P(G)$$
 is provable.

 $\neg P(\bar{G}) \rightarrow G$ is provable by assumption.

通下 イヨト イヨト

Lemma: If G is a fixed point of $\neg P(v_1)$, then the sentence consis $\rightarrow G$ is provable.

 $G \leftrightarrow \neg P(\overline{G})$ is provable by assumption. \bot is refutable, therefore $\neg P(\overline{G}) \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic.

 $G \leftrightarrow (P(\overline{G}) \to \bot)$ is provable by propositional logic, hence $G \to (P(\overline{G}) \to \bot)$ is provable, too.

By P_6 , $P(\overline{G}) \to P(\overline{\perp})$, and therefore the sentence

$$\neg P(\overline{\perp}) \rightarrow \neg P(\overline{G})$$
 is provable.

 $\neg P(\bar{G}) \rightarrow G$ is provable by assumption.

By propositional logic, the provability of **consis** $\rightarrow G$. follows. From this lemma and Theorem 5., we can prove an abstract form of the second incompleteness theorem (next slide).

(4)課長 (4)語長 (4)語長 (5)語

The Second Incompleteness Theorem in an abstract form

András Máté Gödel 10th May

► 4 Ξ ►

The Second Incompleteness Theorem in an abstract form

Theorem 6.: If S is diagonalizable and consistent, then **consis** is not provable.

Theorem 6.: If S is diagonalizable and consistent, then consist is not provable.

Because S is diagonalizable, $\neg P(v_1)$ has a fixed point – be it G. Then $G \leftrightarrow \neg P(\overline{G})$ is provable. By Theorem 5., G is not provable. But if **consis** were provable, then by the key lemma, G were provable, too – contradiction. **Theorem 6.**: If S is diagonalizable and consistent, then consist is not provable.

Because S is diagonalizable, $\neg P(v_1)$ has a fixed point – be it G. Then $G \leftrightarrow \neg P(\overline{G})$ is provable. By Theorem 5., G is not provable. But if **consis** were provable, then by the key lemma, G were provable, too – contradiction.

If S is P.A., then there is a Σ_1 formula $P(v_1)$ expressing the set P. If P.A. is consistent, then the sentence **consis** is true, but the above argument shows that it is not provable. This consideration needs that $P(v_1)$ is a provability predicate because the key lemma needs it.

András Máté Gödel 10th May

@▶ ▲ 壹 ▶ ▲

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable. Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem: **Theorem 7.**: If S is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

 $X \leftrightarrow (P(\overline{X}) \to Y)$, and therefore $X \to (P(\overline{X}) \to Y)$ is provable.

▲御▶ ▲注▶ ▲注▶

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If S is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

 $X \leftrightarrow (P(\overline{X}) \to Y)$, and therefore $X \to (P(\overline{X}) \to Y)$ is provable. By $P_6, P(\overline{X}) \to P(\overline{Y})$ is provable.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If \mathcal{S} is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

 $X \leftrightarrow (P(\overline{X}) \to Y)$, and therefore $X \to (P(\overline{X}) \to Y)$ is provable. By $P_6, P(\overline{X}) \to P(\overline{Y})$ is provable.

From this and the hypothesis follows that $P(\overline{X}) \to Y$ is provable.

(本語) (本語) (本語)

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If \mathcal{S} is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

 $X \leftrightarrow (P(\overline{X}) \to Y)$, and therefore $X \to (P(\overline{X}) \to Y)$ is provable. By $P_6, P(\overline{X}) \to P(\overline{Y})$ is provable.

From this and the hypothesis follows that $P(\overline{X}) \to Y$ is provable.

From the fixed point property now follows that X is provable.

・四ト ・ヨト ・ヨト

Since P.A. is diagonalizable, $P(v_1)$ has a fixed point, the sentence H (Henkin, 1952). $H \leftrightarrow P(\overline{H})$, therefore H is true iff it is provable. (Gödel's sentence G is true iff it is not provable.) Is Henkin's sentence true and provable or false and not provable? (Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If \mathcal{S} is a diagonalizable system and for the sentence $Y, P(\overline{Y}) \to Y$ is provable, then Y is provable.

Assume hypothesis. Then the formula $P(v_1) \to Y$ has a fixed point X.

 $X \leftrightarrow (P(\overline{X}) \to Y)$, and therefore $X \to (P(\overline{X}) \to Y)$ is provable. By $P_6, P(\overline{X}) \to P(\overline{Y})$ is provable.

From this and the hypothesis follows that $P(\overline{X}) \to Y$ is provable.

From the fixed point property now follows that X is provable. By P_1 , $P(\overline{X})$ is provable, and by modus ponens, Y is provable.

白 ト ・ ヨ ト ・ ヨ ト ・

The 2nd incompleteness theorem from Löb's theorem

András Máté Gödel 10th May

► < Ξ ►</p>

The 2nd incompleteness theorem from Löb's theorem

Assume that consis, i.e. $\neg P(\bot)$ is provable.

Assume that consis, i.e. $\neg P(\bot)$ is provable. Then $P(\bot) \rightarrow \bot$ is provable. Assume that consis, i.e. $\neg P(\bot)$ is provable.

Then $P(\perp) \rightarrow \perp$ is provable.

Hence, by Löb's theorem, \perp is provable, therefore \mathcal{S} is inconsistent.