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Fixed points and the diagonal function

The numeral for Gödel number of the expression X will be

denoted as X.

If F (v1) is a formula and the Gödel number of the expression X
is x, then F (X) is the sentence F (x̄).

The sentence X is called a �xed point of the formula F (v1) in S
if X ↔ F (X) is provable.

Theorem 1.: If the diagonal function d(x) is strongly de�nable

in S, then every formula F (v1) has a �xed point.

Be F (v1) an arbitrary formula.

According to Theorem 2. of the previous class, there is a

formula H(v1) s. t. for any n, H(n̄) ↔ F (d(n)) is provable.
Be h the Gödel number of H(v1). H(h̄) ↔ F (d(h)) is provable.
H[h̄] ↔ H(h̄) is FOL-provable, therefore H[h̄] ↔ F (d(h)) is
provable.

But the Gödel number of H[h̄] is d(h), therefore H[h̄] is a �xed

point for F .
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Gödel sentencesnew

In consequence of Theorem 1., in any extension of (R), every
formula F (v1) has a �xed point.

Earlier de�nition: the sentence X was a Gödel sentence for the

set A if (X is true i� A contains the Gödel number of X).

X is a Gödel sentence for A with respect to S if (X is provable

i� A contains the Gödel number of X).

The earlier de�nition can be read as de�ning the Gödel sentence

with respect to N .
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Acceptable functions

f(x) is acceptable in S if for every representable set A, f−1(A)
is representable, too. (Strongly de�nable functions are

acceptable.)

Theorem 2.: If d(x) is acceptable, then every set A
representable in S has a Gödel sentence.

Let Hh(v1) represent d
−1(A). Then H[h] is provable i� H(h) is

provable i� h ∈ d−1(A) i� d(h) ∈ A.
But d(h) is just the Gödel number of H[h]. Q.e.d.
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Truth predicates

T (v1) is a truth predicate for S if for every sentence X,

X ↔ T (X) is provable.

Theorem 3.: If S is correct, then there is no truth predicate for

S.
Assume T (v1) is a truth predicate, i.e. X ↔ T (X) is provable
for any X.

If S is correct, then this biconditional is true.

Therefore X is true i� T (X) is true.
It means that T (v1) expresses the set of Gödel numbers of true

sentences.

But according to Tarski's theorem, there is no such predicate.
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Another Tarski-like theorem

Theorem 4.: If S is consistent and d(x) is strongly de�nable,

then there is no truth predicate for S.
Assume that T (v1) is a truth predicate. Then for any X,

X ↔ T (X) is provable.
But according to Theorem 1., ¬T (v1) has a �xed point, i.e. a

sentence X for which X ↔ ¬T (X) is provable.
For this sentence, X ↔ ¬X is provable (propositional logic).

Therefore S is inconsistent, against the assumption of the

theorem.
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Provability predicates

P (v1) is a provability predicate for S, if for any sentences X and

Y :

P1 If X is provable, then P (X) is provable, too;

P2 P (X → Y ) → (P (X) → P (Y )) is provable;

P3 P (X) → P (P (X)) is provable.

If P (v1) is a Σ1 formula that expresses the set P (of the Gödel

numbers of provable sentences) in P.A. and P.A. is consistent,

then P1 holds for it.

If P.A. is ω-consistent, then P (v1) represents P , therefore in this

case even a biconditional holds: X is provable i� P (X) is
provable. But simple consistency entails that P (v1) represents
some superset of P and this is enough for P1.
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Properties of provability predicates

P4 If X → Y is provable, then so is P (X) → P (Y ).

Assume the condition. Then, by P1, P (X → Y ) is provable,
too.

By P2 and propositional logic, P (X) → P (Y ) is provable.

P5 If X → (Y → Z) is provable, then so is

P (X) → (P (Y ) → P (Z))

.

Assume the condition. Then, by P4, P (X) → P (Y → Z) is
provable, too.

By P2, P (Y → Z) → (P (Y ) → P (Z)) is provable.
By propositional logic, the claim follows.

P6 If X → (P (X) → Y ) is provable, then so is P (X) → P (Y ).

Assume the condition. Then by P5,

P (X) → (P (P (X)) → P (Y )) is provable.

P3 says that P (X) → P (P (X)) is provable.
The claim follows by propositional logic.
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The sentence consis

The system S is diagonalizable if every formula F (v1) has a
�xed point.

In the following, if not declared otherwise, we are working within

some given system S and P (v1) is a provability predicate for S.
Theorem 5.: If G is a �xed point of ¬P (v1) and S is

consistent, then G is not provable.

By assumption, G ↔ ¬P (G) is provable. If G were provable,

then:

1. ¬P (G) would be provable;

2. by P1, P (G) would be provable, too.

Be ⊥ any sentence refutable in S (a logical falsity or as you like

it; a traditional choice is `0̄ = 1̄'). consis is the sentence

¬P (⊥̄)).

If P (v1) is a correct provability predicate (i.e., it expresses the

set P ), then consis is true i� ⊥ is not provable i� S is

consistent. In this sense, it `expresses' the consistency of S.
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A key lemma

Lemma: If G is a �xed point of ¬P (v1), then the sentence

consis→ G is provable.

G ↔ ¬P (G) is provable by assumption.

⊥ is refutable, therefore ¬P (G) ↔ (P (G) → ⊥) is provable by

propositional logic.

G ↔ (P (G) → ⊥) is provable by propositional logic, hence

G → (P (G) → ⊥) is provable, too.
By P6, P (G) → P (⊥̄), and therefore the sentence

¬P (⊥̄) → ¬P (G) is provable.
¬P (Ḡ) → G is provable by assumption.

By propositional logic, the provability of consis → G. follows.

From this lemma and Theorem 5., we can prove an abstract

form of the second incompleteness theorem (next slide).
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The Second Incompleteness Theorem in an abstract form

Theorem 6.: If S is diagonalizable and consistent, then consis

is not provable.

Because S is diagonalizable, ¬P (v1) has a �xed point � be it G.

Then G ↔ ¬P (G) is provable. By Theorem 5., G is not

provable. But if consis were provable, then by the key lemma,

G were provable, too � contradiction.

If S is P.A., then there is a Σ1 formula P (v1) expressing the set

P . If P.A. is consistent, then the sentence consis is true, but

the above argument shows that it is not provable. This

consideration needs that P (v1) is a provability predicate

because the key lemma needs it.
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Henkin's sentence and Löb's theorem

Since P.A. is diagonalizable, P (v1) has a �xed point, the

sentence H (Henkin, 1952). H ↔ P (H), therefore H is true i� it

is provable. (Gödel's sentence G is true i� it is not provable.)

Is Henkin's sentence true and provable or false and not provable?

(Suppose that P.A. is consistent.) The answer is Löb's theorem:

Theorem 7.: If S is a diagonalizable system and for the

sentence Y, P (Y ) → Y is provable, then Y is provable.

Assume hypothesis. Then the formula P (v1) → Y has a �xed

point X.

X ↔ (P (X) → Y ), and therefore X → (P (X) → Y ) is provable.
By P6, P (X) → P (Y ) is provable.
From this and the hypothesis follows that P (X) → Y is

provable.

From the �xed point property now follows that X is provable.

By P1, P (X) is provable, and by modus ponens, Y is provable.
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The 2nd incompleteness theorem from Löb's theorem

Assume that consis, i.e. ¬P (⊥) is provable.

Then P (⊥) → ⊥ is provable.

Hence, by Löb's theorem, ⊥ is provable, therefore S is

inconsistent.
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