Burali-Forti Paradox

Zalán Molnár

2017. October 24.

Preliminary Definitions

- ► Asymmetry
 - $\operatorname{asym}_X(R) \overset{\mathrm{def}}{\Leftrightarrow} \neg \exists x \exists y (x \in X \land y \in X \land x R y \land y R x)$
- ► Transitivity

$$\mathsf{trans}_X(R) \overset{\mathsf{def}}{\Leftrightarrow} \forall x \forall y \forall z ((x \in X \land y \in X \land z \in X \land x Ry \land y Rz) \to x Rz)$$

- ► Connectedness $\mathsf{Conn}_X(R) \stackrel{\mathrm{def}}{\Leftrightarrow} \forall x \forall y ((x \in X \land y \in X) \to (xRy \lor yRx \lor x = y))$
- ▶ Well-foundness $\mathsf{WF}_X(R) \stackrel{\mathrm{def}}{\Leftrightarrow} \forall Y ((Y \subseteq X \land Y \neq \emptyset) \to \exists z \forall x (z \in Y \land x \in Y \land \land z \neq x \land \neg z R x))$
- ▶ Partial ordering $PO_X(R) \stackrel{\text{def}}{\Leftrightarrow} asym_X(R) \wedge trans_X(R)$
- ► Total ordering $\mathsf{TO}_X(R) \overset{\mathrm{def}}{\Leftrightarrow} \mathsf{PO}_X(R) \wedge \mathsf{Conn}_X(R)$
- ▶ Well-ordering $WO_X(R) \stackrel{\text{def}}{\Leftrightarrow} TO_X(R) \wedge WF_X(R)$

Order isomorphism/similarity

Let $X_{<}$ and Y_{\sqsubset} be partially/well-ordered classes. $X_{<}$ and Y_{\sqsubset} are order isomorphic/similar iff $\exists i \text{ s.t. } i: X \to Y \text{ and bij}(i)$ and for any $x, y \in X$ we have:

$$x < y \Leftrightarrow i(x) \sqsubset i(y)$$

with symbols $X \cong Y$.

Order isomorphism/similarity

Let X_{\leq} and Y_{\vdash} be partially/well-ordered classes. X_{\leq} and Y_{\vdash} are order isomorphic/similar iff $\exists i \text{ s.t. } i: X \to Y \text{ and bij}(i) \text{ and for any } x, y \in X$ we have:

$$x < y \Leftrightarrow i(x) \sqsubset i(y)$$

with symbols $X \cong Y$.

Order Type

Two sets X and Y have the same order type iff $X \cong Y$. An order type is an equivalence class of the order isomorphic classes.

Order isomorphism/similarity

Let $X_{<}$ and Y_{\sqsubset} be partially/well-ordered classes. $X_{<}$ and Y_{\sqsubset} are order isomorphic/similar iff $\exists i \text{ s.t. } i: X \to Y \text{ and bij}(i)$ and for any $x, y \in X$ we have:

$$x < y \Leftrightarrow i(x) \sqsubset i(y)$$

with symbols $X \cong Y$.

Order Type

Two sets X and Y have the same order type iff $X \cong Y$. An order type is an equivalence class of the order isomorphic classes.

Initial segment

Let $WO_X(<)$ and $a \in X$. Then the class:

$$\operatorname{seg}_{X,<}(a) = \{x \in X : x < a\}$$

is an *initial segment* of X with respect to <, generated by a.

Preliminary Theorems

▶ Restriction of a well-ordering is a well-ordering

$$\forall X \forall R (\forall Y (Y \subseteq X \land \mathsf{WO}_X(R)) \rightarrow (\mathsf{WO}_Y(R_X \restriction Y)))$$

▶ No well-ordering is similar to an initial segment of itself

$$\neg\exists X\exists a(a\in X\wedge \mathsf{WO}_X(<)\wedge \mathsf{seg}_{X,<}(a)\wedge X\cong \mathsf{seg}_{X,<}(a))$$

- ▶ Well-orderings are comparable
 - $X \cong Y$
 - $X \cong \operatorname{seg}_{Y,<}(a)$
 - $Y \cong \operatorname{seg}_{X <}(a)$

Ordinal Numbers I.

- (Neumann) ordinals are the generalized concept of Neumann numbers.
- Ordinal numbers measure the "length" of the finite/transfinite well-orderings.
- Ordinal numbers are well-order sets that represent their order type.
- The *elementhood* relation well-orders the ordinal numbers.

Ordinal Numbers II.

Definitions

- ► Transitive Class $\mathsf{TR}(X) \overset{\mathrm{def}}{\Leftrightarrow} \forall x (x \in X \to x \subseteq X)$
- ▶ Ordinal Number $On(X) \stackrel{\text{def}}{\Leftrightarrow} TR(X) \wedge WO_X(\in)$

Ordinal Numbers II.

Definitions

- ► Transitive Class $\mathsf{TR}(X) \overset{\mathrm{def}}{\Leftrightarrow} \forall x (x \in X \to x \subseteq X)$
- ▶ Ordinal Number $\mathsf{On}(X) \overset{\mathrm{def}}{\Leftrightarrow} \mathsf{TR}(X) \wedge \mathsf{WO}_X(\in)$

$$\mathsf{Ord} = \{x : \mathsf{On}(x)\}\$$

Does Ord exist as a set? \Rightarrow The collection of all ordinals is a proper class. (Burali-Forti Paradox)

 $\mathsf{On}(\emptyset)$

 $\mathsf{On}(\emptyset)$

Theorem 1

$$\forall X(\mathsf{On}(X) \to (\forall y (y \in X \to (\mathsf{On}(y) \land y \in seg_{X, \in}(y)))$$

Proof – We have to prove that y is:

- a) TR(y)
- b) WO(y)
- a) Assume that $\neg \mathsf{TR}(y) \Leftrightarrow \exists x (x \in y \land x \not\subseteq y)$. So there is a $z \in x$ s.t. $z \not\in y$. Since $\mathsf{TR}(X) \Rightarrow x, z \in X$ and by $\mathsf{Conn}_X(\in)$ we have that $y \in z$ or y = z.
 - i) Assume that $y \in z$. Then $z \in x$ and $x \in y$ and $y \in z$. Then we have $z \in x$ and by transitivity $x \in z$ which contradicts to asymmetry.
 - ii) Assume that y = z. Then $y \in x$ and $x \in y$, which contradicts again to asymmetry.
- b) Lemma Restriction of a well-ordering is a well-ordering Since Tr(X), we have that $y \subseteq X$, but then y is well-ordered by \in_y .

 $\forall X(\mathsf{On}(X) \to \mathsf{On}(sX))$

Theorem 3

 $\forall X \forall Y ((\mathsf{On}(X) \land \mathsf{On}(Y) \land X \subsetneq Y) \to (X \in Y)$

Theorem 4

 $\forall X \forall Y ((\mathsf{On}(X) \land \mathsf{On}(Y)) \to (X \subseteq Y \lor Y \subseteq X)$

 $\forall X \forall Y ((\mathsf{On}(X) \land \mathsf{On}(X) \land X \neq Y) \rightarrow (X \in Y \lor Y \in X)$

Theorem 6.

 $\forall X(\forall x(x\in X\wedge \mathsf{On}(x))\to (\mathsf{On}(\bigcap X))$

Theorem 7.

 $\forall X(\forall x(x \in X \land \mathsf{On}(x)) \to (\mathsf{WO}_X(\in))$

Burali-Forti Paradox I

To be proved:

- a) Ord is an ordinal number
- b) Ord is a proper class
- c) any other ordinal class is a set

Burali-Forti Paradox I

To be proved:

- a) Ord is an ordinal number
- b) Ord is a proper class
- c) any other *ordinal class* is a set
- a) Ord is an ordinal number:
 - i) Ord is a transitive class: for any $x \in \text{Ord}$ we have On(x). By Theorem 1 for any $y \in x$ we have On(y) too. Since On(y), $y \in \text{Ord}$, which means $x \subseteq \text{Ord}$.
 - ii) Since for any $x \in \text{Ord}$ is On(x) by Theorem 7 we have, that $\text{WO}_{\text{Ord}}(\in)$

Burali-Forti Paradox II

b) Ord is a proper class: Suppose Ord is a set. By a) we know that Ord is an ordinal number, so in the one hand $Ord \in Ord$, but by the definition of well-ordering $Ord \not\in Ord$. So we get the contradiction: $(Ord \in Ord \land Ord \not\in Ord)$, therefore Ord is a proper class.

Burali-Forti Paradox II

- b) Ord is a proper class: Suppose Ord is a set. By a) we know that Ord is an ordinal number, so in the one hand $Ord \in Ord$, but by the definition of well-ordering $Ord \not\in Ord$. So we get the contradiction: $(Ord \in Ord \wedge Ord \not\in Ord)$, therefore Ord is a proper class.
- c) Any other ordinal is a set: Let X be an ordinal class s.t. $X \neq \mathsf{Ord}$. By Theorem $5 \ X \in \mathsf{Ord} \lor \mathsf{Ord} \in X$. If $\mathsf{Ord} \in X$, then Ord is a set, which contradicts to b), so $X \in \mathsf{Ord}$, but then X is a set. \square

Burali-Forti Paradox II

- b) Ord is a proper class: Suppose Ord is a set. By a) we know that Ord is an ordinal number, so in the one hand Ord \in Ord, but by the definition of well-ordering Ord $\not\in$ Ord. So we get the contradiction: (Ord \in Ord \wedge Ord $\not\in$ Ord), therefore Ord is a proper class.
- c) Any other ordinal is a set: Let X be an ordinal class s.t. $X \neq \mathsf{Ord}$. By $\mathit{Theorem}\ 5\ X \in \mathsf{Ord} \lor \mathsf{Ord} \in X$. If $\mathsf{Ord} \in X$, then Ord is a set, which contradicts to b), so $X \in \mathsf{Ord}$, but then X is a set. \square

Theorem of GB

$$\forall X((\mathsf{On}(X) \wedge \neg M(X)) \leftrightarrow X = \mathsf{Ord})$$