Zermelo's First Proof of the Well-ordering Theorem

Zalán Molnár

November 20, 2017

Zalán Molnár

Zermelo's First Proof of the Well-orde November 20, 2017 1 / 8

э

WOT,AC

$\mathsf{WOT}-\mathsf{Well}\text{-}\mathsf{ordering}$ Theorem

CLAIM: for any set X, there is an ordering, which well-orders X.

$\forall X \exists R(\mathsf{WO}_X(R))$

< E

э

WOT, AC

WOT – Well-ordering Theorem

CLAIM: for any set X, there is an ordering, which well-orders X.

$\forall X \exists R(\mathsf{WO}_X(R))$

Choice Function

A choice function f is defined on a collection of nonempty sets X, such that, for all A in X, f(A) is an element of A.

 $f: X \to \bigcup X$ s.t. $\forall A \in X(f(A) \in A)$

WOT, AC

WOT – Well-ordering Theorem

CLAIM: for any set X, there is an ordering, which well-orders X.

$\forall X \exists R(\mathsf{WO}_X(R))$

Choice Function

A choice function f is defined on a collection of nonempty sets X, such that, for all A in X, f(A) is an element of A.

$$f: X \to \bigcup X$$
 s.t. $\forall A \in X(f(A) \in A)$

AC – Axiom of Choice

For any collection of nonempty sets X, there is a *choice function* f defined on X.

$$\forall X (\emptyset \notin X \to \exists f(f : X \to \bigcup X \text{ s.t. } \forall A \in X(f(A) \in A)))$$

- WOT is proved by invoking the new mathematical tool, AC.
- What we prove exactly is that, $AC \longrightarrow WOT$.

4 三下

3

Definitions

- Let M be any arbitrary set, the cardinality of M is denoted by |M| and let m be an arbitrary element of M.
- Let $M' \subseteq M$, s.t. $M' \neq \emptyset$ (so $m \in M'$ for some $m \in M$).
- Let M M' denote the subset complementary to M'.
- ▶ $\forall M' \forall M'' (\forall X (X \in M' \leftrightarrow X \in M'') \rightarrow M' = M'')$, where $M', M'' \subseteq M$. Otherwise M' and M'' are different.
- Set of all subsets M' is denoted by $\wp(M)$.

Aim is to prove, that M can be well-ordered!

• Distinguished element:

For every M', there is associated an arbitrary element $m'_1 \in M'$. Such m'_1 is the *distinguished* element of M'. How can we define it?

• Distinguished element:

For every M', there is associated an arbitrary element $m'_1 \in M'$. Such m'_1 is the *distinguished* element of M'. How can we define it?

Define distinguished element m'_1

Invoke AC and define γ to a choice function as follows:

 $\gamma: \{\wp(M) - \{\emptyset\}\} \to M \text{ s.t. } \forall M' \in \wp(M) \ (\gamma(M') \in M').$

• Distinguished element:

For every M', there is associated an arbitrary element $m'_1 \in M'$. Such m'_1 is the *distinguished* element of M'. How can we define it?

Define distinguished element m'_1

Invoke AC and define γ to a choice function as follows:

 $\gamma: \{\wp(M) - \{\emptyset\}\} \to M \text{ s.t. } \forall M' \in \wp(M) \ (\gamma(M') \in M').$

Definition of " γ -set"

Using a fixed γ , let M_{γ} be defined as follow:

- a) $M_{\gamma} \subseteq M$
- b) M_{γ} is well-ordered by some ordering \prec
- c) if a is an arbitrary element of M_{γ} , then a determines a set A where $A = \{x \in M : x \prec a\}$ s.t. $a = \gamma(M A)$.

1) Whenever
$$M'_{\gamma}$$
 and M''_{γ} are any two distinct set:
 $M'_{\gamma} \cong seg_{M''_{\gamma},\prec}(a)$ for some $a \in M''_{\gamma}$
or
 $M''_{\gamma} \cong seg_{M'_{\gamma},\prec}(a)$ for some $a \in M'_{\gamma}$

- 2) If two γ -sets have an element in common, say a, then $seg_{M'_{\gamma},\prec}(a) = seg_{M'_{\gamma},\prec}(a)$
- 3) If two γ -sets have two common elements a and b, then in both set $a \prec b \lor b \prec a$

REMARK: x is a γ -element iff $x \in M_{\gamma}$ for some M_{γ} .

\mathbf{Proof}

- Let $L_{\gamma} = \bigcup_{i \in I} M_{\gamma_i}$. We claim, that L_{γ} is well-ordered and $L_{\gamma} = M$. i) $WO(L_{\gamma})$
 - ii) L_{γ} is a γ -set and the largest such
 - i) $WO(L_{\gamma})$ set:
 - a) $\operatorname{Conn}(L_{\gamma})$
 - b) $\mathsf{TO}(L_{\gamma})$
 - c) $\mathsf{WF}_{L_{\gamma}}(\prec)$

- 32

< Ξ.

Proof

ii) L_{γ} is a γ set:

Let a be an arbitrary γ -element and $A = \{x : x \prec a\}$ In any M_{γ} containing $a, A = seg_{M_{\gamma},\prec}(a)$. According to def. of γ -set $a = \gamma(M - A)$, so L_{γ} is a γ set.

L_{γ} is the largest:

Clearly $L_{\gamma} \subseteq M$. We have to prove, that $M \subseteq L_{\gamma}$. Suppose $\exists x \in M \text{ s.t. } x \notin L_{\gamma}$. Then $M - L_{\gamma} \neq \emptyset$. But then, $\exists m' \text{ s.t.} m' = \gamma(M - L_{\gamma})$. Now let $L'_{\gamma} = L_{\gamma} \cup \{m'\}$ and define the well-ordering s.t. $x \prec m'$ for all $x \in L_{\gamma}$. But then L'_{γ} would be a γ -set, and m' would be one of its γ -element, which contradict to the assumption, that L_{γ} is the set of all γ elements.