A budget of paradoxes

Historical introduction to the philosophy of mathematics

András Máté

21st October 2022

Russell's paradox in naïve set theory

Russell's paradox in naïve set theory

We have unlimited comprehension:

$$
\exists y \forall x(x \in y \leftrightarrow A(x))
$$

for any open sentence $A(x)$.

Russell's paradox in naïve set theory

We have unlimited comprehension:

$$
\exists y \forall x(x \in y \leftrightarrow A(x))
$$

for any open sentence $A(x)$.
Therefore,

$$
\exists y \forall x(x \in y \leftrightarrow x \notin x)
$$

Russell's paradox in naïve set theory

We have unlimited comprehension:

$$
\exists y \forall x(x \in y \leftrightarrow A(x))
$$

for any open sentence $A(x)$.
Therefore,

$$
\exists y \forall x(x \in y \leftrightarrow x \notin x)
$$

Let r be a such y (existential instantiation), and let us substitute r for x, too (universal instantiation).

$$
r \in r \leftrightarrow r \notin r
$$

Russell's paradox in naïve set theory

We have unlimited comprehension:

$$
\exists y \forall x(x \in y \leftrightarrow A(x))
$$

for any open sentence $A(x)$.
Therefore,

$$
\exists y \forall x(x \in y \leftrightarrow x \notin x)
$$

Let r be a such y (existential instantiation), and let us substitute r for x, too (universal instantiation).

$$
r \in r \leftrightarrow r \notin r
$$

We have proved a logical falsity from the (unlimited) comprehension using only logical rules.

An embarrassing analogy

An embarrassing analogy

Cantor's theorem: there is no one-to-tone correspondence between any set and its power set.

An embarrassing analogy

Cantor's theorem: there is no one-to-tone correspondence between any set and its power set.
Be H any set, $\mathcal{P}(H)$ its power set, and f an injective mapping from H to $\mathcal{P}(H)$. We show that there is at least one member of $\mathcal{P}(H)$ that is not in the range of f :

An embarrassing analogy

Cantor's theorem: there is no one-to-tone correspondence between any set and its power set.
Be H any set, $\mathcal{P}(H)$ its power set, and f an injective mapping from H to $\mathcal{P}(H)$. We show that there is at least one member of $\mathcal{P}(H)$ that is not in the range of f :

$$
H_{0}=:\{x: x \notin f(x)\}
$$

An embarrassing analogy

Cantor's theorem: there is no one-to-tone correspondence between any set and its power set.
Be H any set, $\mathcal{P}(H)$ its power set, and f an injective mapping from H to $\mathcal{P}(H)$. We show that there is at least one member of $\mathcal{P}(H)$ that is not in the range of f :

$$
H_{0}=:\{x: x \notin f(x)\}
$$

Suppose (for contradiction) that $H_{0}=f(h)$.

$$
h \in f(h) \leftrightarrow h \notin f(h)
$$

Russell's paradox in Frege's Grundgesetze system

Russell's paradox in Frege's Grundgesetze system

Let us consider the concept R : 'to be the value range of a concept that is false for its own value range'.

Russell's paradox in Frege's Grundgesetze system

Let us consider the concept R : 'to be the value range of a concept that is false for its own value range'.

Formally, $R(x) \leftrightarrow_{d e f} \exists F\left(x={ }^{\vee} F \wedge \neg F(x)\right)$.

Russell's paradox in Frege's Grundgesetze system

Let us consider the concept R : 'to be the value range of a concept that is false for its own value range'.

Formally, $R(x) \leftrightarrow_{d e f} \exists F\left(x={ }^{\vee} F \wedge \neg F(x)\right)$.
Let us substitute ${ }^{\vee} R$ for x.

$$
R\left({ }^{\vee} R\right) \leftrightarrow \exists F\left({ }^{\vee} R={ }^{\vee} F \wedge \neg F\left({ }^{\vee} R\right)\right)
$$

Russell's paradox in Frege's Grundgesetze system

Let us consider the concept R : 'to be the value range of a concept that is false for its own value range'.

Formally, $R(x) \leftrightarrow_{\text {def }} \exists F\left(x={ }^{\vee} F \wedge \neg F(x)\right)$.
Let us substitute ${ }^{\vee} R$ for x.

$$
R\left({ }^{\vee} R\right) \leftrightarrow \exists F\left({ }^{\vee} R={ }^{\vee} F \wedge \neg F\left({ }^{\vee} R\right)\right)
$$

Because of the first conjunct in the scope of \exists, any concept F which makes the existential quantification true is true for just the same objects as R (because of Axiom V). Therefore, the right side is true iff $\neg R\left({ }^{\vee} R\right)$.

The central problem: paradoxes

The central problem: paradoxes

Russell's paradox: published in Russell's Principles of Mathematics (1903)

The central problem: paradoxes

Russell's paradox: published in Russell's Principles of Mathematics (1903)

Frege immediately remarks that Cantor's set theory involves just the same inconsistency.

The central problem: paradoxes

Russell's paradox: published in Russell's Principles of Mathematics (1903)

Frege immediately remarks that Cantor's set theory involves just the same inconsistency.

Another paradox in set theory (Burali-Forti) gets known some years earlier.

The central problem: paradoxes

Russell's paradox: published in Russell's Principles of Mathematics (1903)

Frege immediately remarks that Cantor's set theory involves just the same inconsistency.

Another paradox in set theory (Burali-Forti) gets known some years earlier.

Central topic of foundational research/philosophy of mathematics: how to eliminate the paradoxes and avoid a repeated occurrence of such problems?

The central problem: paradoxes

Russell's paradox: published in Russell's Principles of Mathematics (1903)

Frege immediately remarks that Cantor's set theory involves just the same inconsistency.

Another paradox in set theory (Burali-Forti) gets known some years earlier.

Central topic of foundational research/philosophy of mathematics: how to eliminate the paradoxes and avoid a repeated occurrence of such problems?

Let me introduce a collection of relevant paradoxes. (A budget of paradoxes: De Morgan 1872.)

The Liar paradox

The Liar paradox

(L) The sentence in the first line of this frame is false.

The Liar paradox

(L) The sentence in the first line of this frame is false.

If the sentence L is true, then its content holds, therefore L that is the sentence in the first line - is false.

The Liar paradox

(L) The sentence in the first line of this frame is false.

If the sentence L is true, then its content holds, therefore L that is the sentence in the first line - is false.

If L is false, then the sentence that claims that L is false is true, therefore L is true.

The Liar paradox

(L) The sentence in the first line of this frame is false.

If the sentence L is true, then its content holds, therefore L that is the sentence in the first line - is false.

If L is false, then the sentence that claims that L is false is true, therefore L is true.
$\mathrm{L} \leftrightarrow \neg \mathrm{L}$

Variants for the Liar

Variants for the Liar

Liar-circle:
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n-1} \leftrightarrow \neg p_{1}$.

Variants for the Liar

Liar-circle:
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n-1} \leftrightarrow \neg p_{1}$.
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n} \leftrightarrow p_{1}$.

Variants for the Liar

Liar-circle:
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n-1} \leftrightarrow \neg p_{1}$.
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n} \leftrightarrow p_{1}$.
Strenghtened Liar:
Let us allow that 'is false' and 'is not true' are not the same. I.e., there are sentences that are neither true nor false (,ggappy").

Variants for the Liar

Liar-circle:
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n-1} \leftrightarrow \neg p_{1}$.
$p_{1} \leftrightarrow \neg p_{2}, p_{2} \leftrightarrow \neg p_{3}, \ldots p_{2 n} \leftrightarrow p_{1}$.
Strenghtened Liar:
Let us allow that 'is false' and 'is not true' are not the same. I.e., there are sentences that are neither true nor false (,ggappy").

$$
L_{S} \leftrightarrow\left(L_{S} \text { is not true }\right)
$$

Burali-Forti paradox

Burali-Forti paradox

Let BF the class of all ordinals, well-ordered by the relation $<$ (i.e., \in).

Burali-Forti paradox

Let BF the class of all ordinals, well-ordered by the relation $<$ (i.e., \in).

It is an ordinal. It is larger than any ordinal because any ordinal is a member of it.

Burali-Forti paradox

Let BF the class of all ordinals, well-ordered by the relation $<$ (i.e., \in).

It is an ordinal. It is larger than any ordinal because any ordinal is a member of it.

It is smaller than its successor.

Two more famous paradoxes

Two more famous paradoxes

Let us call a one-place predicate F heterological iff $F(F)$ is false. E. g. 'abstract' is abstract, but 'red' is not red. Is 'heterological' heterological?

Two more famous paradoxes

Let us call a one-place predicate F heterological iff $F(F)$ is false. E. g. 'abstract' is abstract, but 'red' is not red. Is 'heterological' heterological? Known as Grelling-Nelson, Weyl, or simply heterological-paradox.

Two more famous paradoxes

The smallest number not definable in English by 72 characters

Richard's paradox

Richard's paradox

There are countably many real numbers between 0 and 1 that can be defined by a finitely long definition.

Richard's paradox

There are countably many real numbers between 0 and 1 that can be defined by a finitely long definition.

Let us enumerate all these numbers in the sequence a_{k}. Consider the following real number $a=0 . d_{1} d_{2} \ldots d_{n} \ldots$: $d_{n}=6$ if the nth digit after the decimal point of of a_{n} is 5 and $d=5$ otherwise.

Richard's paradox

There are countably many real numbers between 0 and 1 that can be defined by a finitely long definition.

Let us enumerate all these numbers in the sequence a_{k}. Consider the following real number $a=0 . d_{1} d_{2} \ldots d_{n} \ldots$: $d_{n}=6$ if the nth digit after the decimal point of of a_{n} is 5 and $d=5$ otherwise.
a differs from any member of our sequence, but it is defined.

The test and the hypergame

The test and the hypergame

The teacher says: You will write a test next week, but I don't tell you which day. You will be surprised.

The test and the hypergame

The teacher says: You will write a test next week, but I don't tell you which day. You will be surprised.

The students write the test on Wednesday and they get really surprised.

The test and the hypergame

G is an ordinary game between two players iff it finishes in finitely many steps. H is the following hypergame: the first player chooses an ordinary game, and then they play it. Is H an ordinary game or not?

Russell's vicious circle principle

'Whatever involves all of a collection must not be one of the collection' or, conversely: 'If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total.'

Russell's vicious circle principle

'Whatever involves all of a collection must not be one of the collection' or, conversely: 'If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total.'
'Mathematical logic as based on the theory of types', 1908

Russell's vicious circle principle

'Whatever involves all of a collection must not be one of the collection' or, conversely: 'If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total.'
'Mathematical logic as based on the theory of types', 1908
Self-reference: a sentence refers for itself, i.e. its truth conditions contain some condition about its own truth resp. falsity.

Russell's vicious circle principle

'Whatever involves all of a collection must not be one of the collection' or, conversely: 'If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total.'
'Mathematical logic as based on the theory of types', 1908
Self-reference: a sentence refers for itself, i.e. its truth conditions contain some condition about its own truth resp. falsity.

Or it contains a quantification over propositions including the proposition expressed by the sentence itself.

Russell's vicious circle principle

'Whatever involves all of a collection must not be one of the collection' or, conversely: 'If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total.'
'Mathematical logic as based on the theory of types', 1908
Self-reference: a sentence refers for itself, i.e. its truth conditions contain some condition about its own truth resp. falsity.

Or it contains a quantification over propositions including the proposition expressed by the sentence itself.

Russell's principle forbids self-reference. It is apparently enough to avoid the previous paradoxes.

Yablo's paradox

Yablo's paradox

Let us consider the following infinite sequence $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ of propositions:

$$
p_{n} \leftrightarrow \forall k\left(k>n \rightarrow \neg p_{k}\right)
$$

Yablo's paradox

Let us consider the following infinite sequence $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ of propositions:

$$
p_{n} \leftrightarrow \forall k\left(k>n \rightarrow \neg p_{k}\right)
$$

Stephen Yablo, 1989

Yablo's paradox

Let us consider the following infinite sequence $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ of propositions:

$$
p_{n} \leftrightarrow \forall k\left(k>n \rightarrow \neg p_{k}\right)
$$

Stephen Yablo, 1989
It is a liar-like, but infinitary paradox that does not violate the vicious circle principle and does not contain any sort of self-reference.

Aims of foundational research

Aims of foundational research

- Create firmly-based/indubitable theories

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency
- Create rich (possibly omniscient) theories

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency
- Create rich (possibly omniscient) theories

Three ways out of the trap of paradoxes:

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency
- Create rich (possibly omniscient) theories

Three ways out of the trap of paradoxes:
(1) Improve logic and produce a unique general theory free of risks (logicism)

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency
- Create rich (possibly omniscient) theories

Three ways out of the trap of paradoxes:
(1) Improve logic and produce a unique general theory free of risks (logicism)
(2) Risky theories but a reliable metatheory (formalism)

Aims of foundational research

- Create firmly-based/indubitable theories
- Avoid inconsistency
- Create rich (possibly omniscient) theories

Three ways out of the trap of paradoxes:
(1) Improve logic and produce a unique general theory free of risks (logicism)
(2) Risky theories but a reliable metatheory (formalism)
(3) Abandon the priority of logic in favor of a more reliable basis (intuitionism)

