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Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc.

There are in�nitely many derivations in an usual calculus, but

for a given number n you can always enumerate the n-member

derivations in a sequence and then, you can produce one

sequence from the sequence of sequences on the well-known way.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We can have no answer

yet.
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Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.
How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.
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The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.
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Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.
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Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.
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Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).
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Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.
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Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.
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Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.
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Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.
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A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |
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Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)
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