
Enumerability, e�ectivity, decidability

Markov algorithms

András Máté

04.10.2024

András Máté metalogic 4th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc.

There are in�nitely many derivations in an usual calculus, but

for a given number n you can always enumerate the n-member

derivations in a sequence and then, you can produce one

sequence from the sequence of sequences on the well-known way.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We can have no answer

yet.

András Máté metalogic 4th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc.

There are in�nitely many derivations in an usual calculus, but

for a given number n you can always enumerate the n-member

derivations in a sequence and then, you can produce one

sequence from the sequence of sequences on the well-known way.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We can have no answer

yet.

András Máté metalogic 4th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc.

There are in�nitely many derivations in an usual calculus, but

for a given number n you can always enumerate the n-member

derivations in a sequence and then, you can produce one

sequence from the sequence of sequences on the well-known way.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We can have no answer

yet.

András Máté metalogic 4th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc.

There are in�nitely many derivations in an usual calculus, but

for a given number n you can always enumerate the n-member

derivations in a sequence and then, you can produce one

sequence from the sequence of sequences on the well-known way.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We can have no answer

yet.

András Máté metalogic 4th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.
How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.

András Máté metalogic 4th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.
How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.

András Máté metalogic 4th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.
How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.

András Máté metalogic 4th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.

How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.

András Máté metalogic 4th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we had

an enumeration of the non-autonomous numerals, too. In that

case we could decide about any given numeral n whether it is an

autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The generalization and the converse of the claim is obvious: we

have an enumeration procedure both for a string class B over an

alphabet A and its complement A◦ − B if and only if we have a

decision procedure for B.
How to make precise and formally de�ned the notions used

above: `procedure', `e�ective enumeration'? This is our next

task.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 4th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 4th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 4th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 4th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 4th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).

2 Otherwise, apply the �rst applicable command C0 to f0.
The result is f1 = C0(f0).

3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).

3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.

4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))
and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).

András Máté metalogic 4th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result).
András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.

ii If C is the �rst command in N that is applicable to f ,
C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 4th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 4th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 4th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 4th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 4th October

Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)

András Máté metalogic 4th October

Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)

András Máté metalogic 4th October

