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De�nite classes

A class of strings of an alphabet is decidable if there is some

e�ective procedure that decides about any string of the alphabet

whether it is a member of the class or not (informal notion).

This is the corresponding formal notion:

Be A an alphabet. F is a de�nite subclass of A◦ i� there is a

Markov algorithm N over some alphabet B ⊇ A and a w
B-string s. t. N is applicable to every f A-string and f ∈ F i�

N(f) = w.
Markov thesis: Every e�ective procedure can be simulated by a

Markov algorithm and every Markov algorithm is an e�ective

procedure. Therefore, `de�nite' and `decidable' is the same. This

is an empirical proposition that can be reinforced (although not

proved) or refuted by examples.
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De�nite and inductive classes

Earlier, informal argument: a class of strings is decidable i�

both the class itself and its complement is inductive. We want

to prove the formal counterpart of it, with `de�nite' instead of

`decidable'. First step: we show that Markov-algorithms can be

represented by canonical calculi.

Theorem 1: Let us have an algorithm N over some alphabet

B ⊇ A that is applicable for every A-string. Then we can

construct a calculus K over some C ⊇ B using a code letter

µ ∈ C − B such that for all x A-string and y B-string, N(x) = y
i� K 7→ xµy.

Proof: Be N = ⟨C1, C2, . . . Cn⟩. The calculus K will be the

union of the calculi K1, K2, . . .Kn associated to the commands

of N plus a calculus K0.
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Proof(continuation)

If the command Ci is of the form ∅ → vi or ∅ → .vi, then the

calculus Ki consists of the single rule

x∆ivix

(∆i is an auxiliary letter.)

If Ci is of the form ui → vi or ui → .vi, where ui = b1b2 . . . bk,
then the calculus Ki will be this:

i1. ∆i1x

i2. x∆i1by → xb∆i1y b ∈ B − {b1}
i3. x∆ijby → x∆i1by b ∈ B − {bj}, 1 ≤ j ≤ k

i4. x∆ijbjy → xbj∆i,j+1y 1 ≤ j ≤ k

i5. x∆ij → ∆i0x 1 ≤ j ≤ k

i6. xui∆i,k+1y → xuiy∆
ixviy

(∆i, ∆i0, ∆i1, . . .∆ik, ∆i,k+1 are auxiliary letters.)
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Proof(continuation2)

The calculus K0:

1. x∆1y → xZy

2. ∆10x → x∆2y → xZy

3. ∆10x → ∆20x → x∆3y → xZy

. . .

i+ 1. ∆10x → . . . → ∆i0x → x∆i+1y → xZy

. . .

n. ∆10x → . . . → ∆n−1,0x → x∆ny → xZy

n+ 1. xMy → yMz → xMz

n+ 2. xMy → yµz → xµz

where in the ith rule (1 ≤ i ≤ n) Z stands for µ if Ci is a stop

command and for M if it is not.

Now the calculus K is ready.
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De�nite classes are inductive classes

Theorem 2. If A is an alphabet and F is a de�nite subclass of

A◦, then F is an inductive subclass of it.

Proof: Let the deciding algorithm for F be N over B ⊇ A,

w ∈ B◦ such that

f ∈ F ⇔ N(f) = w.

Be K the calculus representing N according to the the previous

theorem (C, µ like in the previous theorem, too.) Then for any

f ∈ A◦, N(f) = g ⇔ K 7→ fµg.

Then N(f) = w i� K 7→ xµw. Let us add the rule xµw → x to

K to get the calculus K
′
. From the proof of the previous

theorem you can see that K derives no A-string, therefore K
′

derives A-strings by using this last rule only.

Therefore, for any A-string f ,

f ∈ F ⇔ N(f) = w ⇔ K 7→ fµw ⇔ K
′ 7→ f.

I.e., K
′
de�nes inductively F .
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Decidable and inductive classes

A decision algorithm for some string class A can be modi�ed to

an algorithm that decides its complement class (for the class of

A-strings). (See the identifying algorithm.) Therefore, if a string

class is de�nite, then both the class itself and its complement

are inductive ones.

According to the Markov thesis, decidable classes are the same

as de�nite classes. Therefore, if a class is decidable, then both

the class and its complement are inductive classes. We have seen

earlier the converse of this claim. Hence, a string class F is

decidable if and only if both F and its complement are inductive

classes.

We have proven (27th September presentation) that the class of

autonomous numerals Aut is inductive, but its complement for

the class of all numerals, i. e. the class of non-autonomous

numerals is not inductive. Therefore, it is not decidable.
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Logical calculi

Next goal: the �rst-order theory of canonical calculi. In our

metalogic, this theory will be the basic example for

incompleteness.

Logical calculus:

An L family of languages with a distinguished category

FormL;

Inductive de�nition of the syntactic consequence

(deducibility) relation Γ ⊢L A, where Γ ⊆ FormL

(premises) and A ∈ FormL (conclusion).

Base of the inductive de�nition: a class of formulas deducible

from the empty class of premises (basic formulas or logical

axioms).

Inductive rules (rules of deduction, proof rules) prescribe how

you can arrive from some given relations Γ ⊢ A1,Γ ⊢ A2, . . . to
some new relation Γ ⊢ A.
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Logical calculi (continuation)

Di�erent ways to de�ne the deducibility relation: many axioms

and only one or two rules of deduction (Frege-Hilbert style of

calculus) versus no axioms at all, only rules (Gentzen-style or

natural deduction systems).

Equivalence of di�erent calculi (for the same family of

languages): on the natural way (the extension of the relation ⊢
is the same).

A natural demand for the class of logical axioms and the rules of

deduction: they should be decidable.
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First-order languages

All the symbols are strings of some given alphabet A

.

The class of arities A = {∅, o, oo, . . .} was de�ned inductively

earlier.

A �rst-order language L1 is a quintuple

< Log, V ar, Con, Term,Form >

where Log = {(, ), ¬, ⊃, ∀, =} is the class of logical constants,

V ar is the in�nite class of variables de�ned inductively, and

Con = N ∪ P =
⋃

a∈A Pa ∪
⋃

a∈ANa is the class of non-logical

constants containing all the classes Pa of a-ary predicates and

Na of a-ary name functors.

It is assumed that for ai ̸= aj ∈ A, Nai ∩Naj = Pai ∩ Paj = ∅
and N ∩ P = ∅.
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Terms and a-tuples of terms

The class of a-tuples of terms a ∈ A is T (a).

The simultaneous inductive de�nition of the classes Term and

T (a):

1. V ar ⊆ Term

2. T (∅) = {∅}
3. (s ∈ T (a) & t ∈ Term) ⇒ ⌜s(t)⌝ ∈ T (ao)

4. (φ ∈ Na & s ∈ T (a)) ⇒ ⌜φs⌝ ∈ Term
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Formulas

1. π ∈ Pa & s ∈ T (a) ⇒ ⌜πs⌝ ∈ Form

2. s, t ∈ Term ⇒ ⌜s = t⌝ ∈ Form

3. A ∈ Form ⇒ ⌜¬A⌝ ∈ Form

4. A,B ∈ Form ⇒ ⌜A ⊃ B⌝ ∈ Form

5. A ∈ Form & x ∈ V ar ⇒ ⌜∀xA⌝ ∈ Form

Atomic formulas are the formulas generated by the rules 1. and

2.

Other logical constants (∨, ∧, ≡, ∃) are introduced by

abbreviation conventions.

Be A,B ∈ Form. B is a subformula of A i� A is of the form

uBv (u, v ∈ A◦).

If x ∈ V ar and A ∈ Form, an occurrence of x in A is a

bound occurrence of x in A i� it lies in a subformula of A of the

form ∀xB. Other occurrences are called free occurrences.
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Some further auxiliary notions

A term is open i� at least one variable is a substring of it;

otherways it is closed.

A formula is open if it contains at least one free occurrence of a

variable; otherwise it is closed. Closed formulas are called

sentences.

A formula A is free from the variable x i� x has no free

occurrences in A. Γ ⊆ Form is free from x if each member of it

is.

Be A ∈ Form, x, y ∈ V ar. y is substitutable for x in A i� for

every subformula of A of the form ∀yB, B is free from x.

t ∈ Term is substitutable for x in A i� every variable occurring

in t is substitutable. If t is substitutable for x in A, then At/x

denotes (in the metalanguage) the formula obtained from A
substituting t for every free occurrence of x in A.
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The quanti�cation calculus (QC) 1: the axioms

Given a �rst-order language L1, the logical axioms (basic

formulas) are de�ned by the help of the following schemes:

(B1) (A ⊃ (B ⊃ A))

(B2) ((A ⊃ (B ⊃ C) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)))

(B3) ((¬B ⊃ ¬A) ⊃ (A ⊃ B))

(B4) (∀xA ⊃ At/x)

(B5) (∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB))

(B6) (A ⊃ ∀xA) provided that A is free from x

(B7) (x = x)

(B8) ((x = y) ⊃ (Ax/z ⊃ Ay/z))

The class BF of logical axioms is de�ned inductively:

i If we substitute formulas for A,B,C , variables for x, y, z
and terms for t of L1 in the above schemes, we get members

of BF .

ii If A ∈ BF and x ∈ V ar, then ⌜∀xA⌝ ∈ BF .
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QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then
Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.
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Consequences, consistency, �rst-order theories

Given any logical calculus Σ in a language L and a class Γ of

formulas of L, the class of the consequences of Γ is the class

Cns(Γ) = {A ∈ Form : Γ ⊢Σ A}

Γ is inconsistent if Cns(Γ) = Form, consistent in the other

case.

In �rst-order logic, Γ is consistent i� there is no A ∈ Form s. t.

both Γ ⊢ A and Γ ⊢ ¬A.
The pair T =< L1,Γ > is a �rst-order theory if L1 is a

�rst-order language and Γ is a class of its closed formulas (called

axioms of T ).

The theorems of T are the members of Cns(Γ). T is said

consistent resp. inconsistent if Γ is consistent resp. inconsistent.
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