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The goal of CC∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory. (See 27th September presentation.)

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.
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The language L1∗ (continuation)

The auxiliary letters of the hypercalculi H1 � H3 become

predicates and we keep the intended meanings:

Po = {I, L, V, W, T, R, K, A}
Poo = {D, F, G}
Poooo = {S}
S(v)(u)(y)(x): if we substitute the word y for the variable

x, we get the string v from the string u.)

Logical constants, variables (let us write them as x, x1, . . .), the
syntax of terms and formulas are like in any other �rst-order

language. The intended universe (the domain of the variables) is

the class of Acc-strings.
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The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (13th

September presentation) or in the language of algebra, the free

monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten

axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

Remark: The textbook de�nes the theorems of CC∗ by a

canonical calculus Σ∗. We omit this step; but you can �nd the

axioms of this slide as rules 61-80. of Σ∗ on p. 80. of the

textbook. The notation is a little bit di�erent.
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To obtain the axioms about calculi, we can simply translate the

34 rules of the hypercalculus H3 into L1∗ -propositions. The

rules of the translation are the following:

The auxiliary letters of H3 are reinterpreted as predicates

of L1∗; their arguments are written after them and they are

put in parentheses. E.g., instead of xDy we write D(x)(y).

The concatenations of strings in H3 are reinterpreted as

applications of the concatenation functor; it is again a

reinterpretation of the same notation only

The letters of Acc are reinterpreted as their own names; at

places where the empty string occurs as an argument of

some predicate, it is substituted by its name ϑ.

Calculus variables x, y, z, . . . are substituted by the

L1∗-variables x, x1, . . ..
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CC∗'s calculus axioms (continuation)

The arrows are substituted by the conditional sign `⊃' and

formulas of the form ⌜A ⊃ B ⊃ C⌝ are understood as

⌜(A ⊃ (B ⊃ C))⌝.

The open formulas obtained by the previous rules are

substituted by their universal closure.

The axioms of CC∗ are the 20 language radix-axioms plus the

34 axioms obtained from the rules of H3. E.g., the rules 12. and

13. of H3 (de�ning the extension of K) become the following

axioms:

∀x(R(x) ⊃ K(x))

∀x∀x1(K(x) ⊃ R(x1) ⊃ K(x ∗ x1))
The above rules of translation apply to any string derivable in

H3. Let us denote the translation on the string f into a

L1∗-formula Tr(f).
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Denotation and truth in L1∗

We can give a truth de�nition for L1∗-formulas, independently

from any set-theoretical semantics.

The closed terms of L1∗ are Acc ∪ {ϑ}-strings. They denote

Acc-strings that we obtain from them by deleting the ϑs.

A closed atomic formula ⌜s = t⌝ is true i� `s' and `t' denote
the same string.

Closed atomic formulas containing the predicates

I, L, W, V, T, R, K, F, S are true i� they are true

according to the intended interpretation. I.e., ⌜I(s)⌝ is true

i� the string s is an index, ⌜K(s)⌝ is true i� s is a code of a

calculus, ⌜S(s)(t)(v)(u)⌝ is true i� by substituting the word

(variable-free string) v for the variable u in the string t, we
get s, etc.

These two stipulations are e�ective, so the reference to the

intended interpretation is not problematic.
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Truth de�nition (continuation)

⌜D(s)(t)⌝ is true i� H3 7→ s′Dt′ where s′ and t′ are the

strings denoted by s resp. t, i.e. the calculus encoded by s
derives the string t.

⌜A(s)⌝ is true i� H3 7→ As′, i. e. s is an autonomous

numeral.

We could use the method of these stipulations at the �rst two

items, too. But these last ones are not e�ective (just this is our

point).

The evaluation of negation and conditional goes as usual.

Truth condition for universal quanti�cation is given by

substitution (that's why we don't need set theory): ⌜∀xA⌝
is false i� for some t Acc-string, [A]t/x is false, and true in

the other case. (Remark: x is a metalanguage variable here

running on the L1∗-variables xn.)

Open formulas of L1∗ are true i� their universal closure is

true.
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The consistency of CC∗

Theorem: All the theorems of CC∗ are true according to the

above truth de�nition.

The proof goes by induction following the inductive de�nition of

Γ ⊢ A (previous presentation): the axioms of CC∗ are true

(simple calculation), the basic formulas of �rst-order logic (of

L1∗) are true and detachment preserves truth.

Corollary: CC∗ is consistent. Because there are false sentences

of L1∗ (e.g., `α = β'), and according to the theorem, they are

not provable.

Theorem: If H3 7→ f , then Tr(f) is provable in CC∗.
The proof goes by induction following the inductive de�nition of

strings derivable in H3.
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Undecidability

Theorem: CC∗ is not decidable.

Suppose we have an algorithm to decide which sentences of L1∗

are theorems of CC∗. In this case, we could decide which

sentences of the form A(c) (where c is a numeral) are theorems.

But this would mean that we could decide which numerals are

autonomous - in contradiction to our earlier result that the class

of autonomous numerals is not decidable.

Theorem(Church-Turing-Markov): First-order logic is not

decidable.

I. e., there is no algorithm for every �rst-order language that

decides about every formula whether it is a logical truth

(consequence of the empty set of formulas) or not.

E.g., for L1∗ there is no such algorithm. Because otherwise we

had an algorithm to decide which formulas of the form

Ax ⊃ A(c) are logical truths (where Ax is the conjunction of all

axioms of CC∗ and c is a numeral). This would imply the

decidability of the class of autonomous numerals again.

András Máté metalogic 18th October



Undecidability

Theorem: CC∗ is not decidable.

Suppose we have an algorithm to decide which sentences of L1∗

are theorems of CC∗. In this case, we could decide which

sentences of the form A(c) (where c is a numeral) are theorems.

But this would mean that we could decide which numerals are

autonomous - in contradiction to our earlier result that the class

of autonomous numerals is not decidable.

Theorem(Church-Turing-Markov): First-order logic is not

decidable.

I. e., there is no algorithm for every �rst-order language that

decides about every formula whether it is a logical truth

(consequence of the empty set of formulas) or not.

E.g., for L1∗ there is no such algorithm. Because otherwise we

had an algorithm to decide which formulas of the form

Ax ⊃ A(c) are logical truths (where Ax is the conjunction of all

axioms of CC∗ and c is a numeral). This would imply the

decidability of the class of autonomous numerals again.

András Máté metalogic 18th October



Undecidability

Theorem: CC∗ is not decidable.

Suppose we have an algorithm to decide which sentences of L1∗

are theorems of CC∗. In this case, we could decide which

sentences of the form A(c) (where c is a numeral) are theorems.

But this would mean that we could decide which numerals are

autonomous - in contradiction to our earlier result that the class

of autonomous numerals is not decidable.

Theorem(Church-Turing-Markov): First-order logic is not

decidable.

I. e., there is no algorithm for every �rst-order language that

decides about every formula whether it is a logical truth

(consequence of the empty set of formulas) or not.

E.g., for L1∗ there is no such algorithm. Because otherwise we

had an algorithm to decide which formulas of the form

Ax ⊃ A(c) are logical truths (where Ax is the conjunction of all

axioms of CC∗ and c is a numeral). This would imply the

decidability of the class of autonomous numerals again.

András Máté metalogic 18th October



Negation completeness

A theory is omniscient (knows everything about its subject) if it

can decide every question that can be formulated in the

language of the theory.

Formal counterpart: a formal theory is negation complete i� for

every sentence A of its language, either A or ¬A is a theorem.

Otherwise, it's called (negation) incomplete.

Inconsistent theories are negation complete but uninteresting.

A plausible idea: if an axiomatic theory proves to be negation

incomplete, then it was too weak. Let us extend the set of

axioms by some true sentences.

There are very weak but negation complete theories, e.g. the

theory of two-member world.

The interesting case is when a theory is incomplete because it is

too strong, and therefore the incompleteness cannot be

remedied by extending the theory.
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The theory CC

CC comes from the theory CC∗ by deleting some predicates

from the language L1∗ and the axioms belonging to them from

the axioms and adding one more auxiliary axiom called SUD
(to be speci�ed at the next class).

In some details:

The language L10 of CC is the same as L1∗ except of that it

does not contain the two-place predicates F and G and the

one-place predicate A.

The class of axioms Γ0 of CC comes from the axioms of CC∗

by omitting the last nine axioms corresponding the rules 26.-34.

of H3 (i.e, it contains the axioms that translate the rules of H2

but not the further rules of H3 governing the predicates

omitted) and by adding SUD.

We can apply the truth de�nition we have speci�ed at the last

class. We will show that SUD is true according to this

de�nition, too. Therefore, the theorems of CC are all true and

the theory is consistent.
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