
Inductive de�nitions and canonical calculi

András Máté

20.09.2024

András Máté metalogic 20. September



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are subclasses

of C◦ that have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 20. September



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are subclasses

of C◦ that have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 20. September



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are subclasses

of C◦ that have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 20. September



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are subclasses

of C◦ that have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 20. September



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are subclasses

of C◦ that have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 20. September



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1

sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 20. September



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1

sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 20. September



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1

sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 20. September



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1

sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 20. September



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1

sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 20. September



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 20. September



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.

Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 20. September



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 20. September



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 20. September



Numbers divisible by 3, continuation2

0

11

110

x0Fx1

1F10

xFy → x1Fy0

x00 → x11

x01 → xFy → y00

x10 → xFy → y01

x11 → xFy → y10

This is now of the sort (form) of inductive de�nitions we call

canonical calculus.

András Máté metalogic 20. September



Numbers divisible by 3, continuation2

0

11

110

x0Fx1

1F10

xFy → x1Fy0

x00 → x11

x01 → xFy → y00

x10 → xFy → y01

x11 → xFy → y10

This is now of the sort (form) of inductive de�nitions we call

canonical calculus.

András Máté metalogic 20. September



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned

inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 20. September



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned

inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 20. September



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned

inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 20. September



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned

inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 20. September



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 20. September



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 20. September



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 20. September



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 20. September



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 20. September



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 20. September



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 20. September



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 20. September



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 20. September



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 20. September



Homework about Smullyan's machine

Prove that it is not possible for the machine to print all true

sentences, but only those. (It may print strings that are not

sentences, but we are only talking about sentences that the

machine can print.) I.e., if it only prints true sentences, then

there is at least one true sentence that it never prints.

Bonus: If you proved this proposition, you may propose a name

for it.

András Máté metalogic 20. September



The language of propositional logic

We have an in�nite sequence of propositional constants

p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to

de�ne the class of w�'s as an inductively de�ned class over a

�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for

indexes, but we do need to be able to distinguish between

propositional constants.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for

index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 20. September



The language of propositional logic

We have an in�nite sequence of propositional constants

p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to

de�ne the class of w�'s as an inductively de�ned class over a

�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for

indexes, but we do need to be able to distinguish between

propositional constants.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for

index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 20. September



The language of propositional logic

We have an in�nite sequence of propositional constants

p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to

de�ne the class of w�'s as an inductively de�ned class over a

�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for

indexes, but we do need to be able to distinguish between

propositional constants.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for

index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 20. September



The language of propositional logic

We have an in�nite sequence of propositional constants

p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to

de�ne the class of w�'s as an inductively de�ned class over a

�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for

indexes, but we do need to be able to distinguish between

propositional constants.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for

index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 20. September



The language of propositional logic

We have an in�nite sequence of propositional constants

p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to

de�ne the class of w�'s as an inductively de�ned class over a

�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for

indexes, but we do need to be able to distinguish between

propositional constants.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for

index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x
András Máté metalogic 20. September



Comments to the above calculus

The numbers in the left column are for reference only; they

are not part of the calculus.

The sign of the empty word can be omitted from rule 1.

5*. is a release rule: it erases an auxiliary letter. We can

de�ne the w�'s of PL as the APL
◦ − strings derivable in

this calculus.

The language of propositional logic could have been de�ned

without using auxiliary letters (see textbook p. 40). But it

is not always possible to eliminate the auxiliary letters and

they make our work simpler and more transparent even if

they (or some of them) are not necessary.

András Máté metalogic 20. September



Comments to the above calculus

The numbers in the left column are for reference only; they

are not part of the calculus.

The sign of the empty word can be omitted from rule 1.

5*. is a release rule: it erases an auxiliary letter. We can

de�ne the w�'s of PL as the APL
◦ − strings derivable in

this calculus.

The language of propositional logic could have been de�ned

without using auxiliary letters (see textbook p. 40). But it

is not always possible to eliminate the auxiliary letters and

they make our work simpler and more transparent even if

they (or some of them) are not necessary.

András Máté metalogic 20. September



Comments to the above calculus

The numbers in the left column are for reference only; they

are not part of the calculus.

The sign of the empty word can be omitted from rule 1.

5*. is a release rule: it erases an auxiliary letter. We can

de�ne the w�'s of PL as the APL
◦ − strings derivable in

this calculus.

The language of propositional logic could have been de�ned

without using auxiliary letters (see textbook p. 40). But it

is not always possible to eliminate the auxiliary letters and

they make our work simpler and more transparent even if

they (or some of them) are not necessary.

András Máté metalogic 20. September



Comments to the above calculus

The numbers in the left column are for reference only; they

are not part of the calculus.

The sign of the empty word can be omitted from rule 1.

5*. is a release rule: it erases an auxiliary letter. We can

de�ne the w�'s of PL as the APL
◦ − strings derivable in

this calculus.

The language of propositional logic could have been de�ned

without using auxiliary letters (see textbook p. 40). But it

is not always possible to eliminate the auxiliary letters and

they make our work simpler and more transparent even if

they (or some of them) are not necessary.

András Máté metalogic 20. September



Comments to the above calculus

The numbers in the left column are for reference only; they

are not part of the calculus.

The sign of the empty word can be omitted from rule 1.

5*. is a release rule: it erases an auxiliary letter. We can

de�ne the w�'s of PL as the APL
◦ − strings derivable in

this calculus.

The language of propositional logic could have been de�ned

without using auxiliary letters (see textbook p. 40). But it

is not always possible to eliminate the auxiliary letters and

they make our work simpler and more transparent even if

they (or some of them) are not necessary.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of

this language.

We include the (�rst �ve rules of) previous calculus.

New auxiliary letter: L with the intended meaning �provable

formula�.

The rules after the de�nition of the formulas will be just the

usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of

our calculus.

We need now a release rule for L.

András Máté metalogic 20. September



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and

continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of

propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 20. September



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and

continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of

propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 20. September



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and

continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of

propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 20. September



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and

continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of

propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 20. September


