The unprovability of the consistency of **CC**

András Máté

22.11.2024

András Máté metalogic 22nd November

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

 σ : the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

 σ : the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in **CC**.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

 σ : the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in **CC**.

If A is a formula of \mathcal{L}^{10} with at most one free variable and A' = a, then the diagonalization of A is the formula $B = A^{a/x}$ with the code B' = b.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

 σ : the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in **CC**.

If A is a formula of \mathcal{L}^{10} with at most one free variable and A' = a, then the diagonalization of A is the formula $B = A^{a/x}$ with the code B' = b.

 $Diag_{\sigma}(a,b)$ is the abbreviaton of the formula

$$D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x') \wedge D(\sigma)(b).$$

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O'.

 Σ : the canonical calculus generating the theorems of **CC**.

 σ : the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in **CC**.

If A is a formula of \mathcal{L}^{10} with at most one free variable and A' = a, then the diagonalization of A is the formula $B = A^{a/x}$ with the code B' = b.

 $Diag_{\sigma}(a,b)$ is the abbreviaton of the formula

$$D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x') \wedge D(\sigma)(b).$$

Lemma: $Diag_{\sigma}(a, b)$ is a theorem of **CC** iff *B* is a theorem of it.

Recapitulation continued

András Máté metalogic 22nd November

-

Recapitulation continued

Be A_0 the following formula with the code a_0 :

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).
```

イロト イボト イヨト イヨト

Recapitulation continued

Be A_0 the following formula with the code a_0 :

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).
```

Its diagonalization is the sentence G with the done g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

(人間) トイヨト イヨト

Be A_0 the following formula with the code a_0 :

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).
```

Its diagonalization is the sentence G with the done g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

If G were provable in **CC**, then **CC** would be inconsistent.

(人間) トイヨト イヨト

Be A_0 the following formula with the code a_0 :

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).
```

Its diagonalization is the sentence G with the done g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

If G were provable in **CC**, then **CC** would be inconsistent. * If G were false, then it would be provable in **CC**. Be A_0 the following formula with the code a_0 :

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).
```

Its diagonalization is the sentence G with the done g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

If G were provable in **CC**, then **CC** would be inconsistent. * If G were false, then it would be provable in **CC**. Therefore, G is a true but unprovable sentence of \mathcal{L}^{10} (first incompleteness theorem).

András Máté metalogic 22nd November

< 47 ▶

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$ Let us abbreviate $D(\sigma)(\mathbf{F}'a) \land D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(g)$.

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(g)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in \mathbf{CC} (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(g)$ (Step 1.).

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(g)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in \mathbf{CC} (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(g)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, g)$ with the code c_0 . We know that $\mathbf{CC} \vdash G$ iff $\mathbf{CC} \vdash C_0$. This biconditional can be proven within \mathbf{CC} again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(g)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in \mathbf{CC} (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(g)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, g)$ with the code c_0 . We know that $\mathbf{CC} \vdash G$ iff $\mathbf{CC} \vdash C_0$. This biconditional can be proven within \mathbf{CC} again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

Using the definition of Th_{σ} and the previous lemmas, we get $\mathbf{CC} \vdash Th(b_0) \supset Th(c_0).$

> < (2) >

The following \mathcal{L}^{10} -sentence expresses the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \land \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(g)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in \mathbf{CC} (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(g)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, g)$ with the code c_0 . We know that $\mathbf{CC} \vdash G$ iff $\mathbf{CC} \vdash C_0$. This biconditional can be proven within \mathbf{CC} again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

Using the definition of Th_{σ} and the previous lemmas, we get $\mathbf{CC} \vdash Th(b_0) \supset Th(c_0).$

Using the result of Step 1., we get

(Step 2.) $\mathbf{CC} \vdash \neg G \supset Th(c_0)$

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

András Máté metalogic 22nd November

・ロト ・日ト ・ヨト

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg'c_0)$.

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg'c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \land Th(\neg'c_0))$

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg'c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \land Th(\neg'c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg'c_0)) \supset \neg Cons_{\sigma}$. We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg'c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \land Th(\neg'c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg'c_0)) \supset \neg Cons_{\sigma}$. Therefore, $\mathbf{CC} \vdash \neg G \supset \neg Cons_{\sigma}$. and consequently, $\mathbf{CC} \vdash Cons_{\sigma} \supset G$. We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $\mathbf{CC} \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg'c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \land Th(\neg'c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg'c_0)) \supset \neg Cons_{\sigma}$. Therefore, $\mathbf{CC} \vdash \neg G \supset \neg Cons_{\sigma}$. and consequently,

 $\mathbf{CC} \vdash Cons_{\sigma} \supset G.$

It means that if $Cons_{\sigma}$ were provable, then G, the Gödel sentence would be provable, too. But from the first incompleteness theorem we know that the Gödel sentence is not provable, and therefore $Cons_{\sigma}$ can't be provable, either. Q.e.d.

- * 祠 ト - キヨト - * ヨト