The unprovability of the consistency of CC

András Máté

22.11.2024

András Máté [metalogic 22nd November](#page-27-0)

医单侧 医单位

 $2Q$

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 QQ

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

 Ω

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

σ: the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

 Ω

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

σ: the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in CC.

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

σ: the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in CC.

If A is a formula of \mathcal{L}^{10} with at most one free variable and $A' = a$, then the diagonalization of A is the formula $B = A^{a/x}$ with the code $B'=b$.

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

 QQ

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

σ: the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in CC.

If A is a formula of \mathcal{L}^{10} with at most one free variable and $A' = a$, then the diagonalization of A is the formula $B = A^{a/x}$ with the code $B'=b$.

 $Diag_{\sigma}(a, b)$ is the abbreviaton of the formula

$$
D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x') \wedge D(\sigma)(b).
$$

ADA 4 B A 4 B A

 QQ

CC: The first-order theory of canonical calculi, formulated in the language \mathcal{L}^{10} .

The code of any object O is the string O' .

 Σ : the canonical calculus generating the theorems of CC.

σ: the code of the calculus Σ , i. e. $\Sigma' = \sigma$.

Lemma: The true closed atomic formulas of \mathcal{L}^{10} are provable in CC.

If A is a formula of \mathcal{L}^{10} with at most one free variable and $A' = a$, then the diagonalization of A is the formula $B = A^{a/x}$ with the code $B'=b$.

 $Diag_{\sigma}(a, b)$ is the abbreviaton of the formula

$$
D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x') \wedge D(\sigma)(b).
$$

Lemma: $Diag_{\sigma}(a, b)$ is a theorem of **CC** iff B is a theorem of it.

Recapitulation continued

András Máté [metalogic 22nd November](#page-0-0)

メロト メタト メミト メミト

 299

目

.

Recapitulation continued

Be A_0 the following formula with the code a_0 :

.

```
\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x},\mathfrak{x}_1).
```
 \leftarrow

 $\left\{ \left\vert \left\{ \mathbf{0}\right\vert \mathbf{1}\right\} \right\} \left\{ \left\vert \left\{ \mathbf{0}\right\} \right\} \right\} =\left\{ \left\vert \left\langle \mathbf{0}\right\vert \right\} \right\}$

 $2Q$

Be A_0 the following formula with the code a_0 :

```
\forall x_1 \neg Diag_{\sigma}(x, x_1).
```
Its diagonalization is the sentence G with the done g .

.

$$
G = \forall \mathfrak{x}_1 \neg Diag_{\sigma}(a_0, \mathfrak{x}_1).
$$

医阿雷氏阿雷氏

 $2Q$

Be A_0 the following formula with the code a_0 .

```
\forallx<sub>1</sub>\neg Diag_{\sigma}(x, x<sub>1</sub>).
```
Its diagonalization is the sentence G with the done g .

.

$$
G = \forall \mathfrak{x}_1 \neg Diag_{\sigma}(a_0, \mathfrak{x}_1).
$$

If G were provable in CC, then CC would be inconsistent.

医阿康氏试验的

 QQ

Be A_0 the following formula with the code a_0 .

```
\forall x_1 \neg Diag_{\sigma}(x, x_1).
```
Its diagonalization is the sentence G with the done g .

$$
G = \forall \mathfrak{x}_1 \neg Diag_{\sigma}(a_0, \mathfrak{x}_1).
$$

If G were provable in CC, then CC would be inconsistent. ∗ If G were false, then it would be provable in CC.

.

 Ω

Be A_0 the following formula with the code a_0 .

```
\forall x_1 \neg Diag_{\sigma}(x, x_1).
```
Its diagonalization is the sentence G with the done g .

$$
G = \forall \mathfrak{x}_1 \neg Diag_{\sigma}(a_0, \mathfrak{x}_1).
$$

If G were provable in CC, then CC would be inconsistent. ∗ If G were false, then it would be provable in CC. Therefore, G is a true but unprovable sentence of \mathcal{L}^{10} (first incompleteness theorem).

つひつ

András Máté [metalogic 22nd November](#page-0-0)

 \leftarrow 12 \rightarrow

 $AB + AB$

 \rightarrow œ. . p 299

Þ

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

母 > イヨ > イヨ >

 298

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$ Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(q)$.

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(q)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in CC (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(q)$ (Step 1.).

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(q)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in CC (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(q)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, q)$ with the code c_0 . We know that $CC \vdash G$ iff $CC \vdash C_0$. This biconditional can be proven within CC again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(q)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in CC (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(q)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, q)$ with the code c_0 . We know that $CC \vdash G$ iff $CC \vdash C_0$. This biconditional can be proven within CC again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

Using the definition of Th_{σ} and the previous lemmas, we get $\mathbf{CC} \vdash Th(b_0) \supset Th(c_0).$

母 > マミ > マミ >

つひつ

The following \mathcal{L}^{10} -sentence expresses the consistency of CC: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

Let us abbreviate $D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ by $Th_{\sigma}(a)$. The starred proposition of the previous slide can be expressed in \mathcal{L}^{10} by the sentence $\neg G \supset Th(q)$.

The metalanguage argument for the starred porposition can be formalized as a deduction in CC (but we need SUD).

I. e., $\mathbf{CC} \vdash \neg G \supset Th(q)$ (Step 1.).

Be $C_0 = Diag_{\sigma}(a_0, q)$ with the code c_0 . We know that $CC \vdash G$ iff $CC \vdash C_0$. This biconditional can be proven within CC again, i.e. $\mathbf{CC} \vdash B_0 \leftrightarrow C_0$.

Using the definition of Th_{σ} and the previous lemmas, we get $CC \vdash Th(b_0) \supset Th(c_0)$.

Using the result of Step 1., we get

(Step 2.) $\mathbf{CC} \vdash \neg G \supset Th(c_0)$

∢伺 ▶ ∢ ヨ ▶ ∢ ヨ ▶

つひつ

The end of our proof

András Máté [metalogic 22nd November](#page-0-0)

メロト メタト メミト メミト

 299

目

The end of our proof

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $CC \vdash \neg C_0$.

4 D F

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

э

 $2Q$

The end of our proof

We know that if $CC \vdash C_0$, then $CC \vdash G$, and if $CC \vdash G$, then $CC \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg' c_0)$.

4 0 8

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 298

We know that if $\mathbf{CC} \vdash C_0$, then $\mathbf{CC} \vdash G$, and if $\mathbf{CC} \vdash G$, then $CC \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg' c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \wedge Th(\neg' c_0))$

 $2Q$

We know that if $CC \vdash C_0$, then $CC \vdash G$, and if $CC \vdash G$, then $CC \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg' c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \wedge Th(\neg' c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg' c_0)) \supset \neg Cons_{\sigma}$.

つくい

We know that if $CC \vdash C_0$, then $CC \vdash G$, and if $CC \vdash G$, then $CC \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg' c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \wedge Th(\neg' c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg' c_0)) \supset \neg Cons_{\sigma}$. Therefore, $\mathbf{CC} \vdash \neg G \supset \neg Cons_{\sigma}$. and consequently, $CC \vdash Cons_{\sigma} \supset G$.

つへへ

We know that if $CC \vdash C_0$, then $CC \vdash G$, and if $CC \vdash G$, then $CC \vdash \neg C_0$.

It follows that $\mathbf{CC} \vdash Th(c_0) \supset Th(\neg' c_0)$.

Therefore, using Step 2. and propositional logic: (Step 3.) $\mathbf{CC} \vdash \neg G \supset (Th(c_0) \wedge Th(\neg' c_0))$ By first-order logic, (Step 4.) $\mathbf{CC} \vdash (Th(c_0) \land Th(\neg' c_0)) \supset \neg Cons_{\sigma}$. Therefore, $\mathbf{CC} \vdash \neg G \supset \neg Cons_{\sigma}$. and consequently, $CC \vdash Cons_{\sigma} \supset G$.

It means that if $Cons_{\sigma}$ were provable, then G, the Gödel sentence would be provable, too. But from the first incompleteness theorem we know that the Gödel sentence is not provable, and therefore $Cons_{\sigma}$ can't be provable, either. Q.e.d.

AP > 4 B > 4 B >