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Theories, languages, calculi

We have formalized the theory of canonical calculi as the
�rst-order theory CC∗ in the language L∞∗. Its theorems tell
you e.g. which calculus derives which string.

If D(a)(b) is provable in CC∗, it means that the calculus
translated by the string a derives the string translated by the
string b. Method of translation: see 27th September
presentation.

The theorems can be generated by a canonical calculus Σ∗

(details omitted). The alphabet of Σ∗ can be encoded again in
the two-letter alphabet A1 = {α, β} and the whole calculus will
be encoded/translated as an Acc-string σ∗.
(Acc = {α, β, ξ, ≫, ∗}).
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Circularity is not always vicious, but some caution is
needed with the notation

CC∗ proves among others propositions of the form D(σ∗)(b)
which means that CC∗ proves a proposition encoded by the
string b. This fact gives us the possibility to diagonalize the
theory.

The theorems of CC∗ are generated by the calculus Σ∗. Its
auxiliary letters partly overlap in meaning with the auxiliary
letters of H3 and therefore with the non-logical constants of L1∗

and because of this, we will use the same letter (V for variable,
T for term, F for formula, etc.). But to avoid ambiguity, the
auxiliary letters of Σ∗ will be written in boldface.

To produce the code σ∗ of Σ∗ (and other codes of the
expressions occurring in it), we need to translate each letter of
its alphabet into A◦

1. The translation of any letter C will be
denoted by C

′
. Therefore we will see S as expressing the

four-argument substitution relation in L1∗, S as an auxiliary
letter expressing substitution in Σ∗ and S

′
as the code of S.
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Some simpli�cations and a new axiom

We shall study the theory CC instead of CC∗. Its language is
L10 which di�ers from L1∗ by omitting the predicates A, F and
G. So CC may be regarded as the transformation of the
hypercalculus H2 into a �rst-order theory.

The calculus producing the theorems of CC is Σ and its code in
L10 is σ. The truth de�niton for the formulas of L10 is the same
as the truth de�nition for them in L1∗. The notational
convention introduced on the previous slide also remains valid.

The axioms are just the axioms of CC∗ minus the axioms
concerning the omitted predicates plus the axiom SUD
(Substitution Uniquely Determinded):

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

It follows from the truth de�nition of the previous class that
this axiom is true.
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Diagonalization in CC (preparatory steps)

We have seen last week that all the theorems of CC∗ are true.
This statement trivially extends to the theorems of CC. The
converse of this latter statement � that every true closed
formula is provable � would be the completeness statement for
CC. We will prove the falsity of this statement roughly by the
standard Gödelian methods. At �rst, we show that the simplest
true propositions are provable.

Lemma 1.: The true closed atomic formulas of L1∗ resp. L10

are all provable in CC∗ resp. in CC.

See the truth de�nition for L1∗ in last week's presentation.

Lemma 2.: If a string f is derivable in Σ, then σDf ′ is
derivable in H2. Therefore, D(σ)(f ′) is a true atomic formula of
L10. According to Lemma 1., it is a theorem of CC.
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The diagonal formula

Be A a formula with at most one variable x of the language L10,
A′ = a, B = Aa/x and B′ = b.

Let us assume �rst that B is provable in CC. In this case, Σ
derives the words FA, BSASaSx, B.

Therefore by Lemma 2., the following atomic formulas are
theorems of CC: D(σ)(F′a), D(σ)(bS′aS′a′S′x′), D(σ)(b).

Let us abbreviate their conjunction by Diagσ(a, b). If B was a
theorem in CC, then this diagonal formula is a theorem, too.

Let us now assume that Diagσ(a, b) is a theorem. Then each
conjunct is a theorem, too, so they are true according our truth
de�nition. The third conjunct says that the calculus with the
code σ derives the string with the code b, i.e., B is a theorem of
CC.

Now we have proven
Lemma 3. B is a theorem of CC i� Diagσ(a, b) is a theorem.
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The Gödel sentence and its unprovability

Be A0 the following formula with the code a0:

∀x1¬Diagσ(x, x1).

Let us diagonalize it and call the diagonalized formula G with
the code g:

G = ∀x1¬Diagσ(a0, x1).

According to Lemma 3., G is a theorem of CC i� Diagσ(a0, g)
is a theorem.

But from G follows ¬Diagσ(a0, g). Therefore, if G is a theorem,
then CC is inconsistent. Hence, G is not a theorem.
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The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed
atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts
D(σ)(F′a0), D(σ)(b0S

′a0S
′[a0]

′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent
from g because the result of substituting the code a0 into the
formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with
the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would
be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 25th October



Generalization

Theorem: Be T a �rst-order theory such that

i. all the theorems of CC are provable in T ;

ii. the class of the theorems of T is de�nable by some
canonical calculus K;

iii. no false formula of CC is provable in T .

Then T is incomplete. There is a sentence in the language of T
which is true but not provable.

Be K ′ = k. If K derives a string f , then D(k)(f ′) is provable in
T (because it is provable in CC). So we have an analogue of
Lemma 2. Then we can introduce Diagk(a/x, b) exactly as we
have introduced Diagσ. We can prove Lemma 3. for theorems of
T instead of CC, and produce a Gödel sentence for T .
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