
Some canonical calculi and logical languages
The concept of hypercalculus

András Máté

27.09.2024

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.

The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 27. Sept.



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one(currying).

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 27. Sept.



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one(currying).

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 27. Sept.



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one(currying).

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 27. Sept.



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one(currying).

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x

15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy

16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 27. Sept.



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 27. Sept.



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 27. Sept.



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of any canonical calculus also derives the code of itself.

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it by letter
into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 27. Sept.



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 27. Sept.



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 27. Sept.



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 27. Sept.



The calculus H1 (beginning)

1. I

2. Ix → Ixβ

3. Ix → Lαx

4. Ix → V ξx

5. W

6. Wx → Ly → Wxy

7. T

8. Tx → Ly → Txy

9. Tx → V y → Txy

András Máté metalogic 27. Sept.



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 27. Sept.



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 27. Sept.



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.

We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.

Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.

András Máté metalogic 27. Sept.



Substitution in H2

Substitution needs an inductive de�nition, too:

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx

Base: The substitution of the variable x by the word y makes y
from x (rule 18.) and leaves any other character � letters (14.),
the arrow (15.), other variables (16.-17) � unchanged.
Inductive rule (19.): If the substitution makes v from u and w
from z, then from their concatenation uz it makes the
concatenation of the results vw.

András Máté metalogic 27. Sept.



Substitution in H2

Substitution needs an inductive de�nition, too:

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx

Base: The substitution of the variable x by the word y makes y
from x (rule 18.) and leaves any other character � letters (14.),
the arrow (15.), other variables (16.-17) � unchanged.
Inductive rule (19.): If the substitution makes v from u and w
from z, then from their concatenation uz it makes the
concatenation of the results vw.

András Máté metalogic 27. Sept.



Substitution in H2

Substitution needs an inductive de�nition, too:

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx

Base: The substitution of the variable x by the word y makes y
from x (rule 18.) and leaves any other character � letters (14.),
the arrow (15.), other variables (16.-17) � unchanged.

Inductive rule (19.): If the substitution makes v from u and w
from z, then from their concatenation uz it makes the
concatenation of the results vw.

András Máté metalogic 27. Sept.



Substitution in H2

Substitution needs an inductive de�nition, too:

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx

Base: The substitution of the variable x by the word y makes y
from x (rule 18.) and leaves any other character � letters (14.),
the arrow (15.), other variables (16.-17) � unchanged.
Inductive rule (19.): If the substitution makes v from u and w
from z, then from their concatenation uz it makes the
concatenation of the results vw.

András Máté metalogic 27. Sept.



Derivability in H2

Base: every calculus derives its rules. (In details: an one-rule
calculus derives the rule, and longer calculi derive their last,
�rst and middle rules.) Inductive rules are substitution and
detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We
can't give suitable release rules here.

András Máté metalogic 27. Sept.



Derivability in H2

Base: every calculus derives its rules. (In details: an one-rule
calculus derives the rule, and longer calculi derive their last,
�rst and middle rules.) Inductive rules are substitution and
detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We
can't give suitable release rules here.

András Máté metalogic 27. Sept.



Derivability in H2

Base: every calculus derives its rules. (In details: an one-rule
calculus derives the rule, and longer calculi derive their last,
�rst and middle rules.) Inductive rules are substitution and
detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We
can't give suitable release rules here.

András Máté metalogic 27. Sept.



Derivability in H2

Base: every calculus derives its rules. (In details: an one-rule
calculus derives the rule, and longer calculi derive their last,
�rst and middle rules.) Inductive rules are substitution and
detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We
can't give suitable release rules here.

András Máté metalogic 27. Sept.



The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings
with the intended meanings �a is a calculus�, �b is a string of the
alphabet of a�, �a derives b�. (a and b are translations, codes of a
calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to
every Acc-string. (This is in e�ect a Gödel numbering.)
Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.
New auxiliary letter: F for the relation `follows'.
I. e., xFy should mean that the string y follows x in the
lexicographic ordering.
Base: α follows the empty word.
Inductive rules de�ne the follower of a string according to its
last letter.

András Máté metalogic 27. Sept.



The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings
with the intended meanings �a is a calculus�, �b is a string of the
alphabet of a�, �a derives b�. (a and b are translations, codes of a
calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to
every Acc-string. (This is in e�ect a Gödel numbering.)
Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.
New auxiliary letter: F for the relation `follows'.
I. e., xFy should mean that the string y follows x in the
lexicographic ordering.
Base: α follows the empty word.
Inductive rules de�ne the follower of a string according to its
last letter.

András Máté metalogic 27. Sept.



The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings
with the intended meanings �a is a calculus�, �b is a string of the
alphabet of a�, �a derives b�. (a and b are translations, codes of a
calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to
every Acc-string. (This is in e�ect a Gödel numbering.)
Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.
New auxiliary letter: F for the relation `follows'.
I. e., xFy should mean that the string y follows x in the
lexicographic ordering.
Base: α follows the empty word.
Inductive rules de�ne the follower of a string according to its
last letter.

András Máté metalogic 27. Sept.



The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings
with the intended meanings �a is a calculus�, �b is a string of the
alphabet of a�, �a derives b�. (a and b are translations, codes of a
calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to
every Acc-string. (This is in e�ect a Gödel numbering.)
Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.
New auxiliary letter: F for the relation `follows'.
I. e., xFy should mean that the string y follows x in the
lexicographic ordering.
Base: α follows the empty word.
Inductive rules de�ne the follower of a string according to its
last letter.

András Máté metalogic 27. Sept.



Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:
Every Acc-string has one and only one follower;
Except of the empty string, each string is the follower of one
and only one string.
The empty string is not a follower of anything.
I. e., strings with the empty string as 0 and this follower-relation
as the successor-function ful�l axioms of primitive Peano
arithmetics without mathematical induction.

András Máté metalogic 27. Sept.



Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:
Every Acc-string has one and only one follower;
Except of the empty string, each string is the follower of one
and only one string.
The empty string is not a follower of anything.
I. e., strings with the empty string as 0 and this follower-relation
as the successor-function ful�l axioms of primitive Peano
arithmetics without mathematical induction.

András Máté metalogic 27. Sept.



Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:
Every Acc-string has one and only one follower;
Except of the empty string, each string is the follower of one
and only one string.
The empty string is not a follower of anything.
I. e., strings with the empty string as 0 and this follower-relation
as the successor-function ful�l axioms of primitive Peano
arithmetics without mathematical induction.

András Máté metalogic 27. Sept.



Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the
trivial way.
G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.
Basis: the ordinal number of the empty string is the empty
string itself.
Inductive rule: to get the number of the follower of a string x we
need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it
su�ces to prove at least one important incompleteness result.

András Máté metalogic 27. Sept.



Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the
trivial way.
G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty
string itself.
Inductive rule: to get the number of the follower of a string x we
need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it
su�ces to prove at least one important incompleteness result.

András Máté metalogic 27. Sept.



Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the
trivial way.
G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.
Basis: the ordinal number of the empty string is the empty
string itself.
Inductive rule: to get the number of the follower of a string x we
need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it
su�ces to prove at least one important incompleteness result.

András Máté metalogic 27. Sept.



Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the
trivial way.
G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.
Basis: the ordinal number of the empty string is the empty
string itself.
Inductive rule: to get the number of the follower of a string x we
need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it
su�ces to prove at least one important incompleteness result.

András Máté metalogic 27. Sept.



Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the
trivial way.
G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.
Basis: the ordinal number of the empty string is the empty
string itself.
Inductive rule: to get the number of the follower of a string x we
need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it
su�ces to prove at least one important incompleteness result.

András Máté metalogic 27. Sept.



Autonomous numerals

Be C an arbitrary calculus.
The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number
of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel
number).
Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.
Let us extend H3 to de�ne autonomous numbers.
New auxiliary letter: A with the intended meaning
�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 27. Sept.



Autonomous numerals

Be C an arbitrary calculus.
The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number
of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel
number).
Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.
Let us extend H3 to de�ne autonomous numbers.
New auxiliary letter: A with the intended meaning
�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 27. Sept.



Autonomous numerals

Be C an arbitrary calculus.
The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number
of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel
number).
Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.
New auxiliary letter: A with the intended meaning
�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 27. Sept.



Autonomous numerals

Be C an arbitrary calculus.
The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number
of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel
number).
Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.
Let us extend H3 to de�ne autonomous numbers.
New auxiliary letter: A with the intended meaning
�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 27. Sept.



Autonomous numerals

Be C an arbitrary calculus.
The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number
of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel
number).
Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.
Let us extend H3 to de�ne autonomous numbers.
New auxiliary letter: A with the intended meaning
�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 27. Sept.



Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet
A0 = {α}, so their class is A◦

0 and it can be de�ned inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule deleting A to H3, we gain a de�nition
of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.
Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 27. Sept.



Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet
A0 = {α}, so their class is A◦

0 and it can be de�ned inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule deleting A to H3, we gain a de�nition
of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.
Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 27. Sept.



Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet
A0 = {α}, so their class is A◦

0 and it can be de�ned inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule deleting A to H3, we gain a de�nition
of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 27. Sept.



Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet
A0 = {α}, so their class is A◦

0 and it can be de�ned inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule deleting A to H3, we gain a de�nition
of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.
Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 27. Sept.



Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral
c, C 7→ c, and there is no autonomous numeral d for that
C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive
de�nition can be given for the notion �non-autonomous calculus�
just like Gödel's �rst incompleteness theorem shows that no
inductive de�nition can be given for the notion �arithmetical
truth�. And this proof uses an analogue of the Liar Paradox,
too.

András Máté metalogic 27. Sept.



Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral
c, C 7→ c, and there is no autonomous numeral d for that
C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive
de�nition can be given for the notion �non-autonomous calculus�
just like Gödel's �rst incompleteness theorem shows that no
inductive de�nition can be given for the notion �arithmetical
truth�. And this proof uses an analogue of the Liar Paradox,
too.

András Máté metalogic 27. Sept.



Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral
c, C 7→ c, and there is no autonomous numeral d for that
C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive
de�nition can be given for the notion �non-autonomous calculus�
just like Gödel's �rst incompleteness theorem shows that no
inductive de�nition can be given for the notion �arithmetical
truth�. And this proof uses an analogue of the Liar Paradox,
too.

András Máté metalogic 27. Sept.



Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral
c, C 7→ c, and there is no autonomous numeral d for that
C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive
de�nition can be given for the notion �non-autonomous calculus�
just like Gödel's �rst incompleteness theorem shows that no
inductive de�nition can be given for the notion �arithmetical
truth�. And this proof uses an analogue of the Liar Paradox,
too.

András Máté metalogic 27. Sept.



Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral
c, C 7→ c, and there is no autonomous numeral d for that
C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive
de�nition can be given for the notion �non-autonomous calculus�
just like Gödel's �rst incompleteness theorem shows that no
inductive de�nition can be given for the notion �arithmetical
truth�. And this proof uses an analogue of the Liar Paradox,
too.

András Máté metalogic 27. Sept.


