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1 Classical language and models

1.1 Logical abbreviations

Notation 1 (Vector-notation, projections). If ~x = 〈x1, . . . , xn〉, then we denote
the ith member of ~x by ~xi or (~x)i.

If f is a function with a codomain of some set of n-tuples, then for any
1 ≤ k ≤ n,

fk(~x)
def
= (f(~x))k

We will use the following abbreviations as well: If i ≤ j ≤ n, then for any n-tuple
~x,

fi−j(~x)
def
= 〈vi(~x), vi+1(~x), . . . , vj(~x)〉

fi1,i2,...,in(~x)
def
= 〈vi1(~x), vi2(~x), . . . , vin(~x)〉

We also use the vector-notation in syntax; if P is an n-ary predicate then

P (〈x1, . . . , xn〉)
def
= P (x1, . . . , xn)

Notation 2 (Bounded quanti�cations). We use the ∈ symbol and binary rela-
tions to bound quanti�cation:

(∀v1, v2, . . . , vn ∈ ϕ)ψ
def⇔ ∀v1, . . . , vn((ϕ(v1) ∧ ϕ(v2) ∧ · · · ∧ ϕ(vn))→ ψ)

(∀〈v1, v2, . . . , vn〉 ∈ ϕ)ψ
def⇔ ∀v1, . . . , vn(ϕ(v1, v2, . . . , vn)→ ψ)

(∀v2 ϕv1)ψ
def⇔ ∀v2(ϕ(v1, v2)→ ψ)

In Chapter 2, we will frequently de�ne functions in the object language,
but most of the time these functions will be partial. The following notational
conventions will make the life easier there.

Notation 3 (Functions, partial functions). Let v an arbitrary variable, and ~v is
an n-tuple of arbitrary variables. A formula F (~v, v′) is a function in the system
Γ, i�

Γ ` ∃y(F (~v, v1) ∧ ∀z(F (~v, v2)→ v1 = v2)),

We call F(~w,~a, ~x, y) a partial function in Γ, if

Γ ` ∀y, z(F(~w,~a, ~x, y) ∧ F(~w,~a, ~x, z)→ y = z).

We refer to the only v′ which satisfy ϕ(~v, v′) with the lower case, one-argument-
less f(~v). Formally:

ϕ(f(~v))
def⇔ ∃y(F (~v, v′) ∧ ϕ(v′))

So if F (~w,~a, ~x, y) is only a partial function, then the truth of ϕ(f(~w,~a, ~x)) implies
that f(~w,~a, ~x) is de�ned, and has the property ϕ. Roughly speaking, using this
notation, we will never have to excuse ourselves using partial functions.
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1.2 Classical language of clocks

We are going to use the following classical �rst-order 3-sorted language:

• Symbols:

� Pointer variables: a, b, c, . . . ClV ar
def
= {ai : i ∈ ω}

� Mathematical variables: x, y, z, . . . MV ar
def
= {xi : i ∈ ω}

� Event variables: e, e′, e′′, . . . NV ar
def
= {ei : i ∈ ω}

� Mathematical function and relation symbols: +, ·, ≤
� Event predicate: ≺
� Clock predicate: In (Optional)

� Intersort predicate: P

� Logical symbols: ¬,∧,=,∃

• Terms:
τ ::= x | τ1 + τ2 | τ1 · τ2

• Formulas:

ϕ ::= a = b | τ = τ ′ | τ ≤ τ ′ | e = e′ | e ≺ e′ | In(a) | P(e, a, τ) |
¬ϕ | ϕ ∧ ψ | ∃xϕ | ∃aϕ | ∃eϕ

On rare occasions we will denote event variables with symbols di�erent from e,
e′, e1, . . . In these cases, the context always clari�es that the used symbols refer
to event variables.

Remark 1. In the light of Theorem ??, we could explicitly de�ne inertial
observers as the geodetic observers. We do not choose this way, by the following
reasons: A tétel még készül®ben

• We are able to construct our axiomatizations without using the very spe-
cial geodetic property, and using the more geometrical `line-like' properties
of inertials/geodetics.

• We think that the equivalence of inertiality and geodeticity in Minkowski
spacetimes should be on the �theoremhood� rather than the �assumption�
side of an axiomatic approach to relativity theories.

1.2.1 Abbreviations

a(e) = τ
def⇔ P(a, e, τ)

eEa def⇔ ∃xP(a, e, x)

wlinea
def
= {e : ∃xP(a, e, x)}

De
def
= {a : ∃xP(a, e, x)}

a ≈ b def⇔ ∀e(eEa↔ eEb)

e� e′
def⇔ e ≺ e′ ∧ ∃a(eEa ∧ e′Ea)

e� e′
def⇔ e� e′ ∨ e = e′

e  e
′ def⇔ e ≺ e′ ∧ ¬∃a(eEa ∧ e′Ea)

e  =e
′ def⇔ e  e

′ ∨ e = e′

−−−−→e1e2e3
def⇔ e1  e2 ∧ e2  e3 ∧ e1  e3

De is the domain of event e, the relation a ≈ b is referred as the cohabitation of

clocks a and b, and −−−−→e1e2e3 is the directed lightlike betweenness predicate.
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1.3 Intended classical clock models

Mc =
(
R4,C,R,≺Mc

, InMc

+, ·,≤,PMc
)

where

• C is the set of those α : R4 → R∪{Θ}, for which α−1-s are timelike curves
that follows the measure system of R4, i.e.,

� α−1 is di�erentiable function w.r.t. Euclidean metric:

(∀x ∈ U)(∀ε > 0)(∃δ > 0)(∀y ∈ U)

|x− y| ≤ δ ⇒ |α
−1(x)− α−1(y)|
|x− y|

≤ ε,

� (α−1)′ is continuous:

(∀x ∈ U)(∀ε > 0)(∃δ > 0)(∀y ∈ U)

|x− y| < δ ⇒
∣∣(α−1)′(x)− (α−1)′(y)

∣∣ < ε

� (α−1)′ is timelike: µ ◦
(
α−1

)′
(x) > 0 for all x ∈ R.

� Measure system of R4: µ(α−1(x), α−1(x+ y)) = y.

• ~x ≺Mc

~y
def⇔ µ(~x, ~y) ≥ 0 and x1 < y1,

• InMc def
=

{
α ∈ C :

(∃x, y ∈ U)(∀z ∈ U)(∃λ ∈ U)
α−1(z) = α−1(x) + λ · (α−1(x)− α−1(y))

}
• PMc

= {〈~x, α, y〉 ∈ R4 × CI × R : α(~x) = y},

The non-accelerating intended model Mc
I is the largest submodel of Mc in which

the domain of clocks is InMc

.

1.4 Goals

• Construct coordinate systems for inertial clocks.

• Construct coordinate systems for accelerating clocks.

• Find axiomatic base SClTh for these coordinate construction procedures.

• Extend SClTh into a complete axiomatization of Th(Mc
I).

• Extend SClTh into a complete axiomatization of Th(Mc) or show that it
cannot be axiomatized.

• Compare Th(Mc
I) to SpecRel in terms of de�nitional equivalences.

• Compare Th(Mc) to AccRel in terms of de�nitional equivalences.

2 Coordinatization

In this section we work in Th(Mc).
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2.1 How to build a coordinate system?

During this section keep in mind that we use mostly partial functions, so recall
the remarks on Notation 3.

To de�ne coordinatization we have to create the notions of space and time
relative to observers. To de�ne notions related to time is not a hard job anymore
since we can use the structure of R. To construct observer-relative space and
the Coordinatization predicate, we follow ideas similar to the paper of Andréka
and Németi [2014]. This idea can be summarized in the following steps:

1. Space: We de�ne the (spatial) points of clocks. The space of a clock will
be the set of its inertial synchronized co-movers (or shortly, iscm-s).1

2. Geometry:We de�ne the betweenness and equidistance relations, the two
primitive relation of Tarski and Givant [1999]. This makes us able to talk
about the geometrical structure of the space of any clock.

3. Coordinate Systems: We de�ne orthogonality to identify coordinate
systems as a 4-tuple of iscm-s, representing the origin and the three direc-
tion of the three axes.

4. Coordinatization:We use the distances from the axes and a sign-function
to build coordinates for every events.

5. Check: We check that this coordinatization predicate is good indeed.
In Theorem 25 we prove that it is a bijection between W and U4 for
any coordinate system, and in Section 3.5 we show that we can use it to
interpret the worldview predicate W of SpecRel. We will check this in an
axiomatic environment.

2.2 Space

De�nition 4 (Distances). The distance of an inertial observer from an event
is de�ned via signalling, see Fig 1.

Figure 1: δi(a, e) = τ

2τe

e1

e2

δi(a, e) = τ
def⇔ In(a) ∧ (∃e1, e2 ∈ wlinea)

(
e1  =e  =e2 ∧ a(e1)− a(e2) = 2 · τ

)
The distance of inertials can be de�ned in the following way:

δi(a, a′) = τ
def⇔ (∀w ∈ wlinea′)δ

i(a,w) = τ

Comovement is de�ned by having a distance:

a
i

↑↑a′ def⇔ ∃xδi(a, a′) = x

According to the theories of intended models, δi(a, e) = τ is a total function
and δi(a, a′) = τ is a partial, but not a total function. We will prove this in
Proposition 8 later, when we will have the �nal axiom system to work with.

Figure 2: a
syn

↑↑a′
a a′

x

x+ d

d

1Here we note that the notion of space can be given more generally: simple inertial comovers

are enough, but the more special synchronized subset simpli�es the coordinatization process.
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De�nition 5 (Inertial synchronized co-movers). Clocks a and a′ are inertial
synchronised co-movers i� a′ shows x+ δi(a, a′) whenever a′ sees that a shows
x. See Fig 2.

a
syn

↑↑a′ def⇔ (∀w ∈ Da)(∀w′ ∈ D′a)
(
w  =w

′ → a′(w′) = a(w) + δi(a, a′)
)

(Note that comoving is ensured here by the pseudo-term δi(a, a′)!)

Now we are able to �nd representatives for points in spatial geometry for a
clock a:

De�nition 6 (Space). Inertial synchronized comovers of a clock a will be called
a point of a, and the set of all points of a will be called the space of a:

a′ ∈ Spacea
def⇔ a

syn

↑↑a′

2.3 Geometry

Now we de�ne the basic primitives of [Tarski and Givant 1999] (The axioms can
be found here in Table 1 on p.18 as well):

De�nition 7 (Betweenness, Equidistance, Collinearity). We say that a2 is be-
tween a1 and a3 i� the shortest route from a1 to a3 leads through a2:

B(a1, a2, a3)
def⇔ δi(a1, a2) + δi(a2, a3) = δi(a1, a3)

Equidistance stands for equal distances:

a1a2 ≡ a3a4
def⇔ δi(a1, a2) = δi(a3, a4)

Collinearity is the permutational closure of betweenness:

C(a1, a2, a3)
def⇔ B(a1, a2, a3) ∨ B(a3, a1, a2) ∨ B(a2, a3, a1)

Remark 2. Recall that since δi is a partial function, all these relations implies
the inertiality and the co-movement of all of its arguments.

2.4 Coordinate systems

De�nition 8 (Orthogonality). Distinct lines determined by points a-a1 and
a-a2 are orthogonal i� there is an a′ such that a′, a1 and a2 forms an isoscele
triangle and a is in the middle of the segment a′ and a2, see Fig. 3:

Figure 3: Right angle

a

a1
a2

∃a′

y

x
y

x

Ort(a, a1, a2)
def⇔ δi(a, a1) > 0 ∧ δi(a1, a2) > 0 ∧ δi(a, a2) > 0

∧ ∃a′
(
B(a2, a, a

′) ∧ δi(a, a2) = δi(a, a′) ∧ δi(a1, a2) = δi(a1, a
′)
)

De�nition 9 (Distances from lines). The distance of a clock a and a line given
by the points (a1, a2) is τ i� the distance of a and its orthogonal projection on
the line (a1, a2) is τ .

δi(a, (a1, a2)) = τ
def⇔ ∃a′(Ort(a′, a, a1) ∧Ort(a′, a, a2) ∧ δi(a, a′) = τ)
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Figure 4: De�nition of the direction function
a0 ax

B(a0, a, ax) B(a0, ax, a)B(a, a0, ax)

+ +−

De�nition 10 (Coordinate systems).

CoordSys(a, ax, ay, az)
def⇔ Ort(a, ax, ay) ∧Ort(a, ay, az) ∧Ort(a, ax, az)

De�nition 11 (Directed lines). If a line is given by the points (a0, ax), then
a point a of that line is in negative direction if a0 is between a and ax, is in
null-direction if a = a0, and is in positive direction otherwise, see Fig. 4:

sign−a0,ax(a) = τ
def⇔ (a 6= a0 ∧ B(a, a0, ax) ∧ τ = −1) ∨ (a = a0 ∧ τ = 0) ∨(

a 6= a0 ∧ (B(a0, a, ax) ∨ B(a0, ax, a)) ∧ τ = 1
)

If a is not on the line given by (a0, ax), then we say that it is in the nega-
tive/null/positive direction i� its orthogonal projection on that line is in the
negative/null/positive direction, respectively:

signa0,ax(a) = τ
def⇔ ∃a′(Ort(a′, a, a0) ∧Ort(a′, a, ax) ∧ sign−a0,ax(a′) = τ)

2.5 Coordinatization

De�nition 12 (Coordinatization). See Fig. 5. The event e will be coordina-
tized on the spatiotemporal position 〈τt, τx, τy, τz〉 by the coordinate system
〈a, ax, ay, az〉 i� there is a synchronized co-mover ae of a that shows the time τt
in e and τd = signa,ad(ae) · δi(ae, a, ad) for d ∈ {x, y, z}.

Coorda,ax,ay,az (e) = (τt, τx, τy, τz)
def⇔

(∃ae ∈ Spacea)
(

CoordSys(a, ax, ay, az) ∧ P(e, ae, τt) ∧

signa,ax(ae) · δi(ae, (a, ax)) = τx ∧
signa,ay (ae) · δi(ae, (a, ay)) = τy ∧
signa,az (ae) · δ

i(ae, (a, az)) = τz

)
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Figure 5: A 2D illustration of the coordinatization process

0

x

y

0

ae

e

ax

ay

a′x

a′y

τ
t

=
a
e
(
e
)

a

−
2
τ
x

=
−

2
δ
i
(
a
′y
,
a
e
)

2
τ
y

=
2
δ
i
(
a
′ x
,
a
e
)

−τx

τy

3 Axiom system SClTh

AxReals The mathematical sort forms a real closed �eld, see [?]. mit hivatkozzunk?

(x+ y) + z = x+ (y + z)
∃0 x+ 0 = x
∃(−x) x+ (−x) = 0

x+ y = y + x

(x · y) · z = x · (y · z)
∃1 x · 1 = x
x 6= 0→ ∃x−1 x · x−1 = 1

x · y = y · x
x · (x+ y) = (x · y) + (x · z)

a ≤ b ∧ b ≤ a→ a = b
a ≤ b ∧ b ≤ c→ a ≤ c

¬a ≤ b→ b ≤ a

a ≤ b→ a+ c ≤ b+ c
a ≤ b ∧ 0 ≤ c→ a · c ≤ b · c

∃x(∀y ∈ ϕ)x ≤ y → ∃i(∀y ∈ ϕ)(i ≤ y ∧ ∀i′((∀y ∈ ϕ)(i′ ≤ y → i′ ≤ i))
(AxReals)

AxFull Every number occurs as a state of any clock in an event.

∀a∀x∃e P(e, a, x) (AxFull)

AxExt We do not distinguish between (1) indistinguishable clocks, (2) states
of a particular clock in an event and (3) two events where a clock shows the
same time.

(1) ∀a, a′
(
∀e∀x(P(e, a, x)↔ P(e, a′, x)

))
→ a = a′

(2) ∀e∀a∀x, y
(
P(e, a, x) ∧ P(e, a, y)

)
→ x = y

(3) ∀e, e′∀a∀x
(
P(e, a, x) ∧ P(e′, a, x)

)
→ e = e′

(AxExt)

AxForward Clocks are ticking forward.

∀a(∀e, e′ ∈ wlinea)
(
e ≺ e′ ↔ a(e) < a(e′)

)
(AxForward)
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AxSynchron All clocks occupying the same worldline (i.e., cohabitants) use the
same measure system, and for every clock, and delay, there is a cohabitant clock
with that delay.

∀a(∀b ≈ a)∃x(∀e ∈ wlinea) a(e) = b(e) + x

∀a∀x(∃b ≈ a)(∀e ∈ wlinea) a(e) = b(e) + x
(AxSynchron)

AxCausality Causality is transitive.

(e1 ≺ e2 ∧ e2 ≺ e3)→ e1 ≺ e3 (AxCausality)

AxCausality AxChronology

∀

∀

∃ ∀ ∃

∀

∀

AxChronology Interiors of two-way lightcones are �lled with clocks crossing
through the vertex.

(e1 � e2 ∧ e2 � e3 ∧ e3 � e4)→ e1 � e4 (AxChronology)

AxSecant Any two events that share a clock share an inertial clock as well.

e� e′ → (∃a ∈ In)(eEa ∧ e′Ea)) (AxSecant)

AxSecant AxPing

∃

∀

e′

e

∀e

∃e1

∃e2

a

AxInComoving

a b

∃e1

∃e2

∀e

x

x

x

AxInComoving If an inertial clock measures an other inertial clock with the
same distance twice, then they are comoving.(

a, b ∈ In ∧ (∃e1, e2 ∈ wlineb)(e1 6= e2 ∧ δi(a, e1) = δi(a, e2))
)
→ a

i

↑↑b
(AxInComoving)

AxPing Every inertial clock can send and receive a signal to any event.

(∀a ∈ In)∀e(∃e1, e2 ∈ wlinea) e1  =e  =e2 (AxPing)

AxRound

ea1

ec1eb1

ec2

ea2

ea3

ea4

eb2

eb3

=

=

AxRound Given comoving observers a, b and c, the travelling time of simultane-
ously sent signals on the route 〈a, b, c, a〉 and 〈a, c, b, a〉 are (the same, namely,)
the average of the travelling time of the 〈a, c, a〉 and 〈a, b, c, b, a〉.

b
i

↑↑a
i

↑↑c ∧

 ea1 , e
a
2 , e

a
3 , e

a
3
′, ea4 ∈ wlinea

eb1, e
b
2, e

b
3 ∈ wlineb

ec1, e
c
2 ∈ wlinec

 ∧


ea1  e
b
1  e

c
2  e

a
3

ea1  e
c
1  e

b
2  e

a
3
′

ec2  e
b
3  e

a
4

ec1  e
a
2

→
→
(
a(ea3) = a(ea3

′) =
a(ea2) + a(ea4)

2

)
(AxRound)

AxPasch

c

p

q

a1

∃a2

b1

∃b2

∃x1

∃x2

Figure 6: Tarski's In-
ner Pasch axiom

c

a

bp
q

∃x

AxPasch Pasch axiom for light signals, See Fig. 6.

(
a

i

↑↑b ∧ (∃a1 ∈ wlinea)(∃b1 ∈ wlineb)(
−−→cpa1 ∧

−−→
cqb1)

)
→

→ (∃x
i

↑↑a)(∃x1, x2 ∈ wlinex)(∃a2 ∈ wlinea)(∃b2 ∈ wlineb)(
−−−→
px2b2 ∧ −−−→qx1a2)

(AxPasch)
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Ax5Segment

eb

e1

e2

b

d

δd
e 1

δbe1

δbe2

δ
de

2

δ
bd

eb′

e′1

e′2

b′

d′

δd
e 1

δbe1

δbe2

δ
de

2

δ
bd

Figure 7: Tarski's Five-
segment axiom

II
I V

III

IV

a

d

cb

II
I V

III

IV

a′

d′

c′b′

Ax5Segment If there are two pairs of observers b,d and b′,d′ such that two light
signals e1  e2 and e′1  e

′
2 crosses the worldlines of b and b′, respectively, then

b and b′ agree on the distance of e2 and e2, respectively, whenever they agree
on the distance of e1 and d, e′1 and d′, respectively. Compare that axiom with
Tarski's Five-segment axiom on Fig. 7

d
i

↑↑d′ ∧ b
i

↑↑b′ ∧ ebEb ∧ e′bEb′ ∧ −−−−→e1ebe2 ∧
−−−−→
e′1e
′
be
′
2 ∧

∧ δi(b, e1) = δi(b′, e′1) ∧ δi(b, e2) = δi(b′, e′2) ∧
∧ δi(d, e1) = δi(d′, e′1) ∧ δi(b, d) = δi(b′, d′))→

→ δi(d, e2) = δi(d′, e′2) (Ax5Segment)

AxCircle

e1

e2

e3

a

b c
∃d

ea

eb

ed

e′d

ec

AxCircle For every three non-collinear inertial observer there is a fourth one
that measures them with the same distance.

(∀a, b, c ∈ In)
(
(a

i

↑↑b
i

↑↑c ∧
∧ ∃e1, e2, e3(e1Ea ∧ e2Eb ∧ e3Ec ∧ e1  e2  e3 ∧ ¬e1  e3))→
→ ∃d∃ea, eb, ec, ed, e′d(eaEa ∧ ebEb ∧ ecEc ∧ edEd ∧ e′dEd ∧

∧ ed  ea  e
′
d ∧ ed  eb  e

′
d ∧ ed  ec  e

′
d)
)

(AxCircle)

AxRays

e

ea

∃e1

e1
a

x
e

ea

∃e2

e2a

x

AxRays For every observer, for any positive x and every direction (given by
a light signal) there are lightlike separated events in the past and the future
whose distances are exactly x.

(∀x > 0)∀a∀e∃e1∃e2(∃ea, ea ∈ wlinea)

−−−→e2eae ∧ δi(a, e2) = x ∧
−−−→
eeae1 ∧ δi(a, e1) = x (AxRays)

AxDim≥n The dimension of the spacetime is at least n. The formula says that
n− 1 lightcones never intersect in only one event.

∀e1, . . . , en

 ∧
i≤n−1

ei  en → ∃en+1

 ∧
i≤n−1

ei  en ∧ en 6= en+1


(AxDim≥n)

AxDim≤n The dimension of the spacetime is at most n. The formula says that
there are n lightcones that intersect at most in one event.

∃e1, . . . , en+1

∧
i≤n

ei  en+1 ∧ ∀en+2

∧
i≤n

ei  en+2 → en+1 = en+2


(AxDim≤n)

AxDim=4

e1

e2

e3

e4

e5

e6

AxDim=4 The dimension of the spacetime is exactly 4; 3 lightcones never in-
tersect in only one event and there are 4 lightcones intersect in at most one
event.

AxDim≤ ∧AxDim≥ (AxDim=4)

10



AxTangent

∃
AxTangent For every event e of every clock a there is an inertial clock b that
occurs in e and its velocity is the same as the local instantaneous velocity of a
according to any inertial observer.

(AxTangent)

AxNoAcceleration Every clock is inertial.

∀a In(a) (AxNoAcceleration)

AxAcceleration For every coordinate system 〈a, ax, ay, az〉 and every de�nable
timelike curve ϕ there is a clock having that wordline according to 〈a, ax, ay, az〉.

(AxAcceleration)

De�nition 13 (Axiom systems). We (re)de�ne SClTh to be the following sets
of axioms.

SClTh
def
=


AxFull
AxExt
AxForward
AxSynchron

AxCausality
AxChronology
AxSecant
AxInComoving

AxRays
AxPing
AxRound
AxPasch

Ax5Segment
AxCircle
AxDim=4
AxTangent


SClThNoAcc def

= (SClTh− {AxSecant, AxTangent}) ∪ {AxNoAcceleration}

SClThAcc def
= SClTh ∪ {AxAcceleration}

3.1 Theorems

Our plan is the following:

1. Kronheimer-Penrose axioms: We are working with causal spaces.

2. Signalling (radar-distance) is unique.

3. AxLocExp:For every observer, there is a point (local iscm) in every event.
That is equiderivable with AxInComoving.

4. There is a clock in every event (Immediate)

5. Straight signals arrive sooner.

6.
syn

↑↑ is an equivalence relation and δi is a metric on
syn

↑↑-related clocks.

7. There are no two iscms/points in an event.

8. `Equivalence' of −−−−→eaebec and B(a, b, c).

9. Tarski's axioms.

10. Coordinatization is a bijection between W and Q4.

11. Radar-based spatial distance and elapsed time de�nes the same quantities
as coordinate based de�nition. (Simplifying the coordinate-system based
SpecRel axioms)

11



12. Proving `Simple-SpecRel'.

Proposition 3. 〈W,�,�,  =〉 is a causal space (see [Kronheimer and Penrose
1967]), i.e., the following statements are all true: Assumptions:

AxForward
AxCausality
AxChronology

e � e
(e1 � e2 ∧ e2 � e3)→ e1 � e3

(e1 � e2 ∧ e2 � e1)→ e1 = e2

¬e� e
e1 � e2 → e1 � e2

(e1 � e2 ∧ e2 � e3)→ e1 � e3

(e1 � e2 ∧ e2 � e3)→ e1 � e3

e1  =e2 ↔ (e1 � e2 ∧ ¬e1 � e2)

And the following statements are also hold:

¬e ≺ e (1)

(e1 ≺ e2 ∧ e2 � e3)→ e1 � e3 (2)

(e1 � e2 ∧ e2 ≺ e3)→ e1 � e3 (3)

Proof. All the de�ning properties of the causal spaces are straightforward con-
sequences of AxCausality, (1), (2) and (3) or true simply by the de�nitions of �,
� and  =.

• (1) comes from AxForward; e ≺ e would lead to a(e) < a(e).

• (2): is AxChronology where e1 6= e2 and e3 = e4.

• (3): is AxChronology where e1 = e2 and e3 6= e4.

�
Assumptions:

AxChronologyProposition 4. Signalling is unique:

∀e∀a(∀ea, e′a ∈ wlinea)(ea  e ∧ e
′
a  e)→ ea = e′a

∀e∀a(∀ea, ea′ ∈ wlinea)(e  e
a ∧ e  e

a′)→ ea = ea′

Proof. Suppose that ea 6= e′a but ea  e ∧ e
′
a  e and ea, e

′
a ∈ wlinea. Then by

de�nition ea � e′a or ea � e′a. By AxChronology, ea � e or e′a � e which
contradicts to the assumption. The proof is similar for the symmetrical formula
as well. �

The following theorem is equiderivable with AxInComoving above SClTh.

Proposition 5 (AxLocExp). For every inertial observer, there is a synchro-
nized inertial observer (i.e., a point) in any event. Assumptions:

Proposition 3
AxPing
AxRays
AxSecant

(∀a ∈ In)∀e∃b eEb ∧ a
syn

↑↑b (AxLocExp)

a

e

ea

P
in
g

e0

e0a

eb

R
ay

P
ing

R
ay

(2
)

(3
)

S
e
c
a
n
t

δi(a, e)

δi(a, e)

Proof. Let a ∈ In and e be arbitrary. If e ∈ wlinea then we are ready. Suppose
now that e /∈ wlinea. By AxPing, there are ea, e

a ∈ wlinea s.t. ea  e  e
a. Let

x
def
= a(ea)−a(ea). Note that δi(a, e) = x is true. By AxCausality and AxForward

and by the assumption that e /∈ wlinea, this x is strictly positive. By AxRays,

12



there is an e0 s.t. e0 is 1 distance away from a and −−−→e0eae. By AxPing, there is
an e0a ∈ wlinea s.t. e0a  e0. By AxRays again, there is an event eb s.t.

−−−−→ebe0ae0

and δi(a, eb) = x. Since eb  e0a � ea  e, by AxChronology we have eb � e. By
AxSecant, there is an inertial clock b through eb and e. Now since both a and

b are inertial and δi(a, eb) = x and δi(a, e) = x, by AxInComoving, a
i

↑↑b, and
by AxSynchron again, there is an a-synchronized b′ cohabitant of b here as well;
that is the clock having delay x. �

Proposition 6. There is a clock in every event. Assumptions:

AxFull
AxSecant
Proposition 5

∀e∃c eEc

Proof. Let e be an arbitrary event. There is a clock a in some event e0 by AxFull
(and by the tautology ∃a a = a). By AxSecant, there is an inertial clock at e0 as
well. By Proposition 5, there is an inertial comover of a at e. �

Assumptions:

AxFull
AxSecant
Proposition 5
AxExt

Corollary 7. The pointing relation P is a surjective function P : C×U →W .

Proof. It is a function by Proposition AxExt, and is surjective by 6. �

Assumptions:

AxPing
Proposition 8. δi(a, e) = τ is a total function.

Proof. This is true by AxPing: Since every observer can ping an event, it is
always de�ned, and functionality comes from Proposition 4. �

Proposition 9. δi(a, a′) = τ is a partial function.

Proof. It is a partial function by de�nition. �

Proposition 10. Straight signals arrive sooner: Assumptions:

AxPing
AxCausality
AxChronology
AxForward

e1

e2

e′

e

e1

e2

e′

e

∀a∀e1, e2, e, e
′(eEa ∧ e′Ea ∧ e1  =e ∧ e1  =e2  =e

′)→ a(e) ≤ a(e′) (4)

∀a∀e1, e2, e, e
′(eEa ∧ e′Ea ∧ e′  =e2 ∧ e  =e1  =e2)→ a(e) ≤ a(e′) (5)

Indirect proof

e1 e2

e′

e

e1 e2

e′

e

Proof. • For (4) suppose indirectly that a(e) > a(e′). Then by AxForward,
e � e′, and since they share the clock a, e′ � e. If e2 = e1 or e2 = e′ then
by AxPing, e = e′ or e = e′ which contradicts to e � e′. So we have the
chain

e1  e2  e
′ � e

This implies e2 � e′, and by AxCausality, e1 � e′. From (2) we have that
(1) e2 � e and then (2) e1 � e which contradicts to e1  e.

• For (5) suppose indirectly that a(e′) < a(e). Then by AxForward, e′ ≺ e,
and since they share the clock a, e′ � e. If e1 = e or e1 = e2 then by
AxPing, e = e′ or e = e′ which contradicts to e′ ≺ e. So we have the chain

e′ � e  e1  e2

This implies e ≺ e1, and by AxCausality, e′ � e1. From (3) we have that
(1) e′ � e1, and then (2) e′ � e2, which contradicts to e′  e2.

�
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Figure 8: Proof of (8) and (12).

a2

a1

e1

e2

e′1

e′2 a1(e1) + δi(a1, a2)

a1(e1)− δi(a1, a2)

a1(e1)− 2δi(a1, a2)

a1(e1)

Proposition 11.
syn

↑↑ is an equivalence relation and δi is a(n U -relative) metric

on
syn

↑↑ related clocks, i.e., Assumptions:

AxPing
AxExt
AxRound
AxForward
AxCausality
AxChronology
Proposition 5

(6)

a
syn

↑↑a (7)

a1

syn

↑↑a2 ⇒ a2

syn

↑↑a1 (8)

a1

syn

↑↑a2 ∧ a2

syn

↑↑a3 ⇒ a1

syn

↑↑a3 (9)

δi(a, a) = 0 (10)

δi(a1, a2) = 0⇒ a1 = a2 (11)

δi(a1, a2) = δi(a2, a1) (12)

δi(a1, a2) + δi(a2, a3) ≥ δi(a1, a3) (13)

Proof. • Self-distance, proof of (10): By e  =e  =e we have δ
i(a, e) = a(e)−

a(e) = 0. The truth of δi(a, a) = 0 is trivially implied by that fact.

• Re�exivity of
syn

↑↑, proof of (7): By (10) we have a(e′) = a(e)+0 whenever

e  =e
′, so

syn

↑↑ is re�exive.

• Symmetry of
syn

↑↑ and δi, proofs of (8) and (12), see Fig. 8. Suppose that

a1

syn

↑↑a2, i.e.,

a2(e2) = a1(e1) + δi(a1, a2) whenever e1  =e2. (14)

Take an arbitrary event e′1Ea1 s.t e2Ea2 and e2  =e
′
1. We have to show

that a1(e′1) = a2(e2) + δ(a2, a1). By AxPing, there is an e′2Ea2 such that
e2  =e

′
1  =e

′
2. By (14), we have that a2(e′2) = a1(e′1) + δi(a1, a2). Also from

AxPing we know that there is e1Ea1 s.t. e1  =e2  e
′
1. Here by de�nition of

δi, a1(e1) = a1(e′1) − 2δi(a1, a2), therefore, by (14) again we have that
a2(e2) = a1(e′1)− δi(a1, a2). Therefore we showed

a2(e2) + δi(a1, a2) = a1(e′1).

14



Figure 9: Transitivity of
syn

↑↑.

a1

a2

a3

x

a3(e3)

x+ δ12

x+ δ12 + δ23

τ

x+ 2δ13

x+ 2δ13 − δ12

x+ 2δ13 − δ12 − δ13

τ

a3(e3) + δ12 + δ23

a3(e3) + δ23

τ

x+ 2δ12 + 2δ23

τ

x+ δ12 + 2δ23

Abbreviations:

x
def
= p(e1, a1)

δij
def
= δi(ai, aj) route(a1, a2, a1)

route(a1, a2, a3, a1)
route(a1, a3, a2, a1)
route(a1, a2, a3, a2, a1)

Note that here δi(a1, a2) = δi(a2, a1) since δi(a2, a1) = a2(e′2)− a2(e2) =
δi(a1, a2), so we are ready with both (8) and (12).

• Identity of indiscernibles, proof of 11. Take arbitrary iscm's a1 and a2

for which δi(a1, a2) = 0, i.e.,

(∀e ∈ wlinea2)(∃w1, w2 ∈ wlinea1)w1  =e  =w2 ∧ a1(w2)− a1(w2) = 0

but that means that a1(w1) = a1(w2), and by AxExt, w1 = w2. It cannot be
the case that w1  e and e  w2 = w1, because by AxCausality we would have
w1 ≺ w1 which contradicts to the irre�exivity of ≺ (Prop. 3). It cannot
be the case either that w1 = e  w2 or w2 = e  w1, since we know that w1

and w2 share the clock a. So the only possiblity is that w1 = e = w2. Since
this is true for all e ∈ wlinea2 , we have that wlinea2 ⊆ wlinea1 . Using (12)
we have that wlinea2 = wlinea1 . Now since a1 and a2 are iscms, they show
the same numbers in the same events, therefore a1 = a2 by AxExt.

• Transitivity of
syn

↑↑, proof of (9): We start to circuit signals between a1,
a2 and a3 and track the time tags, see Fig. 9 Following the abbreviation of
Fig. 9, we have to show that a3(e3) = x+ d13. To show that, it is enough
to show that a3(e3) is the average of x+d12 +d23 and x+2d13−d12−d23,
i.e., to show that a3 measures the same elapsed time between them. Since
we can project these distances along a2 to a1 by our assumption that

a1

syn

↑↑a2

syn

↑↑a3, it is enough to show that a3(e3) + d12 + d23 is the average of
x+ 2d12 + 2d23 and x+ 2d13. But this is true by AxRound.
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Figure 10: `Equivalence' of lightlike betweenness and triangle equality

a b c

ea

eb
ec

st
ra
ig
ht
sig
na
ls

ar
riv
e
so
on
er

e′c

AxRound + assumption

x+ 2d13

x+ 2d12 + 2d23

• Triangle inequality, proof of (13): By AxPing, we can take e1 ∈ wlinea1 ,
e2 ∈ wlinea2 , e3, e

∗
3 ∈ wlinea3 s.t. e1  =e2  =e3 and e1  e

∗
3. Since all clocks

are iscm's of each other by (7)-(8)-(9), we have that

a3(e3) = a1(e1) + δi(a1, a2) + δi(a2, a3)

a3(e∗3) = a1(e1) + δi(a1, a3)

Proposition 10 says that a(e∗3) ≤ a(e3), so

a1(e1) + δi(a1, a3) ≤ a1(e1) + δi(a1, a2) + δi(a2, a3)

which can be simpli�ed to (13).
�

Proposition 12. For any three distinct inertial comovers a, b and c, the clock
b is between a and c i� a can send a light signal to c through b. Assumptions:

AxExt
??

AxChronology
Proposition 10
Proposition 4

∀a0(∀a, b, c ∈ Spacea0
)

a 6= b 6= c ∧ B(a, b, c)↔ ∃ea, eb, ec(eaEa ∧ ebEb ∧ ecEc ∧ −−−−→eaebec)

Proof. ⇐: Since we have iscm observers, and of course by AxExt, we have

c(ec) = a(ea) + δi(a, b) + δi(a, c) by ea  eb  ec
= a(ea) + δi(a, c) by ea  ec

therefore δi(a, b) + δi(b, c) = δi(a, c).
The⇒ comes from the idea of the unique signalling Thm. 4; the assumption

that there is no −−−−→eaebec while δi(a, b) + δi(b, c) = δi(a, c) leads to forbidden
triangles as it is depicted on Fig. 10

�
Assumptions:

(10)
(11)
(9)

Proposition 13. No clock has two di�erent inertial synchronized comovers at
the same event.

(∀a ∈ In)∀e(∀a1, a2 ∈ De) a1

syn

↑↑a
syn

↑↑a2 ⇒ a1 = a2 (15)
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Proof. Let e ∈ wlinea1 ∩wlinea2 be arbitrary but �xed. Let a1 and a2 be inertial

comovers of a occurring at e. By (9), a1

syn

↑↑a2. By the proof of (10) we know

that δi(a1, e) = δi(a2, e) = 0. Since a1

syn

↑↑a2 implies comovement, i.e., constant
distance, δi(a1, a2) = 0. By (11), a1 = a2. �

3.2 Geometry

To treat the sets Spacea as n dimensional Euclidean spaces we have two prove
that they satisfy the (�rst-order) axioms of Euclidean geometry. We will use
the axiom system of Tarski and Givant [1999]. Let ∀EGn denote the set of the
universal closures of the axioms of the n dimensional elementary geometry of
Tarski and Givant [1999, p. 190.], i.e., the axioms 1 � 7, 8n, 9n and 102

2, see
Table 1.

Let ξ be variable mapping that maps every variable of the language of ∀EG
to a clock variable other than a0, and let Tξ be the following translation of the
language of ∀EGn to the language of SClTh:

Tξ(a = b)
def
= ξ(a) = ξ(b)

Tξ(B(abc))
def
= δi(ξ(a), ξ(b)) + δi(ξ(b), ξ(c)) = δi(ξ(a), ξ(c))

Tξ(ab ≡ cd)
def
= δi(ξ(a), ξ(b)) = δi(ξ(c), ξ(d))

Tξ(¬ϕ)
def
= ¬Tξ(ϕ)

Tξ(ϕ ∧ ψ)
def
= Tξ(ϕ) ∧ T(ψ)

Tξ(∀aϕ)
def
= (∀ξ(a) ∈ Spacea0)Tξ(ϕ)

Now under the Tarski axioms for n-dimensional space of inertial clocks we
understand the following set of statements

(AxGeom) {∀a0Tξ(ϕ) : ϕ ∈ ∀EGn}

Now we prove (AxGeom) to show that SpaceMα is an Euclidean space for all
α ∈ C.

Corollary 14 (Axiom 1.). Re�exivity axiom for equidistance. Assumptions:

(12)

∀a0(∀a, b ∈ Spacea0) ab ≡ ba

Proof. That comes from the symmetry of δi, i.e., from (12). �

Corollary 15 (Axiom 2.). Transitivity of equidistance. Assumptions:

Proposition 8

∀a0(∀a, b, c, d, e, f ∈ Spacea0) (ab ≡ cd ∧ ab ≡ fe)→ cd ≡ ef

Proof. By Proposition 8 this is just the consequence of the transitivity of =. �

Corollary 16 (Axiom 3.). Identity axiom for equidistance. Assumptions:

Proposition 11

∀a0(∀abc ∈ Spacea0) (ab ≡ cc→ a = b)

Proof. δi(a3, a3) = 0 = δi(a1, a2) which implies a1 = a2 according the identity
of indiscernibles provided by Proposition 11. �
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Table 1: Tarski's 11 axioms of elementary geometry
1. ab ≡ ba (Re�exivity for ≡)

2. (ab ≡ pq ∧ ab ≡ rs)→ pq ≡ rs (Transitivity for ≡)

3. ab ≡ cc→ a = b (Identity for ≡)

4. ∃x(B(qax) ∧ ax ≡ bc) (Segment Construction)

5. (a 6= b ∧B(abc) ∧B(a′b′c′) ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧

xxxxxx ∧ ad ≡ a′d′ ∧ bd ≡ b′d′)→ cd ≡ c′d′ (Five-segment)

6. B(aba)→ a = b (Identity for B)

7. (B(apc) ∧B(bqc))→ ∃x(B(pxb) ∧B(qxa)) (Pasch)

8n. ∃a, b, c, p1, . . . pn−1

( ∧
i<j<n

pi 6= pj∧
∧

1<i<n

(ap1 ≡ api∧bp1 ≡ bpi∧cp1 ≡ cpi)∧

xxxxxx ∧ ¬(B(abc) ∨B(bca) ∨B(cab))

)
(Lower n-dimension)

9n.

( ∧
i<j<n

pi 6= pj ∧
∧

1<i<n

(ap1 ≡ api ∧ bp1 ≡ bpi ∧ cp1 ≡ cpi)

)
→

xxxxxx → (B(abc) ∨B(bca) ∨B(cab)) (Upper n-dimension)

102. B(abc) ∨B(bca) ∨B(cab) ∨ ∃x(ax ≡ bx ∧ ax ≡ cx) (Circumscribed tr.)

11. ∃a∀x, y(α ∧ β → B(axy))→ ∃b∀x, y(α ∧ β → B(aby)) (Continuity scheme)

where α and β are �rst-order formulas, the �rst of which does not contain any
free occurrences of a, b and y and the second any free occurrences of a, b, x.
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Corollary 17 (Axiom 4.). Axiom of segment construction. Assumptions:

AxPing
AxRays
Proposition 5

∀a0(∀a, b, c, q ∈ Spacea0)(∃x ∈ Spacea0) (bc ≡ ax ∧ B(q, a, x))

=

=

b

c

q a xProof. Let eqEq be arbitrary but �xed. By AxPing, there is an eaEa. s.t. ea  eq.
By AxRays there is an ex for which −−−−→edeaeq and δ

i(a, ex) = δi(b, c). Proposition 5
then provides the desired iscm x in ex. �

Corollary 18 (Axiom 5.). Five-segment axiom. Assumptions:

AxPing
Proposition 12
Ax5Segment∀a0(∀a, a′, b, b′, c, c′, d, d′ ∈ Spacea0)

(a 6= b ∧ B(a, b, c) ∧ B(a′, b′, c′) ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧
∧ ad ≡ a′d′ ∧ bd ≡ b′d′)→ cd ≡ c′d′

Proof. Suppose that we have the inertial comovers a, b, c, d, a′, b′, c′, d′ with the
properties described by the premise. By AxPing, b can ping a and c and b′

can ping a′ and c′ s.t. the receiving event of the ping of a is the same as the
sending event of the ping of c. By the equivalence of betweenness' provided by
Proposition 12, all these events are on a lightline, therefore they satis�es the
conditions of Ax5Segment, which provide the conclusion that δi(c, d) = δi(c′, d′).

�

Corollary 19 (Axiom 6.). Identity axiom for betweenness. Assumptions:

Proposition 11

(∀a, b ∈ Spacea0)
(
B(a, b, a)→ a = b

)
Proof. δi(a, b) + δi(b, a) = δi(a, a) = 0 and the fact that δi(a, b) ≥ 0 implies
that δi(a, b) = 0. By the identity of indiscernibles provided by Proposition 11,
a = b. �

Corollary 20 (Axiom 7.). Inner form of the Pasch axiom. Assumptions:

AxPing
Proposition 12
AxPasch∀a0(∀a, b, c, p, q ∈ Spacea0)

(
(B(a, p, c) ∧ B(b, q, c))→

→ (∃d ∈ Spacea0)(B(p, d, b) ∧ B(q, d, a))
)

Proof. Suppose that a, b, c, p, q satis�es the premise. Then by AxPing a and b
can ping an event of c in a way that these light signals will cross the wordline
of p and q (the latter is provided by Proposition 12). Now AxPasch provides the
existence of the desired clock x. �

Corollary 21 (Axiom 8n.). Lower n-dimensional axiom: under construction

Proof. under construction �

Corollary 22 (Axiom 9n.). Upper n-dimensional axiom: under construction

Proof. under construction �

Corollary 23 (Axiom 102.). Every triangle can be circumscribed: Assumptions:

Proposition 12, AxCircle

B(a, b, c) ∨ B(b, c, a) ∨ B(c, a, b) ∨ ∃x(ax ≡ bx ∧ ax ≡ cx)

2Here we used some results of ? and ?: we used axioms 7, 6 and 102 instead of 71, 15 and

102, respectively.
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Proof. It is enough to prove that ∃x(ax ≡ bx ∧ ax ≡ cx) whenever B(a, b, c) ∨
B(b, c, a)∨B(c, a, b) is false. Suppose that this is false. Then by Proposition 12,
they a, b and c can not be connected with a lightline. Therefore by AxCircle,
there is an x s.t. this x has the same signalling distance from a, b and c, and
that is what we needed. �

Corollary 24 (Axiom 11.). Tarski's axiom scheme of continuity (p.185.) Assumptions:

AxReals

∀a0(∃a ∈ Spacea0)(∀c, d ∈ Spacea0)(ϕ(c) ∧ ψ(d)→ B(a, c, d))→
→ (∃b ∈ Spacea0)(∀c, d ∈ Spacea0)(ϕ(c) ∧ ψ(d)→ B(c, b, d))

Proof. This comes from the continuity (or in�mum-supremum) scheme of the
real closed �elds: The transition of that scheme to events is granted by AxRays,
and the existence of the speci�c point through the event is granted by Proposi-
tion 5. �

3.3 Coordinatization

Theorem 25 (Coordinatization). For arbitrary coordinatesystem, the coordi-
natization function is a bijection between W and U4. In other words, given an
arbitrary but �xed coordinate system, the following statements are true:

Totality Every event is coordinatized with a 4-tuple.

Surjectivity Every 4-tuple is a coordinate of an event.

Functionality No event has two di�erent coordinates.

Injectivity No 4-tuple is a coordinatization of 2 di�erent events.

Proof. Let a, ax, ay, az be an arbitrary but �xed coordinate system.

Totality Every event is coordinatized with a 4-tuple. Let e be an arbitrary
event. By Proposition 5, we have a synchronized comover ae of a in e. Then
by de�nition, ae(e) will be the time coordinate. We can use Tarski's axioms
to conclude that there are (unique) a′x, a

′
y and a′z that are projections of the

point ae to the lines (a, ax), (a, ay) and (a, az), respectively. By (AxPing), these
projections can ping ae, i.e., they can measure the spatial distance between them
and ae (and e), and thus we will have the spatial coordinates of e as well.

Surjectivity Every 4-tuple is a coordinate of an event. Let (t, x, y, z) be an
arbitrary 4-tuple. It follows from Tarski's axioms that there are planes there
are inertial comovers a′x, a

′
y and a′z of a on the axes (a, ax), (a, ay) and (a, az),

respectively, such that δi(a, ax) = x, δi(a, ay) = y and δi(a, at) = t. For all
i ∈ {x, y, z} Let Pi denote the plane that contains a′i and is orthogonal to the
line (a, ai). Then by Tarski's axioms, these planes has one (unique) intersection,
ae. By the de�nition of the Coord, any event of wlineae are coordinatized on
the spatial coordinates (x, y, z). Now we know from (??) that there is an event
e of wlineae such that a(e) = t.

Functionality No event has two di�erent coordinates. In the proof of Totality,
ae is unique by Proposition 13. After that, as we noted above, Tarki's axioms
provided the uniqueness of the projections as well, and this is enough for the
uniqueness of the coordinates.
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Injectivity No 4-tuple is a coordinate of 2 di�erent events. From the proof of
surjectivity we saw that ae was unique. But for a given t, the e is also unique
by (??). �

3.4 Simplifying SpecRel

Note that a lot of physical quantities can be de�ned without referring to coor-
dinate systems. Spatial distance, elapsed time and speed are nice examples of
that. Here we are going to de�ne these concepts and prove that they are indeed
equivalent with the usual spacetime diagram-based de�nitions. These proofs will
allow to identify the monstrous axioms of SpecRel with the lightweight propo-
sitions what we will call �Simple-SpecRel� in Section ??.

De�nition 14 (spatial distance). We say that the spatial distance between
events e and e′ according to an inertial clock a is τ i�

sda(e, e′) = τ
def⇔ (∃a′ ∈ Spacea)(a ∈ De ∧ δi(a, e′) = τ)

Proposition 26. sda(, ) is a total function for all a.

Proof. There is such a′ by Proposition 5, and this a′ is unique by Proposition 13.
�

Proposition 27. The spacetime diagram-based de�nition of spatial distance
and our de�nition are the same.

sda(e, e′) = τ ⇐⇒ (∃〈ax, ay, az〉 ∈ CoordSys(a))∃~x~y
Coorda,ax,ay,az (e) = ~x ∧ Coorda,ax,ay,az (e

′) = ~y ∧ τ = |~x2−4 − ~y2−4|

Proof. By Tarski's axioms of geometry, this is just Pythagoras's theorem:3

δi(ae, ae′)
2 = δi(ae, b)

2 + δi(b, ae′)
2

where b ∈ Spacea is a clock with which

Ort(a′x, a, b) ∧Ort(a′y, a, b) ∧Ort(a′z, a, b)

where a′x, a
′
y, a

′
z, are the projections of ae to the axes of the coordinate system

(See Fig. 5). �

De�nition 15 (elapsed time). We say that the elapsed time between events e
and e′ according to an inertial clock a is τ i�

eta(e, e′) = τ
def⇔ (∃b, b′ ∈ Spacea) |b(e)− b′(e′)| = τ

Proposition 28. eta(, ) is a total function for all a.

Proof. That is true by the same reasons as Proposition 26. �

Proposition 29. The spacetime diagram-based de�nition of elapsed time and
our de�nition are the same.

eta(e, e′) = τ ⇐⇒ (∃〈ax, ay, az〉 ∈ CoordSys(a))∃~x, ~y
Coorda,ax,ay,az (e) = ~x ∧ Coorda,ax,ay,az (e

′) = ~y ∧ τ = |~x1 − ~y1|
3
under construction
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Proof. The clocks that measures the time in the events are the same in both
de�nitions by Proposition 13, so practically, both formula refer to the same
measurement. �

De�nition 16 (speed). Speed is de�ned using the standard v = ∆s
∆t formula:

va(e, e′)
def
=

sda(e, e′)

eta(e, e′)

3.5 Proving `Simple-SpecRel'

The following theorems are important because of their resemblance to the ax-
ioms of SpecRelComp.

During the proofs we follow the notation of the de�nition of coordinatization
predicate, e.g., we always refer to the inertial synchronized co-mover a that
witness the event e by ae.

Proposition 30 (Simple-AxSelf).

∀a(∀e ∈ wlinea)(∀〈ax, ay, az〉 ∈ CoordSys(a))∃t Coorda,ax,ay,az (e) = (t, 0, 0, 0)

(Note that t here is exactly a(e).)

Proof. No matter how we choose ax, ay or az, the clock ae can be chosen to be
a itself, since e ∈ wlinea. Since a is on all the axes (a, ax), (a, ay), (a, az), the
distance of a from these lines are all 0, and a(e) will be t. �

Proposition 31 (Simple-AxPh).

(∀a ∈ In)∀e, e′ (va(e, e′) = 1↔ e  e
′)

Proof. The ← direction is trivial by the de�nition of sd(, ) and et(, ); they
produce the same number for lightlike related events. For the other direction, if
va(e, e′) = 1, then take an iscm a′ into e′. This a′ can ping e′, so there will be
an event e′′ on wlinea′ such that e  e

′′. By 4, e′ = e′′. �

Proposition 32 (Simple-AxEv).

∀e(∀〈a, ax, ay, az〉, 〈a′, a′x, a′y, a′z〉 ∈ CoordSys)

∃~x Coorda,ax,ay,az (e) = ~x→ ∃~y Coorda′,a′x,a′y,a′z (e) = ~y

Proof. That is true by the totality of coordinatization, i.e., by Proposition 25.
�

Proposition 33 (Simple-AxSym).

(∀a, a′ ∈ In)∀e, e′ (eta(e, e′) = eta′(e, e
′) = 0→ sda(e, e′) = sda′(e, e

′))

Proof. Here the local experimenters of a and a′ coincide by Proposition 13. �

Proposition 34 (Simple-AxThExp).

∀a∀e, e′ (va(e, e′) < 1→ (∃a′ ∈ In)e, e′ ∈ wlinea′)

Proof. From AxPing, Propositions 5 and 4 and from the premise we have that
there is an event e′′  =e and a clock ae′ ∈ De′ ∩ De′′ . Now this event is in the
chronological future of the causal future of e, so by AxChronology, it is in the
chronological future of e as well. AxSecant then provides the existence of the
desired inertial clock. �
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4 Geodetic-Inertial equivalence

De�nition 17 (Geodetic). Geodetic clocks are the fastest clocks between any
two events on their worldline.

Geo(a)
def⇔ (∀e, e′ ∈ wlinea)(∀b ∈ De ∩De′)|a(e)− a(e′)| ≥ |b(e)− b(e′)|

under construction
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5 Appendix: De�nitional Equivalence of SClThNoAcc

and SpecRelComp

5.1 Language of SpecRelComp

De�nition 18 (Language of SpecRelComp).

• Body sort:

� Body variables: b1, b2, · · · ∈ BV ar
� Body predicates: Ob, IOb,Ph

• Mathematical sort:

� Mathematical variables: x, y, z, · · · ∈MV ar

� Mathematical functions: +, ·
� Mathematical predicate: ≤

• Connection between sorts:

� Intersort predicate: W

• Mathematical terms:

τ ::= x | r | τ1 + τ2 | τ1 · τ2

• Formulas:

ϕ ::= b = b′ | τ1 = τ2 | τ1 ≤ τ2
Ob(b) | IOb(b) | Ph(b) | W(b, b′, τt, τx, τy, τz)

¬ϕ | ϕ ∧ ψ | ∃bϕ | ∃xϕ

5.2 Axioms of SpecRelComp

under constructionFor axioms and models of SpecRelComp of the axiom system
SpecRel∪Comp see [Andréka et al. 2007]. (Note that the language of that paper
contains one more sort for events. This, however, is de�nable, for more details
on that see [Andréka et al. 2001], or, since we have to de�ne it anyway to prove
the de�nitional equivalence with SClTh, see the proof of Thm. 35 on p. 25.

5.3 De�nitional equivalence with SpecRelComp

5.3.1 Plan

Theorem 35. SpecRelComp and SClTh are de�nitionally equivalent, i.e., there
are translations

STCξ : LSpecRelComp → LSClTh

CTSζ : LSClTh → LSpecRelComp

and model-transformations

stc : Mod(SpecRelComp)→ Mod(SClTh)
cts : Mod(SClTh)→ Mod(SpecRelComp)

24



and assignment transformations fρ and g% such that the followings hold for
all Ms ∈ Mod(SpecRelComp) and Mc ∈ Mod(SClTh) and for any ϕs ∈
LSpecRelComp, ϕc ∈ LSClTh:

stc(Ms) |= ϕc [η] ⇐⇒ Ms |= CTSξ(ϕc)[fρ(η)] (16)

Mc |= STCζ(ϕs)[g%(µ)] ⇐⇒ cts(Mc) |= ϕs [µ] (17)

SClTh ` ϕc =⇒ SpecRelComp ` CTSξ(ϕc) (18)

SpecRelComp ` ϕs =⇒ SClTh ` STCζ(ϕs) (19)

Proof. 1. De�nition of stc. Let

Ms =
(
B, IObMs ,PhMs ,Q,WMs

)
be an arbitrary but �xed model of SpecRel. We will introduce the trans-
formation stc : Mod(SpecRel) → Mod(CTh), i.e., we will construct the
corresponding CTh model stc(M) from the information that M contains.
Such a CTh model will be given as

stc(Ms)
def
=
(

stcW (Ms), stc≺(Ms), IObMs ,Q, stcP(Ms)
)

where the three unde�ned entity are the domain of events, the causality
relation and the meaning of the pointing relation, respectively.

(a) The event domain stcW (Ms). The idea is that an event will be
identi�ed as the set of bodies occurring there. To express the word
`there' in SpecRelComp, we have to use the worldview predicate W
with parameters. To name the elements of the universe of the de�ned
sort, we will use sets de�ned with 5 parameters:

evo,t,x,y,z
def
= {b ∈ B : (o, b, t, x, y, z) ∈WMs}

But we know that the same event can occur in di�erent observers'
di�erent coordinate points. So we factorize over that set with the
following equivalence relation.

〈o1, t1, x1, y1, z1〉
e' 〈o2, t2, x2, y2, z2〉

def⇔ wMs
o1o2(t1, x1, y1, z1) = (t2, x2, y2, z2)

Where wMs is the meaning of the worldview transformation de�ned
in SpecRelComp. Now we are ready to de�ne the universe of stc(Ms):

stcW (Ms)
def
= {〈o, t, x, y, z〉/ e' : o ∈ IObMs ∧ t, x, y, z ∈ Q}

(b) The causality relation stc≺(Ms) We use the usual de�nition of
Minkowski distance, which is easily de�nable in SpecRelComp

µ(~x, ~y)
def⇔ (~x1 − ~y1)2 − (~x2 − ~y2)2 − (~x3 − ~y3)2 − (~x4 − ~y4)2

stc≺(Ms)
def
=
{
〈(o, ~x)/

e', (o′, ~x′)/ e'〉 ∈ stcW (Ms)
2 :

µMs(wMs

oo′ (~x), ~x′) ≥ 0 and
(
wMs

oo′ (~x)
)

1
< ~x′1

}
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(c) Meaning of pointing stcP(Ms) Pointing statements comes straight
from the worldview-transformation:

stcP(Ms)
def
=
{
〈(o, t, x, y, z)/', o′, t′〉 : wMs

oo′ (t, x, y, z) = (t′, 0, 0, 0)
}

2. De�nition of ξ. Note that to quantify over stcW (Ms), it is enough if
we can quantify over the representants, i.e., over IOb × Q4. But to do
so, we'll need variables. For mathematical variables we map mathematical
variables, for event variable e, we map a 5-tuples of di�erent variables
(b, xt, xx, xy, xz) ∈ V arb×V ar4

m, and for clock variable c we body variables
b ∈ V arb in a way that no variable will be the representative of two
di�erent variables4:

ξ :
xi 7→ x5i

ai 7→ b2i
ei 7→ 〈b2i+1, x5i+1, x5i+2, x5i+3, x5i+4〉

For mathematical terms we de�ne ξ̂ to be the induced substitution based
on ξ:

ξ̂(x)
def
= ξ(x)

ξ̂(τ + τ ′)
def
= ξ̂(τ) + ξ̂(τ ′)

ξ̂(τ · τ ′) def
= ξ̂(τ) · ξ̂(τ ′)

3. De�nition of CTSξ

CTSξ(e = e′)
def
= wξ1(e)ξ1(e′)(ξ2−5(e)) = ξ2−5(e′)

CTSξ(e ≺ e′)
def
= µ

(
wξ1(e)ξ1(e′)

(
ξ2−5(e)

)
, ξ2−5(e′)

)
≥ 0 ∧

∧ wξ1(e)ξ1(e′)(ξ2−5(e)) 6= ξ2−5(e′)

CTSξ(τ = τ ′)
def
= ξ̂(τ) = ξ̂(τ ′)

CTSξ(τ ≤ τ ′)
def
= ξ̂(τ) ≤ ξ̂(τ ′)

CTSξ(P(e, a, τ))
def
= wξ1(e)ξ(a)(ξ2−5(e)) = (ξ̂(τ), 0, 0, 0)

CTSξ(¬ϕ)
def
= ¬CTSξ(ϕ)

CTSξ(ϕ ∧ ψ)
def
= CTSξ(ϕ) ∧ CTSξ(ψ)

CTSξ(∃eϕ)
def
= ∃ξ1(e)∃ξ2(e)∃ξ3(e)∃ξ4(e)∃ξ5(e)CTSξ(ϕ)

CTSξ(∃aϕ)
def
= ∃ξ(a)

(
IOb(v(a)) ∧ CTSξ(ϕ)

)
CTSξ(∃xϕ)

def
= ∃ξ(x)CTSξ(ϕ)

4The latter is an important constraint: suppose that ξ1(e1) = ξ(a1), i.e., the variable b1
represents an inertial observer and a maybe di�erent observer that coordinatizes the event e1
in ξ2,5(e1). It is easy to �nd a model of SpecRelComp with an assignment such that these two

observers are di�erent. Then their di�erence will not be expressible since the transformated

assignment η will not be able di�erentiate between them, since we used the same variable

b1 to represent `them'. This failure could be conjectured also syntactically, if we imagine the

situation when we try to translate a formula ∃e1∃a1ϕ, because that would result in a formula

that starts with

∃ξ1(e1)∃ξ2(e1)∃ξ3(e1)∃ξ4(e1)∃ξ5(e1)∃ξ(a1)(. . .CTSξ(ϕ) . . . )

but here, by ξ1(e1) = ξ(a1), we have a vacuous quanti�cation, which was not present in

∃e1∃a1ϕ. The position in the proof when we will refer to that `well-separated' property of ξ
is when we are going to discuss the formulas ∃eϕ.
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4. De�nition of the assignment transformation fρ Let ρ be an arbitrary
choice function that chooses one representant from every equivalence class
of stcW (Mc), i.e., ρ satis�es the equation

ρ(〈o, t, x, y, z〉/ e')
e' 〈o, t, x, y, z〉 (20)

Now we de�ne fρ to �t to ξ:

fρ(η) :

b2i 7→ η(ai)
b2i+1 7→ ρ1 ◦ η(ei)
x5i 7→ η(xi)

x5i+n 7→ ρn+1 ◦ η(ei) for any n ∈ {1, 2, 3, 4}

Now by the construction we have that

fρ(η) ◦ ξ(e)/ e' = η(e) (21)

where we used the abbreviation

fρ(η)(~v)
def
= 〈fρ(η)(~v1), fρ(η)(~v2), fρ(η)(~v3), fρ(η)(~v4), fρ(η)(~v5)〉

By the construction of fρ(η) we also have the equations

fρ(η) ◦ ξ(a) = η(a) (22)

and
fρ(η) ◦ ξ(x) = η(x),

and if we take the natural extension η̂ of the assignment function η for
terms, i.e.,

η̂(x)
def
= η(x)

η̂(τ + τ ′)
def
= η̂(τ) +Ms η̂(τ ′)

η̂(τ · τ ′) def
= η̂(τ) ·Ms η̂(τ ′)

and we can generalize the above equation to

f̂ρ(η) ◦ ξ̂(τ) = η̂(τ) (23)

5. Proof of the equivalence (16)

Ms |= CTSξ(ϕc)[fρ(η)] ⇐⇒ stc(Ms) |= ϕc[η]

We prove this by induction on ϕc. Notice that the proof itself is of logical
in nature; the proof goes through because the model-construction and the
translations are de�ned to �t to each other. (So )

• ϕc = e = e′

Ms |= CTSξ(e = e′)[fρ(η)]
⇐⇒ Ms |= wξ1(e)ξ1(e′)(ξ2−5(e)) = (ξ2−5(e′))[fρ(η)] def.of CTSξ

⇐⇒ wMs

fρ(η)◦ξ1(e),fρ(η)◦ξ1(e′)(fρ(η) ◦ ξ2−5(e)) = fρ(η) ◦ ξ2−5(e′)

⇐⇒ evfρ(η)◦ξ(e)
e' evfρ(η)◦ξ(e′) def.of

e
'

⇐⇒ stc(Ms) |= e = e′[η] (21)
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• ϕc = e ≺ e′ is similar to e = e′.

• ϕc = τ = τ ′

Ms |= CTSξ(τ = τ ′)[fρ(η)]

⇐⇒ Ms |= ξ̂(τ) = ξ̂(τ ′)[fρ(η)] def.of CTSξ

⇐⇒ Ms |= ξ̂(τ) = ξ̂(τ ′)[fρ(η)] def.of ξ̂

⇐⇒ f̂ρ(η) ◦ ξ̂(τ) = f̂ρ(η) ◦ ξ̂(τ ′) def.of |=

⇐⇒ η̂(τ) = η̂(τ ′) (23)

⇐⇒ stc(Ms) |= τ = τ ′[η] def.of |=

• ϕc = τ ≤ τ ′ is similar to τ = τ ′

• ϕc = P(e, a, τ)

Ms |= CTSξ(P(e, a, τ))[fρ(η)]

⇐⇒ Ms |= wξ1(e)ξ(a)(ξ2−5(e)) = (ξ̂(τ), 0, 0, 0)[fρ(η)] def.of CTSξ

⇐⇒ wMs

fρ(η)◦ξ1(e),fρ(η)◦ξ(a)(fρ(η) ◦ ξ2−5(e)) = (f̂ρ(η) ◦ ξ̂(τ), 0, 0, 0) def.of |=

⇐⇒ wMs

fρ(η)◦ξ1(e),η(a)(fρ(η) ◦ ξ2−5(e)) = (η̂(τ), 0, 0, 0) (22), (23)

⇐⇒ fρ(η) ◦ ξ(e) e' 〈η(a), η̂(τ), 0, 0, 0〉 def.of
e
'

⇐⇒ η(e)
e' 〈η(a), η̂(τ), 0, 0, 0〉 (21)

⇐⇒ 〈η(e), η(a), η̂(τ)〉 ∈ stcP(Ms) def.of stcP(Ms)

⇐⇒ stc(Ms) |= P(e, a, τ)[η] def.of |=

• ϕc = ¬ϕ and ϕc = ϕ ∧ ψ are straightforward.

• ϕc = ∃eϕ Here we will need a lemma:

Lemma 36.

Ms |= CTSξ(ϕ)[fρ(η)[ξ(e) 7→ 〈b, t, x, y, z〉]] ⇐⇒

⇐⇒ Ms |= CTSξ(ϕ)[fρ(η[e 7→ 〈b, t, x, y, z〉/ e'])]

Proof. We use the following abbreviations:

g
def
= fρ(η)[ξ(e) 7→ 〈b, t, x, y, z〉] and g′

def
= fρ(η[e 7→ 〈b, t, x, y, z〉/ e'])

It is clear that

g(v) = g′(v) for every variable v not occurring in ξ(e) (24)

Now we cannot be sure whether g′ ◦ ξ(e) = 〈b, t, x, y, z〉, but we know
from the equations (20) and (21) that

g′ ◦ ξ(e) e' 〈b, t, x, y, z〉. (25)

By the construction of ξ, in the formula CTSξ(ϕ) the sole purpose
of any variable that occur in ξ(e) is to represent the event e and are
not used to represent bodies or numbers; the variables that refers to
numbers as numbers and bodies as bodies, are shifted to positions x5i

and b2i but no variable of ξ(e) has even indexes by the construction
of ξ. This observation will be enough to prove Lemma 36.

We prove by induction on the construction of ϕ. The observation (24)
make every case of this induction trivial in which e does not occur, so
it is enough to check the cases e = e′, e′ = e, e ≺ e′, e′ ≺ e, P(e, a, τ),
∃eϕ where e and e′ are di�erent variables.
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� e = e′:

Ms |= CTSξ(e = e′)[g] assumption

⇐⇒ Ms |= wξ1(e)ξ1(e′)(ξ2−5(e)) = ξ2−5(e′)[g] def.of CTSξ

⇐⇒ wMs

g◦ξ1(e)g◦ξ1(e′)(g ◦ ξ2−5(e)) = g ◦ ξ2−5(e′) def.of |=

⇐⇒ g ◦ ξ(e) e' g ◦ ξ(e′) def.of
e
'

⇐⇒ 〈b, t, x, y, z〉 e' g′ ◦ ξ(e′) def.of g, (24)

⇐⇒ g′ ◦ ξ(e) e' g′ ◦ ξ(e′) (25)

⇐⇒ Ms |= wξ1(e)ξ1(e′)(ξ2−5(e)) = ξ2−5(e′)[g′] def.of |=

⇐⇒ Ms |= CTSξ(e = e′)[g′] def.of CTSξ

� e′ = e, e ≺ e′, e′ ≺ e and P(e, a, τ) are similar to e = e′.

� ∃eϕ:

Ms |= CTSξ(∃eϕ)[g] assumption

⇐⇒ Ms |= ∃ξ(e)CTSξ(ϕ)[g] def.of CTSξ

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4)
Ms |= CTSξ(ϕ)[g[ξ(e) 7→ 〈b′, t′, x′, y′, z′〉]] def.of |=

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4) modi�cation [ξ(e) 7→ 〈b′, t′, x′, y′, z′〉]

Ms |= CTSξ(ϕ)[fρ(η)[ξ(e) 7→ 〈b′, t′, x′, y′, z′〉]] overwrote the one in g

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4)

Ms |= CTSξ(ϕ)[fρ(η[e 7→ 〈b′, t′, x′, y′, z′〉/ e'])] (nested) ind.hip.

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4)

Ms |= CTSξ(ϕ)[fρ(η[e 7→ 〈b, t, x, y, z〉/ e'][e 7→ 〈b′, t′, x′, y′, z′〉/ e'])] substitution will be overwritten

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4)

Ms |= CTSξ(ϕ)[fρ(η[e 7→ 〈b, t, x, y, z〉/ e'])[ξ(e) 7→ 〈b′, t′, x′, y′, z′〉])] (nested)ind.hip.

⇐⇒ (∃〈b′, t′, x′, y′, z′〉 ∈ B ×Q4) def.of g

Ms |= CTSξ(ϕ)[g′[ξ(e) 7→ 〈b′, t′, x′, y′, z′〉]]
⇐⇒ Ms |= ∃ξ(e)CTSξ(ϕ)[g′] def.of |=

⇐⇒ Ms |= CTSξ(∃eϕ)[g′] def.of CTSξ

This ends the proof of Lemma 36. �

Now the main induction:

Ms |= CTSξ(∃eϕ)[fρ(η)]
⇐⇒ Ms |= ∃ξ(e)CTSξ(ϕ)[fρ(η)] def.of CTSξ

⇐⇒ (∃〈b, t, x, y, z〉 ∈ B ×Q4)
Ms |= CTSξ(ϕ)[fρ(η)[ξ(e) 7→ 〈b, t, x, y, z〉]] def.of |=

⇐⇒ (∃〈b, t, x, y, z〉 ∈ B ×Q4)

Ms |= CTSξ(ϕ)[fρ(η[e 7→ 〈b, t, x, y, z〉/ e'])] Lemma 36

⇐⇒ (∃〈b, t, x, y, z〉 ∈ B ×Q4)

stc(Ms) |= ϕ[η[e 7→ 〈b, t, x, y, z〉/ e']] ind.hip.

⇐⇒ stc(Ms) |= ∃eϕ[η]
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• ϕc = ∃aϕ Now the main induction:

Ms |= CTSξ(∃aϕ)[fρ(η)]
⇐⇒ Ms |= ∃ξ(a)(IOb(ξ(a)) ∧ CTSξ(ϕ))[fρ(η)] def.of CTSξ

⇐⇒ (∃b ∈ IObMs)
Ms |= CTSξ(ϕ)[fρ(η)[ξ(a) 7→ b]] def.of |=

⇐⇒ (∃b ∈ IObMs)
Ms |= CTSξ(ϕ)[fρ(η[a 7→ b])] (22)

⇐⇒ (∃b ∈ IObMs) stc(Ms) |= ϕ[η[a 7→ b]] ind.hip.

⇐⇒ stc(Ms) |= ∃aϕ[η] def.of |=

• ϕc = ∃xϕ is similar to ∃aϕ.

6. De�nition of cts. Let

Mc =
(
W,≺Mc , C,Q,PMc

)
be an arbitrary but �xed model of SClTh. We will introduce the transfor-
mation cts : Mod(SClTh) → Mod(SpecRelComp), i.e., we will construct
the corresponding SpecRelComp model cts(Mc) from the information that
Mc contains. Such a SpecRelComp model will be given as

cts(Mc)
def
= (ctsB(Mc), stcIOb(Mc), stcPh(Mc),Q, stcW(Mc))

where the four unde�ned entity will be body domain and the meanings of
predicates IOb, Ph and W, respectively.

(a) Body domain ctsB(Mc). The �rst idea would be that a body will be
identi�ed with a set of events (the worldline). Even if we have a pred-
icate variable sort for that purpose, we do not have the quanti�ers
for that sort, and thus we cannot translate the formulas of the form
∃bϕ. We will sort out a lot of worldlines; we keep only those that are
worldlines of observers or photons. In models of SpecRelComp, there
are no other worldlines anyway. The worldlines of observers seems to
be easy, the set

{w ∈W : (∃q ∈ Q)(w, c, q) ∈ PMc}

seems to be a �ne candidate. But this won't be enough, since a
SpecRelComp observer is very di�erent from a clock. If we take a
closer look on the axioms about the interaction of IOb and W, a
SpecRelComp observer knows where is forward, where is right, where
is up, while a clock does not know this alone; it needs (mutually
orthogonal) partners cx, cy, cz to represent these directions. So an
observer is a coordinate system rather than a body drifting alone in
the Minkowski spacetime. Thus we are going to identify an inertial
observer with a 4-tuple of clocks c, cx, cy, cz:

wlc,cx,cy,cz
def
= {e ∈W : (∃q ∈ Q)(e, c, q) ∈ PMc and

(c, cx, cy, cz) ∈ CoordSysMc}
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where CoordSysMc is the meaning of the formula de�ned on p. 7.

But the worldlines of photons must be di�erent, since no observer
can travel as fast as the light, and there are no terms for photons in
the language of SClTh. We will use the relation of light-like separation
instead. Using that relation we can identify every photon with a pair
of lightlike separated events e1  

Mce2. Let us de�ne (in the object
language) the lightline determined by (e1, e2):

e ∈ lline(e1, e2)
def⇔ e1  e2  e ∨ e1  e  e2 ∨ e  e1  e2

Now take the meaning of that formula, i.e., let

llineMc(w1, w2)
def
=

w ∈W :

w1  

Mcw2  

Mcw or

w1  

Mcw  

Mcw2 or

w  

Mcw1  

Mcw2


Now we can merge the two concepts of wordlines (worldline of a

photon as the lightline de�ned by two lightlike events, and the world-
line of a observer de�ned via 5 clocks) in the following way: a body is
determined by a 5-tuple (c, cx, cy, cz, ct, e1, e2) in the following way:

if e1  

Mce2 then it is the light-line determined by e1, e2, otherwise it
is the worldline of c:

wlc,cx,cy,cz,e1,e2
def
=e ∈W :

e1  e2 and

 e1  

Mce2  

Mce or

e1  

Mce  

Mce2 or

e  

Mce1  

Mce2


or

 not e1  e2 and
(∃q ∈ Q)(e, c, q) and

(c, cx, cy, cz) ∈ CoordSysMc


According to that de�nition it is not true that every 6-tuple c, cx, cy, cz, e1, e2

determines a body: this can happen when e1  e2 is not true and the
4 clock do not constitute a coordinate system. So the set of suitable
6-tuples to name bodies will be

WL
def
= {〈c, cx, cy, cz, e1, e2〉 ∈ C4 ×W 2 :

e1  

Mce2 or (c, cx, cy, cz) ∈ CoordSysMc}

Also note that, according to the de�nitions, if both e1  

Mce2 and

(c, cx, cy, cz) ∈ CoordSysMc , i.e., it is both capable of referring to a
photon and an inertial observer, then we always refer with that tuple
to the photon.

But a lot of 6-tuple can name the same worldline, so we have to
�nd a suitable equivalence relation to factorize over the set of bodies
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to create the �nal domain of bodies.

(c, cx, cy, cz, e1, e2)
b' (c′, c′x, c

′
y, c
′
z, e
′
1, e
′
2)

def⇔

[e1  

Mce2 and llineMc(e1, e2) = llineMc(e′1, e
′
2)]

or

 not e1  

Mce2 and
wlc,cx,cy,cz = wlc′,c′x,c′y,c′z and

(c, cx, c
′
x), (c, cy, c

′
y), (c, cz, c

′
z) ∈ CMc


where C is the meaning of the collinearity relation, see Def. 7. This
is an equivalence relation (de�nable in the language of clock logic).
So the domain of the bodies will be

ctsB(Mc)
def
= WL/

b'.

(b) meaning of observer predicate ctsIOb(Mc)

ctsIOb(Mc)
def
= {(c, cx, cy, cz, e1, e2)/

b' ∈ ctsB :

not e1  

Me2 and (c, cx, cy, cz) ∈ CoordSysMc}

(c) meaning of photon predicate ctsPh

ctsPh(Mc)
def
=

{
(c, cx, cy, cz, e1, e2)/

b' ∈ ctsB : e1  
Mce2

}
(d) meaning of worldview relation ctsW(Mc)

ctsW(Mc)
def
=

{(c, cx, cy, cz, e1, e2)/
b', (c′, c′x, c′y, c′z, e′1, e′2)/

b', ~x ∈ ctsB(Mc)
2×Q4 :

(∃e ∈ wlc′,c′x,c′y,c′z,e′1,e′2)CoordMc(c, cx, cy, cz, e) = ~x}

where CoordMc is the meaning of the coordinatization relation de-
�ned on p. 7.

7. De�nition of ζ. By the above construction of the domains, we choose ζ
to be

ζ :
xi 7→ xi
bi 7→ 〈a4i, a4i+1, a4i+2, a4i+3, e2i, e2i+1〉
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8. De�nition of STCζ .

STCζ(b = b′)
def
= (ζ5(b)  ζ6(b′) ∧ lline(ζ5−6(b)) = lline(ζ5−6(b′))) ∨
∨
(
¬ζ5(b)  ζ6(b) ∧ wlineζ1(b) = wlineζ1(b′) ∧

∧ C(ζ1,2(b), ζ2(b′)) ∧ C(ζ1,3(b), ζ3(b′)) ∧ C(ζ1,4(b), ζ4(b′))
)

STCζ(τ = τ ′)
def
= τ = τ ′

STCζ(τ ≤ τ ′)
def
= τ ≤ τ ′

STCζ(IOb(b))
def
= CoordSys(ζ1−4(b)) ∧ ¬ζ5(b)  ζ6(b)

STCζ(Ph(b))
def
= ζ5(b)  ζ6(b)

STCζ(W(b, b′, ~τ))
def
= (∃e ∈ wlineζ(b′))Coordζ1−4(b)(e) = ~τ

STCζ(¬ϕ)
def
= ¬STCζ(ϕ)

STCζ(ϕ ∧ ψ)
def
= STCζ(ϕ) ∧ STCζ(ψ)

STCζ(∃bϕ)
def
= ∃ζ(b)

((
ζ5(b)  ζ6(b) ∨ CoordSys(ζ1−4(b))

)
∧ STCζ(ϕ)

)
STCζ(∃xϕ)

def
= ∃xSTCζ(ϕ)

9. Proof of the equivalence (17). Similar to step 5. (including a lemma like
Lemma 36 in case of ∃b).

10. Proof of (19): Proving SpecRelComp in SClTh According to Proposi-
tions 29 and 27, every translation of every axiom of SpecRelComp is
equivalent to its `simple-'version described in Section ??, so we are al-
ready done.

11. Proof of (18): Proving SClTh in SpecRelComp. This proof itself consists
only of standard analytical geometrical calculations and basic facts about
Minkowski geometry. Since in this report we focus on logical issues and
signalling procedures in a logical environment, we omit this proof. under
construction

�
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