Axiomatizing Minkowski Spacetime

 in First-Order Temporal LogicAttila Molnár
Eötvös Loránd University

Gergely Székely
Alfréd Rényi Instititute of Mathematics

LogRel Group meeting
March 20, 2015

Big Picture

Big picture

First-order Classical Logic

First-order Modal Logic

Big Picture

First-order Classical Logic
First-order Modal Logic

that is a two-way bridge
if we aim Minkowski spacetimes!

1) max-n-zigzag connected
2) there is set of timelike curves (clocks) s.t.
a) they are everywhere
b) none of them are closed
c) chronological confluence prop.

Abstract

I will present a first-order temporal logic which has the following properties:

1) Strong Expressive Power: It can express the basic paradigmatic relativistic effects of kinematics such as time dilation, length contraction, twin paradox, etc.
2) Operationality: The coordinatization itself is definable using metric tense operators with signalling procedures.
3) Completeness and Decidability: The set of formulas that are valid on the 4D Minkowski spacetime is recursively axiomatizable and decidable.
4) A (first-order modal variant of a) definitional equivalence can be proved w.r.t. the axiom system SpecRel \cup Comp (Now just SRC) of HB of Spatial Logics.

So far it seems that the presented framework is flexible enough to allow for similar (expressive, operational, axiomatizable) results in general relativity and branching spacetimes.

Clock logic

Two-sorted modal predicate logic:

- Terms: $\tau::=x\left|\tau_{1}+\tau_{2}\right| \tau_{1} \cdot \tau_{2}$
- Formulas:

$$
\varphi::=\tau_{1} \leq \tau_{2}\left|\tau_{1}=\tau_{2}\right| \underset{\substack{\downarrow \\
\downarrow \\
\text { pointing statements: } \\
\text { clock } a \text { shows time } \tau}}{ } \quad \begin{gathered}
\varphi \text { will be true } \\
\text { in the causal future }
\end{gathered} \quad \begin{gathered}
\text { there is a clock } \\
\text { in the actual event } \\
\text { for which } \varphi
\end{gathered}
$$

worlds : events
alternative relation : irreflexive causal future
domains : one universal domain for math, varying domains for clocks
meaning of math : rigid predicates and rigid terms
meaning of clock terms : intensional objects
/ non-rigid designators
/ individual concepts
/ functions eating worlds

Clock Models

Truth:

$$
\begin{array}{ll}
\mathfrak{M}, \mu, \gamma, w \models a: \tau & \stackrel{\text { def }}{\Leftrightarrow} \llbracket a \rrbracket_{\gamma}^{\mathfrak{M}}(w)=\llbracket \tau \rrbracket_{\mu}^{\mathfrak{M}}, \\
\mathfrak{M}, \mu, \gamma, w \models \mathbf{F} \varphi & \stackrel{\text { def }}{\Leftrightarrow} w^{\prime} \succ w \mathfrak{M}, \mu, \gamma, w^{\prime} \models \varphi, \\
\mathfrak{M}, \mu, \gamma, w \models \mathbf{P} \varphi & \stackrel{\text { def }}{\Leftrightarrow} w^{\prime} \prec w \mathfrak{M}, \mu, \gamma, w^{\prime} \models \varphi, \\
\mathfrak{M}, \mu, \gamma, w \models \exists x \varphi & \stackrel{\text { def }}{\Leftrightarrow} \quad(\exists u \in U) \mathfrak{M}, \mu[x \mapsto u], \gamma, w \models \varphi, \\
\mathfrak{M}, \mu, \gamma, w \models \exists a \varphi & \stackrel{\text { def }}{\Leftrightarrow} \quad\left(\exists \alpha \in \mathbb{C}_{w}\right) \mathfrak{M}, \mu, \gamma[a \mapsto \alpha], w \models \varphi . \\
\quad & \quad \text { where } \mathbb{C}_{w} \stackrel{\text { def }}{=}\{\alpha \in \mathbb{C}: \alpha \text { is defined in } w\}
\end{array}
$$

Validity:

$$
\mathfrak{M} \models \varphi \stackrel{\text { def }}{\Leftrightarrow}(\forall \mu, \gamma, w) \mathfrak{M}, \mu, \gamma, w \models \varphi
$$

Minkowski model with inertial clocks

$$
\mathfrak{M i n k}=\left(W, \prec, U, \mathbb{C}, \llbracket+\rrbracket^{\mathfrak{M}}, \llbracket \cdot \rrbracket^{\mathfrak{M}}, \llbracket \leq \rrbracket^{\mathfrak{M}}\right)
$$

- $\left(U, \llbracket+\rrbracket^{\mathfrak{M}}, \llbracket \cdot \rrbracket^{\mathfrak{M}}, \llbracket \leq \rrbracket^{\mathfrak{M}}\right) \stackrel{\text { def }}{=} \mathbb{R}$ is the field of reals.
- $W=\mathbb{R}^{4}$
- $w \prec w^{\prime}$ iff $\mu\left(w-w^{\prime}\right) \geq 0$ and $w_{n}<w_{n}^{\prime}$ where $\mu(\vec{w}) \stackrel{\text { def }}{=}\left(\sum_{i=1}^{n-1} w_{i}^{2}\right)-w_{n}^{2}$.
- $\mathbb{C}=\left\{\alpha: \alpha^{-1}\right.$ is a timelike line $\}$ s.t. all of them use the measure system of \mathbb{R}, i.e.,

$$
(\forall \alpha \in \mathbb{C})(\forall w, v \in \operatorname{dom}(\alpha)) \quad \mu(w, v)=|\alpha(w)-\alpha(v)|
$$

$$
\begin{gathered}
\text { 2-sorted temporal } \\
\tau::=x \\
\\
\\
\tau+\tau^{\prime} \\
a \cdot \tau^{\prime} \\
a::= \\
\varphi= \\
\tau=\tau^{\prime} \\
\tau \leq \tau^{\prime} \\
a: \tau \\
\neg \varphi \\
\\
\varphi \wedge \psi \\
\\
\mathbf{F} \varphi \\
\mathbf{P} \varphi \\
\exists x \varphi \\
\\
\exists a \varphi
\end{gathered}
$$

$$
\begin{aligned}
& \hline \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& b::= b \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{IOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2-sorted temporal } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \mathbf{F} \varphi \\
& \mathbf{P} \varphi \\
& \exists x \varphi \\
& \exists a \varphi
\end{aligned}
$$

SRC

Complete and finite scheme axiomatization of 4D Minkowski Spacetime with inertial observers

$$
\begin{aligned}
& \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& b::= b \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{lOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

2-sorted temporal

$$
\begin{aligned}
\tau::= & x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
a::= & a \\
\varphi::= & \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \mathbf{F} \varphi \\
& \mathbf{P} \varphi \\
& \exists x \varphi \\
& \exists a \varphi
\end{aligned}
$$

SRC

Complete and finite scheme axiomatization of 4D Minkowski Spacetime with inertial observers

$$
\begin{aligned}
& \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& b::= b \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{IOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { 3-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& w::= w \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& w \prec w^{\prime} \\
& \mathrm{P}(w, a, \tau) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

2-sorted temporal

$$
\tau::=x
$$

$$
\tau+\tau^{\prime}
$$

$$
\tau \cdot \tau^{\prime}
$$

$$
a::=a
$$

$$
\varphi::=\tau=\tau^{\prime}
$$

$$
\tau \leq \tau^{\prime}
$$

$$
a: \tau
$$

$$
\neg \varphi
$$

$$
\varphi \wedge \psi
$$

$$
\mathbf{F} \varphi
$$

$$
\mathbf{P} \varphi
$$

$$
\exists x \varphi
$$

$$
\exists a \varphi
$$

SRC

Complete and finite scheme axiomatization of 4D Minkowski Spacetime with inertial observers

$$
\begin{aligned}
& \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& b::= b \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{IOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

2-sorted temporal

$$
\tau::=x
$$

$$
\tau+\tau^{\prime}
$$

$$
\tau \cdot \tau^{\prime}
$$

$$
a::=a
$$

$$
\varphi::=\tau=\tau^{\prime}
$$

$$
\tau \leq \tau^{\prime}
$$

$$
a: \tau
$$

$$
\neg \varphi
$$

$$
\varphi \wedge \psi
$$

$$
\mathbf{F} \varphi
$$

$$
\mathbf{P} \varphi
$$

$$
\exists x \varphi
$$

$$
\exists a \varphi
$$

Definitional equivalence

$$
\begin{aligned}
& \hline \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& \varphi::= b \\
& \varphi= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{lOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { 3-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& w::= w \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& w \prec w^{\prime} \\
& \mathrm{P}(w, a, \tau) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2-sorted temporal } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \mathbf{F} \varphi \\
& \mathbf{P} \varphi \\
& \exists x \varphi \\
& \exists a \varphi
\end{aligned}
$$

Definitional equivalence

$$
\begin{aligned}
& \hline \text { 2-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& b::= b \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& \operatorname{Ph}(b) \\
& \operatorname{IOb}(b) \\
& \mathrm{W}(b, c, x, y, z, t) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { 3-sorted classical } \\
& \tau::= \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::=a \\
& w:= w \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& w \prec w^{\prime} \\
& \mathrm{P}(w, a, \tau) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

2-sorted hybrid

$$
\begin{aligned}
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& w \quad \mathbf{F} \varphi \\
& @_{w \varphi} \quad \mathbf{P} \varphi \\
& \mathbf{E \varphi} \quad \exists x \varphi \\
& \downarrow w \varphi \quad \exists a \varphi \\
& \hline w \varphi
\end{aligned}
$$

2-sorted temporal

$$
\begin{aligned}
\tau::= & x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
a::= & a \\
\varphi:= & \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \mathbf{F} \varphi \\
& \mathbf{P} \varphi \\
& \exists x \varphi \\
& \exists a \varphi
\end{aligned}
$$

Definitional equivalence

Hybrid Clock logic of Minkowski Spacetime with inertial clocks

```
2-sorted classical
\tau ::= x
    \tau}+\mp@subsup{\tau}{}{\prime
    \tau\cdot\tau
b ::= b
\varphi ::=\tau=\mp@subsup{\tau}{}{\prime}
    \tau}\leq\mp@subsup{\tau}{}{\prime
    Ph(b)
    IOb(b)
    W (b,c,x,y,z,t)
    \neg \varphi
    \varphi\wedge\psi
    \existsx\varphi
```

$$
\begin{aligned}
& \hline \text { 3-sorted classical } \\
& \tau::= x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::= a \\
& w::= w \\
& \varphi::= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& w \prec w^{\prime} \\
& \mathrm{P}(w, a, \tau) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

2-sorted hybrid

2-sorted temporal

$$
\begin{aligned}
\tau::= & x \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
a::= & a \\
\varphi::= & \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& a: \tau \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \mathbf{F} \varphi \\
& \mathbf{P} \varphi \\
& \exists x \varphi \\
& \exists a \varphi
\end{aligned}
$$

Definitional equivalence

Definitional equivalence

Definitional equivalence

Hybrid translation
$\left(\right.$ Standard translation) ${ }^{-1}$

```
2-sorted classical
\tau ::=x
    \tau+\mp@subsup{\tau}{}{\prime}
    \tau}\mp@subsup{\tau}{}{\prime
b ::= b
\varphi ::=\tau=\mp@subsup{\tau}{}{\prime}
    \tau}\leq\mp@subsup{\tau}{}{\prime
    Ph(b)
    IOb (b)
    W(b,c,x,y,z,t)
    \neg
    \varphi\wedge\psi
    \existsx\varphi
```

$$
\begin{aligned}
& \hline \text { 3-sorted classical } \\
& \tau::= \\
& \tau+\tau^{\prime} \\
& \tau \cdot \tau^{\prime} \\
& a::=a \\
& w::= \\
& \varphi:= \tau=\tau^{\prime} \\
& \tau \leq \tau^{\prime} \\
& w \prec w^{\prime} \\
& \mathrm{P}(w, a, \tau) \\
& \neg \varphi \\
& \varphi \wedge \psi \\
& \exists x \varphi
\end{aligned}
$$

Definitional equivalence

Hybrid sort definition
$e_{i} \mapsto a_{2 i+1}: x_{2 i+1}$
$a_{i}: x_{i} \mapsto a_{2 i}: x_{2 i}$
$\exists v_{i} \varphi \mapsto \exists v_{2 i} \varphi$
$\mathbf{E} \varphi \mapsto \mathbf{P F} \varphi$
$@_{e_{i}} \varphi \mapsto \mathbf{P F}\left(a_{2 i+1}: x_{2 i+1} \wedge \varphi\right)$
$\downarrow e_{i} \varphi \mapsto \exists a_{2 i+1} \exists x_{2 i+1}\left(a_{2 i+1}: x_{2 i+1} \wedge \varphi\right)$

Definitional equivalence

$$
\begin{aligned}
& \text { Hybrid translation } \\
& w_{1}=w_{2} \mapsto @_{w_{1}} w_{2} \\
& w_{1} \prec w_{2} \mapsto @_{w_{1} v_{1}} \mathbf{F} w_{2} \\
& P(w, a, x) \mapsto @_{w v} a x \\
& a_{1}=a_{2} \mapsto \mathbf{A} \forall x\left(a_{1}: x \leftrightarrow a_{2}: x\right) \\
& \exists w \varphi \mapsto \mathbf{E} \downarrow w \varphi \\
& \exists a \varphi \mapsto \mathbf{E} \exists a \varphi
\end{aligned}
$$

Definitional equivalence

Tr from the definitional equivalence

$$
\begin{aligned}
& b \mapsto\left(c, c_{x}, c_{y}, c_{z}, w, v\right) . \\
& \mathrm{Ph}(b) \mapsto w_{\text {ズ }} v \\
& \operatorname{IOb}(b) \mapsto \neg w v \wedge \operatorname{CoordSys}\left(c, c_{x}, c_{y}, c_{z}\right) \\
& b=b^{\prime} \mapsto\left(w_{\text {ぶ }} w^{\prime} \wedge \text { lline }(w, v)=\text { lline }\left(w^{\prime}, v^{\prime}\right)\right) \vee \\
& \vee\left(\neg w^{\wedge} v \wedge \text { wline }_{c}=\text { wline }_{c^{\prime}}\right. \\
& \wedge\left(\text { Between }\left(c, c_{x}, c_{x}^{\prime}\right) \vee \operatorname{Between}\left(c, c_{x}^{\prime}, c_{x}\right)\right) \wedge \\
& \text { (Between } \left.\left(c, c_{y}, c_{y}^{\prime}\right) \vee \operatorname{Between}\left(c, c_{y}^{\prime}, c_{y}\right)\right) \wedge \\
& \text { (Between } \left.\left(c, c_{z}, c_{z}^{\prime}\right) \vee \operatorname{Between}\left(c, c_{z}^{\prime}, c_{z}\right)\right) \text {) } \\
& \mathrm{W}\left(b, b^{\prime}, \vec{x}\right) \mapsto\left(\exists w \in \operatorname{wline}_{c^{\prime}} \operatorname{Coord}_{c_{,}, c_{x}, c_{y}, c_{z}}(w)=\vec{x}\right. \\
& \exists b \varphi \mapsto \exists c, c_{x}, c_{y}, c_{z} \exists w, v\left(\left(w_{\curvearrowright} v \vee \operatorname{CoordSys}\left(c, c_{x}, c_{y}, c_{z}\right)\right) \wedge \varphi\right)
\end{aligned}
$$

Coordinatization

LANGUAGE

$$
\begin{aligned}
\tau::=x\left|\tau_{1}+\tau_{2}\right| \tau_{1} \cdot \tau_{2} \\
\varphi::=a=b\left|\tau=\tau^{\prime}\right| \tau \leq \tau^{\prime}\left|e=e^{\prime}\right| e \prec e^{\prime}|\operatorname{In}(a)| \mathrm{P}(e, a, \tau) \mid \\
\neg \varphi|\varphi \wedge \psi| \exists x \varphi|\exists a \varphi| \exists e \varphi
\end{aligned}
$$

Now we have a primitive predicate for inertiality but it is eliminable by identifying them with geodetics:

$$
\operatorname{Geo}(a) \stackrel{\text { def }}{\Leftrightarrow}\left(\forall e, e^{\prime} \in \text { wline }_{a}\right)\left(\forall b \in \mathrm{D}_{e} \cap \mathrm{D}_{e^{\prime}}\right) \quad\left|a(e)-a\left(e^{\prime}\right)\right| \geq\left|b(e)-b\left(e^{\prime}\right)\right|
$$

LANGUAGE

$\tau::=x\left|\tau_{1}+\tau_{2}\right| \tau_{1} \cdot \tau_{2}$

$$
\begin{array}{r}
\varphi::=a=b\left|\tau=\tau^{\prime}\right| \tau \leq \tau^{\prime}\left|e=e^{\prime}\right| e \prec e^{\prime}|\operatorname{In}(a)| \mathrm{P}(e, a, \tau) \mid \\
\neg \varphi|\varphi \wedge \psi| \exists x \varphi|\exists a \varphi| \exists e \varphi
\end{array}
$$

Now we have a primitive predicate for inertiality but it is eliminable by identifying them with geodetics:

$$
\begin{aligned}
& \mathrm{Geo}(a) \stackrel{\text { def }}{\Leftrightarrow}\left(\forall e, e^{\prime} \in \operatorname{wline}_{a}\right)\left(\forall b \in \mathrm{D}_{e} \cap \mathrm{D}_{e^{\prime}}\right) \quad\left|a(e)-a\left(e^{\prime}\right)\right| \geq\left|b(e)-b\left(e^{\prime}\right)\right| \\
& a(e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \mathrm{P}(a, e, \tau) \quad e \ll e^{\prime} \stackrel{\text { def }}{\Leftrightarrow} e \prec e^{\prime} \wedge \exists a\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a\right) \\
& e \mathcal{E} a \stackrel{\text { def }}{\Leftrightarrow} \exists x \mathrm{P}(a, e, x) \\
& \text { wline }_{a} \stackrel{\text { def }}{=}\{e: \exists x \mathrm{P}(a, e, x)\} \\
& \mathrm{D}_{e} \stackrel{\text { def }}{=}\{a: \exists x \mathrm{P}(a, e, x)\} \\
& a \approx b \stackrel{\text { def }}{\Leftrightarrow} \forall e(e \mathcal{E} a \leftrightarrow e \mathcal{E} b) \\
& e \ll e^{\prime} \quad \stackrel{\text { def }}{\Leftrightarrow} \quad e \ll e^{\prime} \vee e=e^{\prime} \\
& e_{\checkmark} e^{\prime} \stackrel{\text { def }}{\Leftrightarrow} e \prec e^{\prime} \wedge \neg \exists a\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a\right) \\
& e r_{\Omega} e^{\prime} \stackrel{\text { def }}{\Leftrightarrow} e_{3}{ }^{\top} e^{\prime} \vee e=e^{\prime}
\end{aligned}
$$

D_{e} : domain of event e $a \approx b$: cohabitation
$\overrightarrow{e_{1} e_{2} e_{3}}$: directed lightlike betweenness

INTENDED MODELS

$$
\mathfrak{M}^{c}=\left(\mathbb{R}^{4}, \mathbb{C}, \mathbb{R}, \prec^{\mathfrak{M}^{c}}, \operatorname{In}^{\mathfrak{M}^{c}}+, \cdot, \leq, \mathrm{P}^{\mathfrak{M}^{c}}\right)
$$

- \mathbb{C} is the set of those $\alpha: \mathbb{R}^{4} \rightarrow \mathbb{R}$ partial functions, for which α^{-1}-s are timelike curves that follows the measure system of \mathbb{R}^{4}, i.e.,
- α^{-1}-s are continuously differentiable functions on \mathbb{R} w.r.t. Euclidean metric:
- $\left(\alpha^{-1}\right)^{\prime}$ is timelike: $\mu \circ\left(\alpha^{-1}\right)^{\prime}(x)>0$ for all $x \in \mathbb{R}$.
- Measure system of $\mathbb{R}^{4}: \mu\left(\alpha^{-1}(x), \alpha^{-1}(x+y)\right)=y$ for all $x, y \in \mathbb{R}$.
- $\vec{x} \prec^{\mathfrak{M}^{c}} \vec{y} \stackrel{\text { def }}{\Leftrightarrow} \mu(\vec{x}, \vec{y}) \geq 0$ and $x_{1}<y_{1}$,
- $\operatorname{In}^{\mathfrak{M}^{c}} \stackrel{\text { def }}{=}\left\{\alpha \in \mathbb{C}: \alpha^{-1}\right.$ is a line $\}$
- $\mathrm{P}^{\mathfrak{M}^{c}}=\left\{\langle\vec{x}, \alpha, y\rangle \in \mathbb{R}^{4} \times \mathbb{C}_{I} \times \mathbb{R}: \alpha(\vec{x})=y\right\}$,

The non-accelerating intended model $\mathfrak{M}_{\mathrm{I}}^{c}$ is the largest submodel of \mathfrak{M}^{c} whose domain of clocks is $\mathrm{In}^{\mathfrak{M}{ }^{c}}$.

GOALS

- Construct coordinate systems for inertial clocks.

GOALS

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.

Goals

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.
- Find axiomatic base SCITh for these coordinate construction procedures.

Goals

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.
- Find axiomatic base SClTh for these coordinate construction procedures.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$.

Goals

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.
- Find axiomatic base SClTh for these coordinate construction procedures.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}^{c}\right)$ or show that cannot be done.

GOALS

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.
- Find axiomatic base SClTh for these coordinate construction procedures.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}^{c}\right)$ or show that cannot be done.
- Compare $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$ to SpecRel in terms of definitional equivalences.

GOALS

- Construct coordinate systems for inertial clocks.
- Construct coordinate systems for accelerating clocks.
- Find axiomatic base SClTh for these coordinate construction procedures.
- Extend SClTh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$.
- Extend SCITh into a complete axiomatization of $\operatorname{Th}\left(\mathfrak{M}^{c}\right)$ or show that cannot be done.
- Compare $\operatorname{Th}\left(\mathfrak{M}_{I}^{c}\right)$ to SpecRel in terms of definitional equivalences.
- Compare $\operatorname{Th}\left(\mathfrak{M}^{c}\right)$ to AccRel in terms of definitional equivalences.

Space

Distance of events: $\delta^{i}(a, e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \operatorname{In}(a) \wedge\left(\exists e_{1}, e_{2} \in\right.$ wline $\left._{a}\right)$

$$
\left(e_{1}{ }^{\imath}=e^{\imath} e_{2} \wedge a\left(e_{1}\right)-a\left(e_{2}\right)=2 \cdot \tau\right)
$$

Space

Distance of events: $\delta^{i}(a, e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \operatorname{In}(a) \wedge\left(\exists e_{1}, e_{2} \in\right.$ wline $\left._{a}\right)$

$$
\left(e_{1}{ }^{\imath}=e^{\imath} e_{2} \wedge a\left(e_{1}\right)-a\left(e_{2}\right)=2 \cdot \tau\right)
$$

Distance of inertials: $\quad \delta^{i}\left(a, a^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in\right.$ wline $\left._{a^{\prime}}\right) \delta^{i}(a, w)=\tau$

Space

Distance of events: $\delta^{i}(a, e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \operatorname{In}(a) \wedge\left(\exists e_{1}, e_{2} \in\right.$ wline $\left._{a}\right)$

$$
\left(e_{1}{ }_{\zeta} e^{\imath} e_{=} e_{2} \wedge a\left(e_{1}\right)-a\left(e_{2}\right)=2 \cdot \tau\right)
$$

Distance of inertials: $\delta^{i}\left(a, a^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in\right.$ wline $\left._{a^{\prime}}\right) \delta^{i}(a, w)=\tau$

Comovement $\quad a \uparrow{ }^{i} a^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \exists x \delta^{i}\left(a, a^{\prime}\right)=x$

SPACE

Distance of events: $\delta^{i}(a, e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \operatorname{In}(a) \wedge\left(\exists e_{1}, e_{2} \in\right.$ wline $\left._{a}\right)$

$$
\left(e_{1} \stackrel{\zeta}{=}_{\tau}^{\lambda} e_{\Omega_{=}^{\imath}} e_{2} \wedge a\left(e_{1}\right)-a\left(e_{2}\right)=2 \cdot \tau\right)
$$

Distance of inertials: $\quad \delta^{i}\left(a, a^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in\right.$ wline $\left._{a^{\prime}}\right) \delta^{i}(a, w)=\tau$

Comovement $\quad a \uparrow{ }^{\mathrm{i}} a^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \exists x \delta^{i}\left(a, a^{\prime}\right)=x$
Clocks a and a^{\prime} are inertial synchronised co-movers iff a^{\prime} shows $x+\delta^{i}\left(a, a^{\prime}\right)$ whenever a^{\prime} sees that a shows x.

$$
\stackrel{\text { syn }}{a \uparrow a^{\prime}} \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in \mathrm{D}_{a}\right)\left(\forall w^{\prime} \in \mathrm{D}_{a}^{\prime}\right)\left(w_{>}^{\text {? }}\right.
$$

SpAcE

Distance of events: $\delta^{i}(a, e)=\tau \stackrel{\text { def }}{\Leftrightarrow} \operatorname{In}(a) \wedge\left(\exists e_{1}, e_{2} \in\right.$ wline $\left._{a}\right)$

$$
\left(e_{1}{ }_{\zeta}^{\imath} e_{\Omega_{=}^{\imath}} e_{2} \wedge a\left(e_{1}\right)-a\left(e_{2}\right)=2 \cdot \tau\right)
$$

Distance of inertials: $\quad \delta^{i}\left(a, a^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in\right.$ wline $\left._{a^{\prime}}\right) \delta^{i}(a, w)=\tau$

Comovement $\quad a \uparrow{ }^{\mathrm{i}} a^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \exists x \delta^{i}\left(a, a^{\prime}\right)=x$
Clocks a and a^{\prime} are inertial synchronised co-movers iff a^{\prime} shows $x+\delta^{i}\left(a, a^{\prime}\right)$ whenever a^{\prime} sees that a shows x.

$$
\stackrel{\text { syn }}{a \uparrow a^{\prime}} \stackrel{\text { def }}{\Leftrightarrow}\left(\forall w \in \mathrm{D}_{a}\right)\left(\forall w^{\prime} \in \mathrm{D}_{a}^{\prime}\right)\left(w_{>}^{\text {? }}\right.
$$

Space of a : Space $a \stackrel{\text { def }}{=}\left\{a^{\prime}: a \uparrow \uparrow a^{\text {syn }}\right\}$

GeOMETRY

$$
\mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right)
$$

Geometry

$$
\begin{aligned}
& \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right) \\
& a_{1} a_{2} \equiv a_{3} a_{4}
\end{aligned} \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{3}, a_{4}\right)
$$

Geometry

$$
\begin{aligned}
& \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right) \\
& a_{1} a_{2} \equiv a_{3} a_{4} \\
& \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{3}, a_{4}\right) \\
& \mathrm{C}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \vee \mathrm{B}\left(a_{3}, a_{1}, a_{2}\right) \vee \mathrm{B}\left(a_{2}, a_{3}, a_{1}\right)
\end{aligned}
$$

Geometry

$$
\begin{aligned}
\mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) & \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right) \\
a_{1} a_{2} \equiv a_{3} a_{4} & \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{3}, a_{4}\right) \\
\mathrm{C}\left(a_{1}, a_{2}, a_{3}\right) & \stackrel{\text { def }}{\Leftrightarrow} \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \vee \mathrm{B}\left(a_{3}, a_{1}, a_{2}\right) \vee \mathrm{B}\left(a_{2}, a_{3}, a_{1}\right) \\
\operatorname{Ort}\left(a, a_{1}, a_{2}\right) & \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a, a_{1}\right)>0 \wedge \delta^{i}\left(a_{1}, a_{2}\right)>0 \wedge \delta^{i}\left(a, a_{2}\right)>0 \\
& \wedge \exists a^{\prime}\left(\mathrm{B}\left(a_{2}, a, a^{\prime}\right) \wedge a a_{2} \equiv a a^{\prime} \wedge a_{1} a_{2} \equiv a_{1} a\right)
\end{aligned}
$$

Geometry

$$
\begin{aligned}
& \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right) \\
& a_{1} a_{2} \equiv a_{3} a_{4} \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{3}, a_{4}\right) \\
& \mathrm{C}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \vee \mathrm{B}\left(a_{3}, a_{1}, a_{2}\right) \vee \mathrm{B}\left(a_{2}, a_{3}, a_{1}\right) \\
& \operatorname{Ort}\left(a, a_{1}, a_{2}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a, a_{1}\right)>0 \wedge \delta^{i}\left(a_{1}, a_{2}\right)>0 \wedge \delta^{i}\left(a, a_{2}\right)>0 \\
& \wedge \exists a^{\prime}\left(\mathrm{B}\left(a_{2}, a, a^{\prime}\right) \wedge a a_{2} \equiv a a^{\prime} \wedge a_{1} a_{2} \equiv a_{1} a\right) \\
& \delta^{i}\left(a,\left(a_{1}, a_{2}\right)\right)=\tau \stackrel{\text { def }}{\Leftrightarrow} \exists a^{\prime}\left(\operatorname{Ort}\left(a^{\prime}, a, a_{1}\right) \wedge \operatorname{Ort}\left(a^{\prime}, a, a_{2}\right) \wedge \delta^{i}\left(a, a^{\prime}\right)=\tau\right)
\end{aligned}
$$

GEOMETRY

$$
\begin{aligned}
& \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)=\delta^{i}\left(a_{1}, a_{3}\right) \\
& a_{1} a_{2} \equiv a_{3} a_{4} \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{3}, a_{4}\right) \\
& \mathrm{C}\left(a_{1}, a_{2}, a_{3}\right) \stackrel{\text { def }}{\Leftrightarrow} \mathrm{B}\left(a_{1}, a_{2}, a_{3}\right) \vee \mathrm{B}\left(a_{3}, a_{1}, a_{2}\right) \vee \mathrm{B}\left(a_{2}, a_{3}, a_{1}\right) \\
& \operatorname{Ort}\left(a, a_{1}, a_{2}\right) \stackrel{\text { def }}{\Leftrightarrow} \delta^{i}\left(a, a_{1}\right)>0 \wedge \delta^{i}\left(a_{1}, a_{2}\right)>0 \wedge \delta^{i}\left(a, a_{2}\right)>0 \\
& \wedge \exists a^{\prime}\left(\mathrm{B}\left(a_{2}, a, a^{\prime}\right) \wedge a a_{2} \equiv a a^{\prime} \wedge a_{1} a_{2} \equiv a_{1} a\right) \\
& \delta^{i}\left(a,\left(a_{1}, a_{2}\right)\right)=\tau \stackrel{\text { def }}{\Leftrightarrow} \exists a^{\prime}\left(\operatorname{Ort}\left(a^{\prime}, a, a_{1}\right) \wedge \operatorname{Ort}\left(a^{\prime}, a, a_{2}\right) \wedge \delta^{i}\left(a, a^{\prime}\right)=\tau\right)
\end{aligned}
$$

$\operatorname{CoordSys}\left(a, a_{x}, a_{y}, a_{z}\right) \stackrel{\text { def }}{\Leftrightarrow} \operatorname{Ort}\left(a, a_{x}, a_{y}\right) \wedge \operatorname{Ort}\left(a, a_{y}, a_{z}\right) \wedge \operatorname{Ort}\left(a, a_{x}, a_{z}\right)$

Directions

Sign or direction of a point a on the line given by the ray $\left(a_{0}, a_{x}\right)$ is:

$$
\begin{array}{r}
\operatorname{sign}_{a_{0}, a_{x}}^{-}(a)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(a \neq a_{0} \wedge \mathrm{~B}\left(a, a_{0}, a_{x}\right) \wedge \tau=-1\right) \vee\left(a=a_{0} \wedge \tau=0\right) \vee \\
\left(a \neq a_{0} \wedge\left(\mathrm{~B}\left(a_{0}, a, a_{x}\right) \vee \mathrm{B}\left(a_{0}, a_{x}, a\right)\right) \wedge \tau=1\right)
\end{array}
$$

For other points the direction is the direction of the projection of that point:

$$
\begin{aligned}
\operatorname{sign}_{a_{0}, a_{x}}(a)=\tau \stackrel{\text { def }}{\Leftrightarrow} & \operatorname{sign}_{a_{0}, a_{x}}^{-}(a)=\tau \vee \\
& \vee \exists a^{\prime}\left(\operatorname{Ort}\left(a^{\prime}, a, a_{0}\right) \wedge \operatorname{Ort}\left(a^{\prime}, a, a_{x}\right) \wedge \operatorname{sign}_{a_{0}, a_{x}}^{-}\left(a^{\prime}\right)=\tau\right)
\end{aligned}
$$

CoORDINATIZATION

The event e will be coordinatized on the spatiotemporal position $\left\langle\tau_{t}, \tau_{x}, \tau_{y}, \tau_{z}\right\rangle$ by the coordinate system $\left\langle a, a_{x}, a_{y}, a_{z}\right\rangle$ iff there is a synchronized co-mover a_{e} of a that shows the time τ_{t} in e and $\tau_{d}=\operatorname{sign}_{a, a_{d}}\left(a_{e}\right) \cdot \delta^{i}\left(a_{e}, a, a_{d}\right)$ for $d \in\{x, y, z\}$.

$\operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\left(\tau_{t}, \tau_{x}, \tau_{y}, \tau_{z}\right) \stackrel{\text { def }}{\Leftrightarrow}$

$$
\begin{aligned}
& \left(\exists a_{e} \in \operatorname{Space}_{a}\right)(\operatorname{CoordSys}(a, \\
& \left.a_{x}, a_{y}, a_{z}\right) \wedge \mathrm{P}\left(e, a_{e}, \tau_{t}\right) \wedge \\
& \\
& \quad \operatorname{sign}_{a, a_{x}}\left(a_{e}\right) \cdot \delta^{i}\left(a_{e},\left(a, a_{x}\right)\right)=\tau_{x} \wedge \\
& \\
& \operatorname{sign}_{a, a_{y}}\left(a_{e}\right) \cdot \delta^{i}\left(a_{e},\left(a, a_{y}\right)\right)=\tau_{y} \wedge \\
& \\
& \left.\operatorname{sign}_{a, a_{z}}\left(a_{e}\right) \cdot \delta^{i}\left(a_{e},\left(a, a_{z}\right)\right)=\tau_{z}\right)
\end{aligned}
$$

Axioms

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.
- Logically nice forms: symmetries, equivalences.

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.
- Logically nice forms: symmetries, equivalences.
- There are no different axioms about the same things. E.g.: more than one axioms trying to characterize the line-likeness of inertials,

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.
- Logically nice forms: symmetries, equivalences.
- There are no different axioms about the same things. E.g.: more than one axioms trying to characterize the line-likeness of inertials,
- Axioms are still useful in the practice of high-level proofs.

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.
- Logically nice forms: symmetries, equivalences.
- There are no different axioms about the same things. E.g.: more than one axioms trying to characterize the line-likeness of inertials,
- Axioms are still useful in the practice of high-level proofs.
- Axioms are about a group of agents performing experiments. (the result will be part of the distributed knowledge of the group)

(IMPOSSIBLE) ESTHETICS OF OPERATIONAL AXIOMATIZATIONS

- Few and simple axioms.
- Logically nice forms: symmetries, equivalences.
- There are no different axioms about the same things. E.g.: more than one axioms trying to characterize the line-likeness of inertials,
- Axioms are still useful in the practice of high-level proofs.
- Axioms are about a group of agents performing experiments. (the result will be part of the distributed knowledge of the group)
(weak operationalism)
- Axioms are about arbitrary particular agent performing its own experiments. (the result will be known by the agent)

AxReals

The mathematical sort forms a real closed field.

$$
\begin{aligned}
& (x+y)+z=x+(y+z) \quad(x \cdot y) \cdot z=x \cdot(y \cdot z) \\
& \exists 0 \\
& x+0=x \quad \exists 1 \\
& x \cdot 1=x \\
& \exists(-x) \quad x+(-x)=0 \\
& x+y=y+x \\
& x \neq 0 \rightarrow \exists x^{-1} \quad x \cdot x^{-1}=1 \\
& x \cdot(x+y)=(x \cdot y)+(x \cdot z) \\
& a \leq b \wedge b \leq a \rightarrow a=b \\
& a \leq b \wedge b \leq c \rightarrow a \leq c \\
& \neg a \leq b \rightarrow b \leq a \\
& 0 \leq x \rightarrow \exists r r \cdot r=x \\
& \exists x(\forall y \in \varphi) x \leq y \rightarrow \exists i(\forall y \in \varphi)\left(i \leq y \wedge \forall i^{\prime}\left((\forall y \in \varphi)\left(i^{\prime} \leq y \rightarrow i^{\prime} \leq i\right)\right)\right. \\
& \exists x(\forall y \in \varphi) x \geq y \rightarrow \exists s(\forall y \in \varphi)\left(s \geq y \wedge \forall s^{\prime}\left((\forall y \in \varphi)\left(s^{\prime} \geq y \rightarrow s^{\prime} \geq s\right)\right)\right.
\end{aligned}
$$

AxFull

Every number occurs as a state of any clock in an event.

$$
\forall a \forall x \exists e \quad \mathrm{P}(e, a, x)
$$

AxExt

We do not distinguish between (1) indistinguishable clocks, (2) states of a particular clock in an event and (3) two events where a clock shows the same time.
(1) $\forall a, a^{\prime} \quad\left(\forall e \forall x\left(\mathrm{P}(e, a, x) \leftrightarrow \mathrm{P}\left(e, a^{\prime}, x\right)\right)\right) \rightarrow a=a^{\prime}$
(2) $\forall e \forall a \forall x, y$

$$
(\mathrm{P}(e, a, x) \wedge \mathrm{P}(e, a, y)) \rightarrow x=y
$$

(3) $\forall e, e^{\prime} \forall a \forall x$

$$
\left(\mathrm{P}(e, a, x) \wedge \mathrm{P}\left(e^{\prime}, a, x\right)\right) \rightarrow e=e^{\prime}
$$

AxForward

Clocks are ticking forward.

$$
\forall a\left(\forall e, e^{\prime} \in \text { wline }_{a}\right) \quad\left(e \prec e^{\prime} \leftrightarrow a(e)<a\left(e^{\prime}\right)\right)
$$

AxSynchron

All clocks occupying the same worldline (i.e., cohabitants) use the same measure system, and for every clock, and delay, there is a cohabitant clock with that delay.

$$
\begin{aligned}
& \forall a(\forall b \approx a) \exists x\left(\forall e \in \text { wline }_{a}\right) \quad a(e)=b(e)+x \\
& \forall a \forall x(\exists b \approx a)\left(\forall e \in \text { wline }_{a}\right) \quad a(e)=b(e)+x
\end{aligned}
$$

AxCausality

Causality is transitive.

$$
\left(e_{1} \prec e_{2} \wedge e_{2} \prec e_{3}\right) \rightarrow e_{1} \prec e_{3}
$$

AxChronology

Interiors of lightcones are filled with clocks crossing through the vertex.

$$
\left(e_{1} \preceq e_{2} \wedge e_{2} \ll e_{3} \wedge e_{3} \preceq e_{4}\right) \rightarrow e_{1} \ll e_{4}
$$

AxSecant

Any two events that share a clock share an inertial clock as well.

$$
\left.e \ll e^{\prime} \rightarrow(\exists a \in \operatorname{In})\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a\right)\right)
$$

AxInComoving

If an inertial clock measures an other inertial clock with the same distance twice, then they are comoving.

$$
\left(e_{1} \mathcal{E} b \wedge e_{2} \mathcal{E} b \wedge e_{1} \neq e_{2} \wedge \delta^{i}\left(a, e_{1}\right)=\delta^{i}\left(a, e_{2}\right) \wedge a, b \in \mathrm{In}\right) \rightarrow a \uparrow \uparrow b
$$

AxPing

Every inertial clock can send and receive a signal to any event.

$$
(\forall a \in \operatorname{In}) \forall e\left(\exists e_{1}, e_{2} \in \text { wline }_{a}\right) \quad e_{1} \stackrel{S}{\lambda}^{\lambda} e e^{\lambda} e_{2}
$$

AxRays

For every observer, for any positive x and every direction (given by a light signal) there are lightlike separated events in the past and the future whose distances are exactly x.

$$
(\forall x>0) \forall a \forall e \exists e_{1} \exists e_{2}\left(\exists e^{a}, e_{a} \in \text { wline }_{a}\right)
$$

$$
\overrightarrow{e_{2} e_{a} e} \wedge \delta^{i}\left(a, e_{2}\right)=x \wedge \overrightarrow{e e^{a} e_{1}} \wedge \delta^{i}\left(a, e_{1}\right)=x
$$

AxRound

Given comoving observers a, b and c, the travelling time of simultaneously sent signals on the route $\langle a, b, c, a\rangle$ and $\langle a, c, b, a\rangle$ are (the same, namely,) the average of the travelling time of the $\langle a, c, a\rangle$ and $\langle a, b, c, b, a\rangle$.

$$
\begin{aligned}
& e_{3}^{a}=e_{3}^{a} \\
& \rightarrow\left(a\left(e_{3}^{a}\right)=a\left(e_{3}^{a \prime}\right)=\frac{a\left(e_{2}^{a}\right)+a\left(e_{4}^{a}\right)}{2}\right)
\end{aligned}
$$

AxRound

Given comoving observers a, b and c, the travelling time of simultaneously sent signals on the route $\langle a, b, c, a\rangle$ and $\langle a, c, b, a\rangle$ are (the same, namely,) the average of the travelling time of the $\langle a, c, a\rangle$ and $\langle a, b, c, b, a\rangle$.

$$
\begin{aligned}
& e_{3}^{a}=e_{3}^{a \prime} \\
& \rightarrow\left(a\left(e_{3}^{a}\right)=a\left(e_{3}^{a \prime}\right)=\frac{a\left(e_{2}^{a}\right)+a\left(e_{4}^{a}\right)}{2}\right)
\end{aligned}
$$

AxRound

Given comoving observers a, b and c, the travelling time of simultaneously sent signals on the route $\langle a, b, c, a\rangle$ and $\langle a, c, b, a\rangle$ are (the same, namely,) the average of the travelling time of the $\langle a, c, a\rangle$ and $\langle a, b, c, b, a\rangle$.

$$
\begin{aligned}
& e_{3}^{a}=e_{3}^{a \prime} \\
& \rightarrow\left(a\left(e_{3}^{a}\right)=a\left(e_{3}^{a \prime}\right)=\frac{a\left(e_{2}^{a}\right)+a\left(e_{4}^{a}\right)}{2}\right)
\end{aligned}
$$

AxRound

Given comoving observers a, b and c, the travelling time of simultaneously sent signals on the route $\langle a, b, c, a\rangle$ and $\langle a, c, b, a\rangle$ are (the same, namely,) the average of the travelling time of the $\langle a, c, a\rangle$ and $\langle a, b, c, b, a\rangle$.

$$
\begin{aligned}
& e_{3}^{a}=e_{3}^{a \prime} \\
& \rightarrow\left(a\left(e_{3}^{a}\right)=a\left(e_{3}^{a \prime}\right)=\frac{a\left(e_{2}^{a}\right)+a\left(e_{4}^{a}\right)}{2}\right)
\end{aligned}
$$

AxRound

Given comoving observers a, b and c, the travelling time of simultaneously sent signals on the route $\langle a, b, c, a\rangle$ and $\langle a, c, b, a\rangle$ are (the same, namely,) the average of the travelling time of the $\langle a, c, a\rangle$ and $\langle a, b, c, b, a\rangle$.

$$
\begin{aligned}
& e_{3}^{a}=e_{3}^{a \prime} \\
& \rightarrow\left(a\left(e_{3}^{a}\right)=a\left(e_{3}^{a \prime}\right)=\frac{a\left(e_{2}^{a}\right)+a\left(e_{4}^{a}\right)}{2}\right)
\end{aligned}
$$

AxPasch

Pasch-axiom for light signals.

$$
\begin{aligned}
& \left(a \uparrow \uparrow b \wedge\left(\exists a_{1} \in \text { wline }_{a}\right)\left(\exists b_{1} \in \text { wline }_{b}\right)\left(\overrightarrow{c p a_{1}} \wedge \overrightarrow{c q b_{1}}\right)\right) \rightarrow \\
& \rightarrow(\exists x \uparrow \uparrow a)\left(\exists x_{1}, x_{2} \in \text { wline }_{x}\right)\left(\exists a_{2} \in \text { wline }_{a}\right)\left(\exists b_{2} \in \text { wline }_{b}\right)\left(\overrightarrow{p x_{2} b_{2}} \wedge \overrightarrow{q x_{1} a_{2}}\right)
\end{aligned}
$$

Ax5Segment

If two pairs of observers b, d and b^{\prime}, d^{\prime} measures two pair of lightlike separated events e_{1}, e_{2} and $e_{1}^{\prime}, e_{2}^{\prime}$ to the same distances, respectively, and the lightline crosses the worldlines of b and b^{\prime}, respectively, then the distances b - d and $b^{\prime}-d^{\prime}$ are the same (for all of them).

$$
\begin{aligned}
d \uparrow \uparrow d^{\prime} \wedge b \uparrow \uparrow b^{\prime} & \wedge e_{b} \mathcal{E} b \wedge e_{b}^{\prime} \mathcal{E} b^{\prime} \wedge \overrightarrow{e_{1} e_{b} e_{2}} \wedge \overrightarrow{e_{1}^{\prime} e_{b}^{\prime} e_{2}^{\prime}} \wedge \\
& \wedge \delta^{i}\left(b, e_{1}\right)=\delta^{i}\left(b^{\prime}, e_{1}^{\prime}\right) \wedge \delta^{i}\left(b, e_{2}\right)=\delta^{i}\left(b^{\prime}, e_{2}^{\prime}\right) \wedge
\end{aligned}
$$

AxCircle

For every three non-collinear inertial observer there is a fourth one that measures them with the same distance.

$$
(\forall a, b, c \in \operatorname{In})((a \uparrow \uparrow b \uparrow \uparrow \stackrel{\mathrm{i}}{\mathrm{i}}
$$

$$
\begin{aligned}
& \left.\wedge \exists e_{1}, e_{2}, e_{3}\left(e_{1} \mathcal{E} a \wedge e_{2} \mathcal{E} b \wedge e_{3} \mathcal{E} \subset \wedge e_{1}{ }^{\imath} e_{2}{ }^{\jmath} e_{3} \wedge \neg e_{1}{ }^{\imath} e_{3}\right)\right) \rightarrow \\
& \rightarrow \exists d \exists e_{a}, e_{b}, e_{c}, e_{d}, e_{d}^{\prime}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge e_{d} \mathcal{E} d \wedge e_{d}^{\prime} \mathcal{E} d \wedge\right.
\end{aligned}
$$

AxMinDim : n

The dimension of the spacetime is at least n. The formula says that $n-1$ lightcones never intersect in only one event.

$$
\forall e_{1}, \ldots, e_{n}\left(\bigwedge_{i \leq n-1} e_{i} \jmath e_{n} \rightarrow \exists e_{n+1}\left(\bigwedge_{i \leq n-1} e_{i} \preccurlyeq e_{n} \wedge e_{n} \neq e_{n+1}\right)\right)
$$

Tarski's lower
$n-$ dimensional axiom: Centers of circumscribed spheres around $n-1$ points cannot be covered with a line.

AxMaxDim : n

The dimension of the spacetime is at most n. The formula says that there are n lightcones that intersect at most in one event.

$$
\exists e_{1}, \ldots, e_{n+1}\left(\bigwedge_{i \leq n} e_{i}{ }_{j} e_{n+1} \wedge \forall e_{n+2}\left(\bigwedge_{i \leq n} e_{i}{ }_{i} e_{n+2} \rightarrow e_{n+1}=e_{n+2}\right)\right)
$$

Tarski's upper ndimensional axiom: Centers of circumscribed spheres around n points are on a line.

Ax4Dim

The dimension of the spacetime is exactly $4 ; 3$ lightcones never intersect in only one event and there are 4 lightcones intersect in at most one event.

AxMinDim : $4 \wedge$ AxMaxDim : 4

AxTangent

For every event of every clock there is an inertial clock that shares that event and the local instantaneous velocity of that observer.

AxNoAcceleration

Every clock is inertial.

$$
\forall a \quad \operatorname{In}(a)
$$

AxAcceleration

For every coordinate system and every definable timelike curve there is a clock having that wordline in the coordinate system.

AXIOM SYSTEMS

We define SClTh to be the following sets of axioms.
SClTh $\stackrel{\text { def }}{=}\left\{\begin{array}{llll}\text { AxFull } & \text { AxCausality } & \text { AxRay } & \text { Ax5Seg } \\ \text { AxExt } & \text { AxChronology } & \text { AxPing } & \text { AxCircle } \\ \text { AxForward } & \text { AxSecant } & \text { AxRound } & \text { Ax4Dim } \\ \text { AxSynchron } & \text { AxInComovement } & \text { AxPasch } & \text { AxTangent }\end{array}\right\}$

SCITh ${ }^{\text {NoAcc }} \stackrel{\text { def }}{=}(\mathrm{SClTh}-\{$ AxSecant, AxTangent $\}) \cup\{$ AxNoAcceleration $\}$

$$
\mathrm{SClTh} \stackrel{\text { Acc }}{ } \stackrel{\text { def }}{=} \mathrm{SClTh} \cup\{\text { AxAcceleration }\}
$$

Theorems

PLAN

1 Kronheimer-Penrose axioms
(Immediate)

PLAN

1 Kronheimer-Penrose axioms
2 Signalling (radar-distance) is unique
(Immediate)
(Immediate)

PLAN

1 Kronheimer-Penrose axioms
2 Signalling (radar-distance) is unique
(Immediate)
(Immediate)
3 There is an ISCM/point in every event

PLAN

1 Kronheimer-Penrose axioms
2 Signalling (radar-distance) is unique
3 There is an ISCM/point in every event
4 There is a point in every event
(Immediate)
(Immediate)
(Nice)
(Immediate)

PLAN

1 Kronheimer-Penrose axioms
2 Signalling (radar-distance) is unique
3 There is an ISCM/point in every event
4 There is a point in every event
5 Straight signals arrive sooner
(Immediate)
(Immediate)
(Nice)
(Immediate)
(Nice)

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique (Immediate)

3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique (Immediate)
3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

7 There are no two ISCM/points in an event.
(Important, long)
(simple)

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique (Immediate)

3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

7 There are no two ISCM/points in an event.
8 'Equivalence' of $\overrightarrow{e_{a} e_{b} e_{c}}$ and $\mathrm{B}(a, b, c)$.

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique
3 There is an ISCM/point in every event
4 There is a point in every event
5 Straight signals arrive sooner
$\begin{array}{ll}6 & \begin{array}{l}\text { syn } \\ \uparrow \uparrow \text { is an eq.rel. and } \delta^{i}\end{array} \text { is a metric on } \uparrow \uparrow \text { syn } \\ 7 & \text { There are no two ISCM/points in an event. }\end{array}$
$6 \quad \uparrow \uparrow$ is an eq.rel. and δ^{i} is a metric on $\uparrow \uparrow$-relat
7 There are no two ISCM/points in an event.
8 'Equivalence' of $\overrightarrow{e_{a} e_{b} e_{c}}$ and $\mathrm{B}(a, b, c)$.
9 Tarski's axioms.
(Immediate)
(Nice)
(Immediate)
(Nice)

$$
x^{2}-2
$$

(Important, long)
(simple)
(simple)
(Mostly trivial)

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique
(Immediate)
3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

7 There are no two ISCM/points in an event.
8 'Equivalence' of $\overrightarrow{e_{a} e_{b} e_{c}}$ and $\mathrm{B}(a, b, c)$.
9 Tarski's axioms.
10 Coordinatization is a bijection between W and Q^{4}.
exo
(Important, long)

PLAN

1 Kronheimer-Penrose axioms
(Immediate)
2 Signalling (radar-distance) is unique (Immediate)

3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

7 There are no two ISCM/points in an event.
8 'Equivalence' of $\overrightarrow{e_{a} e_{b} e_{c}}$ and $\mathrm{B}(a, b, c)$.
9 Tarski's axioms.
10 Coordinatization is a bijection between W and Q^{4}.
(simple)
(Mostly trivial)
(simple)
11 Radar-based spatial distance and elapsed time defines the same quantities as coordinate based definition.
(Tarski)

PLAN

1 Kronheimer-Penrose axioms
2 Signalling (radar-distance) is unique (Immediate)

3 There is an ISCM/point in every event
(Nice)
4 There is a point in every event
(Immediate)
5 Straight signals arrive sooner
(Nice)

7 There are no two ISCM/points in an event.
8 'Equivalence' of $\overrightarrow{e_{a} e_{b} e_{c}}$ and $\mathrm{B}(a, b, c)$.
9 Tarski's axioms.
10 Coordinatization is a bijection between W and Q^{4}.
(simple)
(Mostly trivial)
(simple)
11 Radar-based spatial distance and elapsed time defines the same quantities as coordinate based definition.
(Tarski)
12 Proving 'Simple-SpecRel'.

Kronheimer-Penrose axioms

$$
\begin{aligned}
& e \preceq e \\
& \left(e_{1} \preceq e_{2} \wedge e_{2} \preceq e_{3}\right) \rightarrow e_{1} \preceq e_{3} \\
& \left(e_{1} \preceq e_{2} \wedge e_{2} \preceq e_{1}\right) \rightarrow e_{1}=e_{2} \\
& \neg e \ll e \\
& e_{1} \ll e_{2} \rightarrow e_{1} \preceq e_{2} \\
& \left(e_{1} \preceq e_{2} \wedge e_{2} \ll e_{3}\right) \rightarrow e_{1} \ll e_{3} \\
& \left(e_{1} \ll e_{2} \wedge e_{2} \preceq e_{3}\right) \rightarrow e_{1} \ll e_{3} \\
& e_{1} \Im e_{2} \leftrightarrow\left(e_{1} \preceq e_{2} \wedge \neg e_{1} \ll e_{2}\right)
\end{aligned}
$$

Are consequences of

$$
\begin{array}{r}
\neg e \prec e \\
\left(e_{1} \prec e_{2} \wedge e_{2} \ll e_{3}\right) \rightarrow e_{1} \ll e_{3} \\
\left(e_{1} \ll e_{2} \wedge e_{2} \prec e_{3}\right) \rightarrow e_{1} \ll e_{3} \tag{3}
\end{array}
$$

- (1) comes from AxForward; $e \prec e$ would lead to $a(e)<a(e)$.
- (2): is AxChronology where $e_{1} \neq e_{2}$ and $e_{3}=e_{4}$.
- (3): is AxChronology where $e_{1}=e_{2}$ and $e_{3} \neq e_{4}$.

FORBIDDEN TRIANGLES

FORBIDDEN TRIANGLES

AxChronology

Contradiction

FORBIDDEN TRIANGLES

AxChronology

Contradiction

FORBIDDEN TRIANGLES

AxChronology

Contradiction

COROLLARY: If a (not necessarily inertial) clock can radar an event, then the elapsed time (distance) is unique.

FORBIDDEN TRIANGLES

AxChronology

Contradiction

COROLLARY: If a (not necessarily inertial) clock can radar an event, then the elapsed time (distance) is unique. COROLLARY: $\delta^{i}(a, e)=\tau$ is a total function by AxPing

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \operatorname{In}) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0_{a}} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \text { In }) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0 a} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \text { In }) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0_{a}} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \text { In }) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0 a} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \text { In }) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0 a}{ }^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0 a} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \operatorname{In}) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0 a} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

Existence of ISCMs in Events

For every inertial observer, there is a synchronized inertial observer in any event.

$$
(\forall a \in \operatorname{In}) \forall e \exists b \quad e \mathcal{E} b \wedge a \uparrow \uparrow b
$$

Let $a \in$ In and e be arbitrary. If $e \in$ wline $_{a}$ then we are ready. Suppose now that $e \notin$ wline $_{a}$. By AxPing, there are $e_{a}, e^{a} \in$ wline $_{a}$ s.t. $e_{a^{3}} e^{3} e^{a}$. Let $x \stackrel{\text { def }}{=} a\left(e^{a}\right)-a\left(e_{a}\right)$. Note that $\delta^{i}(a, e)=x$ is true. By AxCausality and AxForward and by the assumption that $e \notin$ wline $_{a}$, this x is strictly positive. By AxRay, there is an e_{0} s.t. e_{0} is 1 distance away from a and $\overrightarrow{e_{0} e_{a} e}$. By AxPing, there is an $e_{0 a} \in$ wline $_{a}$ s.t. $e_{0} a^{3} e_{0}$. By AxRay again, there is an event e_{b} s.t. $\overrightarrow{e_{b} e_{0 a} e_{0}}$ and $\delta^{i}\left(a, e_{b}\right)=x$. Since $e_{b}{ }^{7} e_{0 a} \ll e_{a \xi^{7}} e$, by AxChronology we have $e_{b} \ll e$. By AxSecant, there is an inertial clock b through e_{b} and e. Now since both a and b are inertial and $\delta^{i}\left(a, e_{b}\right)=x$ and $\delta^{i}(a, e)=x$, by AxInCoMovement, $a \uparrow \uparrow b$, and by AxSynchron again, there is an a-synchronized b^{\prime} cohabitant of b here as well; that is the clock having delay

There is a clock in every event.

$$
\forall e \exists c \quad e \mathcal{E} c
$$

Let e be an arbitrary event. There is a clock a in some event e_{0} by AxFull (and by the tautology $\exists a a=a$). By AxSecant, there is an inertial clock at e_{0} as well. By the previous proposition, there is an inertial comover of a at e.

STRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e_{1} \mathbb{N}_{\underline{T}} e \wedge e_{1} \Omega_{\underline{T}} e_{2}{ }^{\top} e^{\prime} e^{\prime}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} e_{2} \wedge e^{\gamma} e_{1} e^{\prime} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

STRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

STRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

STRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

StRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

StRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

StRAIGHT SIGNALS ARRIVE SOONER

$\forall a \forall e_{1}, e_{2}, e, e^{\prime}\left(e \mathcal{E} a \wedge e^{\prime} \mathcal{E} a \wedge e^{\prime} e_{2} \wedge e^{\wedge} e_{1} e_{2}\right) \rightarrow a(e) \leq a\left(e^{\prime}\right)$
Indirectly by the Kronheimer-Penrose axioms.

Metric Theorem

syn $\uparrow \uparrow$ is an equivalence relation and δ^{i} is a(n U-relative) metric on $\uparrow \uparrow$ related
clocks, i.e., clocks, i.e.,

$$
\begin{aligned}
& \begin{array}{c}
\text { syn } \\
a \uparrow \uparrow a
\end{array} \\
& a_{1} \uparrow \uparrow a_{2} \Rightarrow a_{2} \uparrow \uparrow a_{1} \\
& \text { syn } \\
& \text { syn } \text { syn } \\
& a_{1} \uparrow \uparrow a_{2} \wedge a_{2} \uparrow \uparrow a_{3} \Rightarrow a_{1} \uparrow \uparrow a_{3} \\
& \delta^{i}(a, a)=0 \\
& \delta^{i}\left(a_{1}, a_{2}\right)=0 \Rightarrow a_{1}=a_{2} \\
& \delta^{i}\left(a_{1}, a_{2}\right)=\delta^{i}\left(a_{2}, a_{1}\right) \\
& \delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right) \geq \delta^{i}\left(a_{1}, a_{3}\right)
\end{aligned}
$$

We prove these simultaneously.

REFLEXIVITY OF $\uparrow \uparrow$, SELFDISTANCE $=0$

- Self-distance: By $e{ }^{2} e e^{e} e$ we have $\delta^{i}(a, e)=a(e)-a(e)=0$. The truth of $\delta^{i}(a, a)=0$ is trivially implied by that fact.
- Reflexivity of $\uparrow \uparrow$ syn : By the self-distance we have $a\left(e^{\prime}\right)=a(e)+0$ syn whenever $e^{\top} e^{\prime}$, so $\uparrow \uparrow$ is reflexive.

SYMMETRY OF $\uparrow \uparrow$ AND δ^{i}

Suppose that $a_{1} \uparrow \uparrow a_{2}$.

IDENTITY OF INDISCERNIBLES

Take arbitrary iscm's a_{1} and a_{2} for which $\delta^{i}\left(a_{1}, a_{2}\right)=0$, i.e.,

$$
\left(\forall e \in \text { wline }_{a_{2}}\right)\left(\exists w_{1}, w_{2} \in \text { wline }_{a_{1}}\right) w_{1}{ }_{1} e e_{=} w_{2} \wedge a_{1}\left(w_{2}\right)-a_{1}\left(w_{2}\right)=0
$$

but that means that $a_{1}\left(w_{1}\right)=a_{1}\left(w_{2}\right)$, so $w_{1}=w_{2}$. Observe that

- $w_{1} e$ and $e{ }_{3} w_{2}=w_{1}$ are impossible (AxCausality, irreflexivity).
- $w_{1}=e_{及} w_{2}$ or $w_{2}=e_{\S} w_{1}$ are impossible too since w_{1} and w_{2} share a.

So the only possiblity is that $w_{1}=e=w_{2}$.
Since this is true for all $e \in$ wline $_{a_{2}}$, we have that wline $a_{a_{2}} \subseteq$ wline $_{a_{1}}$. By symmetry of δ^{i} we have that wline $a_{a_{2}}=$ wline $_{a_{1}}$. Now since a_{1} and a_{2} are iscms, they show the same numbers in the same events, therefore $a_{1}=a_{2}$.

TRANSITIVITY OF $\uparrow \uparrow$

We have to show that $a_{3}\left(e_{3}\right)=x+d_{13}$.

TRIANGLE INEQUALITY

By AxPing, we can take $e_{1} \in$ wline $_{a_{1}}, e_{2} \in$ wline $_{a_{2}}, e_{3}, e_{3}^{*} \in$ wline $_{a_{3}}$ s.t. $e_{1}{ }_{1}^{\pi} e_{2}{ }_{2}^{\pi} e_{3}$ syn and $e_{1} \beta^{*} e_{3}^{*}$. Since $\uparrow \uparrow$ is an eq.rel, we have that

$$
\begin{aligned}
& a_{3}\left(e_{3}\right)=a_{1}\left(e_{1}\right)+\delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right) \\
& a_{3}\left(e_{3}^{*}\right)=a_{1}\left(e_{1}\right)+\delta^{i}\left(a_{1}, a_{3}\right)
\end{aligned}
$$

Since straight signals arrive sooner, $a\left(e_{3}^{*}\right) \leq a\left(e_{3}\right)$, so

$$
a_{1}\left(e_{1}\right)+\delta^{i}\left(a_{1}, a_{3}\right) \leq a_{1}\left(e_{1}\right)+\delta^{i}\left(a_{1}, a_{2}\right)+\delta^{i}\left(a_{2}, a_{3}\right)
$$

No clock has two ISCMs at the same event

$$
(\forall a \in \operatorname{In}) \forall e\left(\forall a_{1}, a_{2} \in \mathrm{D}_{e}\right) \quad \begin{aligned}
& \text { syn syn } \\
& a_{1} \uparrow \uparrow a \uparrow \uparrow a_{2}
\end{aligned} \Rightarrow a_{1}=a_{2}
$$

Let $e \in$ wline $_{a_{1}} \cap$ wline $_{a_{2}}$ be arbitrary but fixed. Let a_{1} and a_{2} be inertial comovers of a occurring at e.

- transitivity $\uparrow \uparrow \uparrow: \begin{gathered}\text { syn } \\ a_{1} \uparrow \uparrow a_{2} .\end{gathered}$

No clock has two ISCMs at the same event

$$
(\forall a \in \mathrm{In}) \forall e\left(\forall a_{1}, a_{2} \in \mathrm{D}_{e}\right) \quad \begin{aligned}
& \text { syn syn } \\
& a_{1} \uparrow \uparrow a \uparrow \uparrow a_{2}
\end{aligned} \Rightarrow a_{1}=a_{2}
$$

Let $e \in$ wline $_{a_{1}} \cap$ wline $_{a_{2}}$ be arbitrary but fixed. Let a_{1} and a_{2} be inertial comovers of a occurring at e.

- transitivity $\uparrow \uparrow: \begin{aligned} & \text { syn } \\ & a_{1} \uparrow \uparrow a_{2} \\ & \text { syn }\end{aligned}$
- Selfdistance: $\delta^{i}\left(a_{1}, e\right)=\delta^{i}\left(a_{2}, e\right)=0$.

No clock has two ISCMs at the same event

$$
(\forall a \in \operatorname{In}) \forall e\left(\forall a_{1}, a_{2} \in \mathrm{D}_{e}\right) \quad \begin{aligned}
& \text { syn syn } \\
& a_{1} \uparrow \uparrow a \uparrow \uparrow a_{2}
\end{aligned} \Rightarrow a_{1}=a_{2}
$$

Let $e \in$ wline $_{a_{1}} \cap$ wline $_{a_{2}}$ be arbitrary but fixed. Let a_{1} and a_{2} be inertial comovers of a occurring at e.

- transitivity $\uparrow \uparrow \uparrow: \stackrel{\text { syn }}{\uparrow \uparrow{ }^{\text {syn }} \uparrow \uparrow a_{2}}$.
- Selfdistance: $\delta^{i}\left(a_{1}, e\right)=\delta^{i}\left(a_{2}, e\right)=0$.
- Since $a_{1} \uparrow \uparrow a_{2}$ implies comovement, i.e., constant distance: $\quad \delta^{i}\left(a_{1}, a_{2}\right)=0$.

No clock has two ISCMs at the same event

$$
(\forall a \in \operatorname{In}) \forall e\left(\forall a_{1}, a_{2} \in \mathrm{D}_{e}\right) \quad \begin{aligned}
& \text { syn syn } \\
& a_{1} \uparrow \uparrow a \uparrow \uparrow a_{2}
\end{aligned} \Rightarrow a_{1}=a_{2}
$$

Let $e \in$ wline $_{a_{1}} \cap$ wline $_{a_{2}}$ be arbitrary but fixed. Let a_{1} and a_{2} be inertial comovers of a occurring at e.

- transitivity $\uparrow \uparrow \uparrow: \stackrel{\text { syn }}{\uparrow \uparrow{ }^{\text {syn }} \uparrow \uparrow a_{2}}$.
- Selfdistance: $\delta^{i}\left(a_{1}, e\right)=\delta^{i}\left(a_{2}, e\right)=0$.
- Since $a_{1} \uparrow \uparrow a_{2}$ implies comovement, i.e., constant distance: $\quad \delta^{i}\left(a_{1}, a_{2}\right)=0$.
- Identity of indiscernibles: $a_{1}=a_{2}$.

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

$$
\begin{aligned}
& \forall a_{0}\left(\forall a, b, c \in \text { Space }_{\mathrm{a}_{0}}\right) \\
& a \neq b
\end{aligned} \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge{\left.\overrightarrow{e_{a} e_{b} e_{c}}\right)}\right. \text {. }
$$

\Leftarrow : Since we have iscm observers

$$
\begin{aligned}
c\left(e_{c}\right) & =a\left(e_{a}\right)+\delta^{i}(a, b)+\delta^{i}(a, c) & & \text { by } \left.e_{a}\right\}^{\imath} e_{b}{ }^{\imath} e_{c} \\
& =a\left(e_{a}\right)+\delta^{i}(a, c) & & \text { by } \left.e_{a}\right\}^{\imath} e_{c}
\end{aligned}
$$

therefore $\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)$.

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

$$
\begin{aligned}
& \forall a_{0}\left(\forall a, b, c \in \text { Space }_{\mathrm{a}_{0}}\right) \\
& a \neq b \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} \subset \wedge \overrightarrow{e_{a} e_{b} e_{c}}\right)
\end{aligned}
$$

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} \vec{C}_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

$$
\begin{aligned}
& \forall a_{0}\left(\forall a, b, c \in \text { Space }_{\mathrm{a}_{0}}\right) \\
& a \neq b \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge{\left.\overrightarrow{e_{a} e_{b} e_{c}}\right)}\right)
\end{aligned}
$$

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} e_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

$$
\begin{aligned}
& \forall a_{0}\left(\forall a, b, c \in \text { Space }_{\mathrm{a}_{0}}\right) \\
& a \neq b
\end{aligned} \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge{\left.\overrightarrow{e_{a} e_{b} e_{c}}\right)}\right)
$$

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} e_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

```
    \(\forall a_{0}\left(\forall a, b, c \in\right.\) Space \(\left._{\mathrm{a}_{0}}\right)\)
\(a \neq b \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge \overrightarrow{e_{a} e_{b} e_{c}}\right)\)
```

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} e_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

```
    \(\forall a_{0}\left(\forall a, b, c \in\right.\) Space \(\left._{\mathrm{a}_{0}}\right)\)
\(a \neq b \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge \overrightarrow{e_{a} e_{b} e_{c}}\right)\)
```

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} e_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

'EQUIVALENCE' OF BETWEENS

For any three distinct inertial comovers a, b and c, the clock b is between a and c iff a can send a light signal to c through b.

```
    \(\forall a_{0}\left(\forall a, b, c \in\right.\) Space \(\left._{\mathrm{a}_{0}}\right)\)
\(a \neq b \neq c \wedge \mathrm{~B}(a, b, c) \leftrightarrow \exists e_{a}, e_{b}, e_{c}\left(e_{a} \mathcal{E} a \wedge e_{b} \mathcal{E} b \wedge e_{c} \mathcal{E} c \wedge \overrightarrow{e_{a} e_{b} e_{c}}\right)\)
```

\Rightarrow Suppose that there is no $\overrightarrow{e_{a} e_{b} e_{c}}$ while

$$
\delta^{i}(a, b)+\delta^{i}(b, c)=\delta^{i}(a, c)
$$

TARSKI'S AXIOMATIZATION OF GEOMETRY

1. $a b \equiv b a$
2. $(a b \equiv p q \wedge a b \equiv r s) \rightarrow p q \equiv r s$
3. $a b \equiv c c \rightarrow a=b$
4. $\exists x(B(q a x) \wedge a x \equiv b c)$
5. $\left(a \neq b \wedge B(a b c) \wedge B\left(a^{\prime} b^{\prime} c^{\prime}\right) \wedge a b \equiv a^{\prime} b^{\prime} \wedge b c \equiv b^{\prime} c^{\prime} \wedge\right.$

$$
\left.\wedge a d \equiv a^{\prime} d^{\prime} \wedge b d \equiv b^{\prime} d^{\prime}\right) \rightarrow c d \equiv c^{\prime} d^{\prime}
$$

(Five-segment)
6. $B(a b a) \rightarrow a=b$
7. $(B(a p c) \wedge B(b q c)) \rightarrow \exists x(B(p x b) \wedge B(q x a))$
$8^{n} . \exists a, b, c, p_{1}, \ldots p_{n-1}\left(\bigwedge_{i<j<n} p_{i} \neq p_{j} \wedge \bigwedge_{1<i<n}\left(a p_{1} \equiv a p_{i} \wedge b p_{1} \equiv b p_{i} \wedge c p_{1} \equiv c p_{i}\right) \wedge\right.$

$$
\wedge \neg(B(a b c) \vee B(b c a) \vee B(c a b))) \quad \text { (Lower } n \text {-dimension) }
$$

$9^{n} .\left(\bigwedge_{i<j<n} p_{i} \neq p_{j} \wedge \bigwedge_{1<i<n}\left(a p_{1} \equiv a p_{i} \wedge b p_{1} \equiv b p_{i} \wedge c p_{1} \equiv c p_{i}\right)\right) \rightarrow$

$$
\rightarrow(B(a b c) \vee B(b c a) \vee B(c a b)) \quad \text { (Upper }
$$

102. $B(a b c) \vee B(b c a) \vee B(c a b) \vee \exists x(a x \equiv b x \wedge a x \equiv c x) \quad$ (Circumscribed tr.) 11. $\exists a \forall x, y(\alpha \wedge \beta \rightarrow B(a x y)) \rightarrow \exists b \forall x, y(\alpha \wedge \beta \rightarrow B(a b y))$ (Continuity scheme) where α and β are first-order formulas, the first of which does not contain any free occurrences of a, b and y and the second any free occurrences of a, b, x.

EVERY EVENT IS COORDINATIZED WITH A 4-TUPLE. (TOTALITY)

Let e be an arbitrary event. Since there exactly one iscm there, we have a synchronized comover a_{e} of a in e. Then by definition, $a_{e}(e)$ will be the time coordinate. We can use Tarski's axioms to conclude that there are (unique) a_{x}^{\prime}, a_{y}^{\prime} and a_{z}^{\prime} that are projections of the point a_{e} to the lines $\left(a, a_{x}\right),\left(a, a_{y}\right)$ and (a, a_{z}), respectively. By AxPing, these projections can ping a_{e}, i.e., they can measure the spatial distance between them and a_{e} (and e), and thus we will have the spatial coordinates of e as well.

COROLLARY: No event has two different coordinates.

Every 4-TUPLE IS A COORDINATE OF AN EVENT. (SURJECTIVITY)

Let (t, x, y, z) be an arbitrary 4-tuple. It follows from Tarski's axioms that there are planes there are inertial comovers $a_{x}^{\prime}, a_{y}^{\prime}$ and a_{z}^{\prime} of a on the axes $\left(a, a_{x}\right),\left(a, a_{y}\right)$ and $\left(a, a_{z}\right)$, respectively, such that $\delta^{i}\left(a, a_{x}\right)=x, \delta^{i}\left(a, a_{y}\right)=y$ and $\delta^{i}\left(a, a_{t}\right)=t$. For all $i \in\{x, y, z\}$ Let P_{i} denote the plane that contains a_{i}^{\prime} and is orthogonal to the line $\left(a, a_{i}\right)$. Then by Tarski's axioms, these planes has one unique intersection, a_{e}. By the definition of the Coord, any event of wline a_{e} are coordinatized on the spatial coordinates (x, y, z). Now we know from Ax-Full that there is an event e of wline a_{e} such that $a(e)=t$.

COROLLARY: No 4-tuple is a coordinatization of two different events.
(Injectivity)

Spatial distance

$$
\operatorname{sd}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists a^{\prime} \in \text { Space }_{a}\right)\left(a \in \mathrm{D}_{e} \wedge \delta^{i}\left(a, e^{\prime}\right)=\tau\right)
$$

Spatial distance

$$
\operatorname{sd}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists a^{\prime} \in \text { Space }_{a}\right)\left(a \in \mathrm{D}_{e} \wedge \delta^{i}\left(a, e^{\prime}\right)=\tau\right)
$$

$$
\begin{aligned}
\operatorname{sd}_{a}\left(e, e^{\prime}\right)= & \Longleftrightarrow\left(\exists\left\langle a_{x}, a_{y}, a_{z}\right\rangle \in \operatorname{CoordSys}(\mathrm{a})\right) \exists \vec{x} \vec{y} \\
& \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\vec{x} \wedge \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}\left(e^{\prime}\right)=\vec{y} \wedge \tau=\left|\vec{x}_{2-4}-\vec{y}_{2-4}\right|
\end{aligned}
$$

Spatial distance

$$
\operatorname{sd}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists a^{\prime} \in \text { Space }_{a}\right)\left(a \in \mathrm{D}_{e} \wedge \delta^{i}\left(a, e^{\prime}\right)=\tau\right)
$$

$$
\begin{aligned}
\operatorname{sd}_{a}\left(e, e^{\prime}\right)= & \Longleftrightarrow\left(\exists\left\langle a_{x}, a_{y}, a_{z}\right\rangle \in \operatorname{CoordSys}(\mathrm{a})\right) \exists \vec{x} \vec{y} \\
& \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\vec{x} \wedge \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}\left(e^{\prime}\right)=\vec{y} \wedge \tau=\left|\vec{x}_{2-4}-\vec{y}_{2-4}\right|
\end{aligned}
$$

Pythagoras's theorem:

$$
\delta^{i}\left(a_{e}, a_{e^{\prime}}\right)^{2}=\delta^{i}\left(a_{e}, b\right)^{2}+\delta^{i}\left(b, a_{e^{\prime}}\right)^{2}
$$

where $b \in$ Space $_{\mathrm{a}}$ is a clock with which

$$
\operatorname{Ort}\left(a_{x}^{\prime}, a, b\right) \wedge \operatorname{Ort}\left(a_{y}^{\prime}, a, b\right) \wedge \operatorname{Ort}\left(a_{z}^{\prime}, a, b\right)
$$

where $a_{x}^{\prime}, a_{y}^{\prime}, a_{z}^{\prime}$, are the projections of a_{e} to the axes of the coordinate system (see the figure of coordinatization).

ELAPSED TIME

$$
\mathrm{et}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists b, b^{\prime} \in \text { Space }_{a}\right)\left|b(e)-b^{\prime}\left(e^{\prime}\right)\right|=\tau
$$

ELAPSED TIME

$$
\begin{aligned}
& \mathrm{et}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists b, b^{\prime} \in \operatorname{Space}_{a}\right)\left|b(e)-b^{\prime}\left(e^{\prime}\right)\right|=\tau \\
& \text { et }_{a}\left(e, e^{\prime}\right)=\tau \Longleftrightarrow\left(\exists\left\langle a_{x}, a_{y}, a_{z}\right\rangle \in \operatorname{CoordSys}(\mathrm{a})\right) \exists \vec{x}, \vec{y} \\
& \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\vec{x} \wedge \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}\left(e^{\prime}\right)=\vec{y} \wedge \tau=\left|\vec{x}_{1}-\vec{y}_{1}\right|
\end{aligned}
$$

ELAPSED TIME

$$
\begin{aligned}
& \mathrm{et}_{a}\left(e, e^{\prime}\right)=\tau \stackrel{\text { def }}{\Leftrightarrow}\left(\exists b, b^{\prime} \in \operatorname{Space}_{a}\right)\left|b(e)-b^{\prime}\left(e^{\prime}\right)\right|=\tau \\
& \mathrm{et}_{a}\left(e, e^{\prime}\right)=\tau \Longleftrightarrow\left(\exists\left\langle a_{x}, a_{y}, a_{z}\right\rangle \in \operatorname{CoordSys}(\mathrm{a})\right) \exists \vec{x}, \vec{y} \\
& \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\vec{x} \wedge \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}\left(e^{\prime}\right)=\vec{y} \wedge \tau=\left|\vec{x}_{1}-\vec{y}_{1}\right|
\end{aligned}
$$

The clocks that measures the time in the events are the same in both definitions by Proposition 'there are no two iscms in one event', so practically, both formula refer to the same measurement.

Speed

$$
\mathrm{v}_{a}\left(e, e^{\prime}\right) \stackrel{\text { def }}{=} \frac{\operatorname{sd}_{a}\left(e, e^{\prime}\right)}{\mathrm{et}_{a}\left(e, e^{\prime}\right)}
$$

Simple SpecRel

Simple-AxSelf

$$
\begin{aligned}
& \forall a\left(\forall e \in \operatorname{wline}_{a}\right)\left(\forall\left\langle a_{x}, a_{y}, a_{z}\right\rangle \in \operatorname{CoordSys}(\mathrm{a})\right) \\
& \quad \exists t \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=(t, 0,0,0)
\end{aligned}
$$

Simple-AxPh

$$
(\forall a \in \operatorname{In}) \forall e, e^{\prime} \quad \mathrm{v}_{a}\left(e, e^{\prime}\right)=1 \leftrightarrow e_{\Omega}^{r} e^{\prime}
$$

Simple-AxEv

$$
\begin{aligned}
& \forall e\left(\forall\left\langle a, a_{x}, a_{y}, a_{z}\right\rangle,\left\langle a^{\prime}, a_{x}^{\prime}, a_{y}^{\prime}, a_{z}^{\prime}\right\rangle \in \operatorname{CoordSys}\right) \\
& \quad \exists \vec{x} \operatorname{Coord}_{a, a_{x}, a_{y}, a_{z}}(e)=\vec{x} \rightarrow \exists \vec{y} \operatorname{Coord}_{a^{\prime}, a_{x}^{\prime}, a_{y}^{\prime}, a_{z}^{\prime}}(e)=\vec{y}
\end{aligned}
$$

Simple-AxSym $\quad\left(\forall a, a^{\prime} \in \operatorname{In}\right) \forall e, e^{\prime}$

$$
\mathrm{et}_{a}\left(e, e^{\prime}\right)=\mathrm{et}_{a^{\prime}}\left(e, e^{\prime}\right)=0 \rightarrow \operatorname{sd}_{a}\left(e, e^{\prime}\right)=\operatorname{sd}_{a^{\prime}}\left(e, e^{\prime}\right)
$$

Simple-AxThExp $\quad \forall a \forall e, e^{\prime} \quad \mathrm{v}_{a}\left(e, e^{\prime}\right)<1 \rightarrow\left(\exists a^{\prime} \in \mathrm{In}\right) e, e^{\prime} \in$ wline $_{a^{\prime}}$

