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BIG PICTURE

Clock Logics

SClTh

SClThAcc

SClThNoAcc

SpecRel

SpecRelComp

AccRel+?

First-order Modal LogicFirst-order Classical Logic

that is a two-way bridge
if we aim Minkowski spacetimes!

1) max-n-zigzag connected
2) there is set of timelike curves (clocks) s.t.

a) they are everywhere
b) none of them are closed
c) chronological confluence prop.
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ABSTRACT
I will present a first-order temporal logic which has the following properties:

1) Strong Expressive Power: It can express the basic paradigmatic
relativistic effects of kinematics such as time dilation, length
contraction, twin paradox, etc.

2) Operationality: The coordinatization itself is definable using metric
tense operators with signalling procedures.

3) Completeness and Decidability: The set of formulas that are valid on
the 4D Minkowski spacetime is recursively axiomatizable and
decidable.

4) A (first-order modal variant of a) definitional equivalence can be
proved w.r.t. the axiom system SpecRel ∪ Comp (Now just SRC) of HB
of Spatial Logics.

So far it seems that the presented framework is flexible enough to allow for
similar (expressive, operational, axiomatizable) results in general relativity
and branching spacetimes.
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CLOCK LOGIC
Two-sorted modal predicate logic:

• Terms: τ ::= x | τ1 + τ2 | τ1 · τ2

• Formulas:

ϕ ::= τ1 ≤ τ2 | τ1 = τ2 | a:τ | ¬ϕ | ϕ∧ψ | Fϕ | Pϕ | ∃xϕ | ∃aϕ
↓

ϕ will be true
in the causal future

↓
pointing statements:
clock a shows time τ

↓
there is a clock

in the actual event
for which ϕ

worlds : events
alternative relation : irreflexive causal future

domains : one universal domain for math,
varying domains for clocks

meaning of math : rigid predicates and rigid terms
meaning of clock terms : intensional objects

/ non-rigid designators
/ individual concepts
/ functions eating worlds

∃x∃y(b : y ∧ a : x ∧ x < y)∧
P∃x∃y(b : y ∧ a : x ∧ x = y)

Bob

Alice
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CLOCK MODELS

M
def
=

(
W, ≺, U, C, [[+]]M, [[·]]M, [[≤]]M

)
↓

events

causality
relation
↑

↓
numbers

clocks
↑

⊆ {α : W → U partial functions}

↓ ↓↓
binary functions

on U
⊆

U2

Truth: M, µ, γ,w |= a:τ def⇔ [[a]]Mγ (w) = [[τ ]]Mµ ,

M, µ, γ,w |= Fϕ def⇔ w′ � w M, µ, γ,w′ |= ϕ,

M, µ, γ,w |= Pϕ def⇔ w′ ≺ w M, µ, γ,w′ |= ϕ,

M, µ, γ,w |= ∃xϕ def⇔ (∃u ∈ U) M, µ[x 7→ u], γ,w |= ϕ,

M, µ, γ,w |= ∃aϕ def⇔ (∃α ∈ Cw) M, µ, γ[a 7→ α],w |= ϕ.

where Cw
def
= {α ∈ C : α is defined in w}

Validity:

M |= ϕ
def⇔ (∀µ, γ,w) M, µ, γ,w |= ϕ
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MINKOWSKI MODEL WITH INERTIAL CLOCKS

Mink =
(

W,≺,U,C, [[+]]M, [[·]]M, [[≤]]M
)

•
(

U, [[+]]M, [[·]]M, [[≤]]M
)

def
= R is the field of reals.

• W = R4

• w ≺ w′ iff µ(w− w′) ≥ 0 and wn < w′n where µ(~w)
def
=
(∑n−1

i=1 w2
i

)
− w2

n.

• C = {α : α−1 is a timelike line} s.t. all of them use the measure system
of R, i.e.,

(∀α ∈ C)(∀w, v ∈ dom(α)) µ(w, v) = |α(w)− α(v)|



Big Picture Coordinatization Axioms Theorems

2-sorted temporal

τ ::= x
τ + τ ′

τ · τ ′
a ::= a
ϕ ::= τ = τ ′

τ ≤ τ ′
a : τ
¬ϕ
ϕ ∧ ψ
Fϕ
Pϕ
∃xϕ
∃aϕ

2-sorted classical

τ ::= x
τ + τ ′

τ · τ ′
b ::= b
ϕ ::= τ = τ ′

τ ≤ τ ′
Ph(b)
IOb(b)
W(b, c, x, y, z, t)
¬ϕ
ϕ ∧ ψ
∃xϕ

SRC
Complete and finite

scheme axiomatization of
4D Minkowski Spacetime

with inertial observers

3-sorted classical

τ ::= x
τ + τ ′

τ · τ ′
a ::= a

w ::= w
ϕ ::= τ = τ ′

τ ≤ τ ′
w ≺ w′

P(w, a, τ)
¬ϕ
ϕ ∧ ψ
∃xϕ

Tr(SRC)

True formulas of
Minkowski spacetimes

with inertial clocks

Definitional equivalence

2-sorted hybrid

τ ::= x
τ + τ ′

τ · τ ′
a ::= a
ϕ ::= τ = τ ′

τ ≤ τ ′
a : τ
¬ϕ
ϕ ∧ ψ

w Fϕ
@wϕ Pϕ

Eϕ ∃xϕ
↓wϕ ∃aϕ

HT ◦ Tr(SRC)

Hybrid Clock logic of
Minkowski Spacetime

with inertial clocks

Hybrid translation

(Standard translation)−1

HSD ◦HT ◦ Tr(SRC)

Clock logic
of Minkowski Spacetime

with inertial clocks

Hybrid sort definition

(in connected models)
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SRC
Complete and finite

scheme axiomatization of
4D Minkowski Spacetime

with inertial observers

Tr(SRC)
True formulas of

Minkowski spacetimes
with inertial clocks

Definitional equivalence

HT ◦ Tr(SRC)
Hybrid Clock logic of
Minkowski Spacetime

with inertial clocks

Hybrid translation

(Standard translation)−1

HSD ◦HT ◦ Tr(SRC)
Clock logic

of Minkowski Spacetime
with inertial clocks

Hybrid sort definition

(in connected models)

Hybrid sort definition

ei 7→ a2i+1 :x2i+1

ai :xi 7→ a2i :x2i

∃viϕ 7→ ∃v2iϕ
Eϕ 7→ PFϕ

@eiϕ 7→ PF
(
a2i+1 :x2i+1 ∧ ϕ

)
↓eiϕ 7→ ∃a2i+1∃x2i+1

(
a2i+1 :x2i+1 ∧ ϕ

)

Hybrid translation

w1 = w2 7→ @w1 w2

w1 ≺ w2 7→ @w1 Fw2

P(w, a, x) 7→ @w a:x
a1 = a2 7→ A∀x(a1 :x↔ a2 :x)
∃wϕ 7→ E↓wϕ
∃aϕ 7→ E∃aϕ

Tr from the definitional equivalence

b 7→ (c, cx, cy, cz,w, v).

Ph(b) 7→ w  v

IOb(b) 7→ ¬w  v ∧ CoordSys(c, cx, cy, cz)

b = b′ 7→ (w  w
′ ∧ lline(w, v) = lline(w′, v′)) ∨

∨ (¬w  v ∧wlinec = wlinec′

∧(Between(c, cx, c′x) ∨ Between(c, c′x, cx))∧
(Between(c, cy, c′y) ∨ Between(c, c′y, cy))∧
(Between(c, cz, c′z) ∨ Between(c, c′z, cz)))

W(b, b′,~x) 7→ (∃w ∈ wlinec′ Coordc,cx,cy,cz(w) = ~x

∃bϕ 7→ ∃c, cx, cy, cz∃w, v((w  v ∨ CoordSys(c, cx, cy, cz)) ∧ ϕ)
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∃bϕ 7→ ∃c, cx, cy, cz∃w, v((w  v ∨ CoordSys(c, cx, cy, cz)) ∧ ϕ)
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SRC
Complete and finite

scheme axiomatization of
4D Minkowski Spacetime

with inertial observers

Tr(SRC)
True formulas of

Minkowski spacetimes
with inertial clocks

Definitional equivalence

HT ◦ Tr(SRC)
Hybrid Clock logic of
Minkowski Spacetime

with inertial clocks

Hybrid translation

(Standard translation)−1

HSD ◦HT ◦ Tr(SRC)
Clock logic

of Minkowski Spacetime
with inertial clocks

Hybrid sort definition

(in connected models)

Hybrid sort definition

ei 7→ a2i+1 :x2i+1

ai :xi 7→ a2i :x2i

∃viϕ 7→ ∃v2iϕ
Eϕ 7→ PFϕ

@eiϕ 7→ PF
(
a2i+1 :x2i+1 ∧ ϕ

)
↓eiϕ 7→ ∃a2i+1∃x2i+1

(
a2i+1 :x2i+1 ∧ ϕ

)

Hybrid translation
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∃aϕ 7→ E∃aϕ
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LANGUAGE
τ ::= x | τ1 + τ2 | τ1 · τ2

ϕ ::= a = b | τ = τ ′ | τ ≤ τ ′ | e = e′ | e ≺ e′ | In(a) | P(e, a, τ) |
¬ϕ | ϕ ∧ ψ | ∃xϕ | ∃aϕ | ∃eϕ

Now we have a primitive predicate for inertiality but it is eliminable by
identifying them with geodetics:

Geo(a) def⇔ (∀e, e′ ∈ wlinea)(∀b ∈ De ∩De′) |a(e)− a(e′)| ≥ |b(e)− b(e′)|

a(e) = τ
def⇔ P(a, e, τ)

eEa def⇔ ∃x P(a, e, x)
wlinea

def
= {e : ∃x P(a, e, x)}

De
def
= {a : ∃x P(a, e, x)}

a ≈ b def⇔ ∀e(eEa↔ eEb)

e� e′ def⇔ e ≺ e′ ∧ ∃a(eEa ∧ e′Ea)
e� e′ def⇔ e� e′ ∨ e = e′

e  e
′ def⇔ e ≺ e′ ∧ ¬∃a(eEa ∧ e′Ea)

e  =e′ def⇔ e  e
′ ∨ e = e′

−−−→e1e2e3
def⇔ e1  e2 ∧ e2  e3 ∧ e1  e3

De: domain of event e
a ≈ b: cohabitation −−−→e1e2e3 : directed lightlike betweenness
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INTENDED MODELS

Mc =
(
R4,C,R,≺Mc

, InMc
+, ·,≤,PMc

)
• C is the set of those α : R4 → R partial functions, for which α−1-s are

timelike curves that follows the measure system of R4, i.e.,

• α−1-s are continuously differentiable functions on R w.r.t.
Euclidean metric:

• (α−1)′ is timelike: µ ◦
(
α−1)′ (x) > 0 for all x ∈ R.

• Measure system of R4: µ(α−1(x), α−1(x + y)) = y for all x, y ∈ R.

• ~x ≺Mc
~y def⇔ µ(~x,~y) ≥ 0 and x1 < y1,

• InMc def
=
{
α ∈ C : α−1 is a line

}
• PMc

= {〈~x, α, y〉 ∈ R4 × CI × R : α(~x) = y},
The non-accelerating intended model Mc

I is the largest submodel of Mc

whose domain of clocks is InMc
.



Big Picture Coordinatization Axioms Theorems

GOALS

• Construct coordinate systems for inertial clocks.

• Construct coordinate systems for accelerating clocks.

• Find axiomatic base SClTh for these coordinate construction
procedures.

• Extend SClTh into a complete axiomatization of Th(Mc
I).

• Extend SClTh into a complete axiomatization of Th(Mc) or show that
cannot be done.

• Compare Th(Mc
I) to SpecRel in terms of definitional equivalences.

• Compare Th(Mc) to AccRel in terms of definitional equivalences.
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SPACE

Distance of events: δi(a, e) = τ
def⇔ In(a) ∧ (∃e1, e2 ∈ wlinea)(

e1  =e  =e2 ∧ a(e1)− a(e2) = 2 · τ
)

2τe

e1

e2

Distance of inertials: δi(a, a′) = τ
def⇔ (∀w ∈ wlinea′)δ

i(a,w) = τ

Comovement a
i
↑↑a′ def⇔ ∃xδi(a, a′) = x

Clocks a and a′ are inertial synchronised co-movers iff a′ shows x + δi(a, a′)
whenever a′ sees that a shows x.

a
syn
↑↑a′ def⇔ (∀w ∈ Da)(∀w′ ∈ D′a)

(
w  =w′ → a′(w′) = a(w) + δi(a, a′)

)
a a′

x

x + d

d

Space of a: Spacea
def
= {a′ : a

syn
↑↑a′}
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GEOMETRY

B(a1, a2, a3)
def⇔ δi(a1, a2) + δi(a2, a3) = δi(a1, a3)

a1a2 ≡ a3a4
def⇔ δi(a1, a2) = δi(a3, a4)

C(a1, a2, a3)
def⇔ B(a1, a2, a3) ∨ B(a3, a1, a2) ∨ B(a2, a3, a1)

Ort(a, a1, a2)
def⇔ δi(a, a1) > 0 ∧ δi(a1, a2) > 0 ∧ δi(a, a2) > 0

∧∃a′ (B(a2, a, a′) ∧ aa2 ≡ aa′ ∧ a1a2 ≡ a1a)

a

a1
a2

∃a′

y

xy
x

δi(a, (a1, a2)) = τ
def⇔ ∃a′(Ort(a′, a, a1) ∧Ort(a′, a, a2) ∧ δi(a, a′) = τ)

CoordSys(a, ax, ay, az)
def⇔ Ort(a, ax, ay) ∧Ort(a, ay, az) ∧Ort(a, ax, az)
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DIRECTIONS
a0 ax

B(a0, a, ax) B(a0, ax, a)B(a, a0, ax)

+ +−

Sign or direction of a point a on the line given by the ray (a0, ax) is:

sign−a0,ax
(a) = τ

def⇔ (a 6= a0 ∧ B(a, a0, ax) ∧ τ = −1) ∨ (a = a0 ∧ τ = 0) ∨(
a 6= a0 ∧ (B(a0, a, ax) ∨ B(a0, ax, a)) ∧ τ = 1

)
For other points the direction is the direction of the projection of that point:

signa0,ax
(a) = τ

def⇔ sign−a0,ax
(a) = τ ∨

∨ ∃a′(Ort(a′, a, a0) ∧Ort(a′, a, ax) ∧ sign−a0,ax
(a′) = τ)
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COORDINATIZATION
The event e will be coordinatized
on the spatiotemporal position
〈τt, τx, τy, τz〉 by the coordinate system
〈a, ax, ay, az〉 iff there is a synchronized
co-mover ae of a that shows the time
τt in e and τd = signa,ad

(ae) · δi(ae, a, ad)

for d ∈ {x, y, z}.

Coorda,ax,ay,az(e) = (τt, τx, τy, τz)
def⇔

(∃ae ∈ Spacea)
(

CoordSys(a, ax, ay, az) ∧ P(e, ae, τt) ∧

signa,ax
(ae) · δi(ae, (a, ax)) = τx ∧

signa,ay
(ae) · δi(ae, (a, ay)) = τy ∧

signa,az
(ae) · δi(ae, (a, az)) = τz

)

0

x

y

0

ae

e

ax

ay

a′x

a′y

τ
t
=

ae (e)

a

−
2τ

x
=
−

2δ
i (

a′ y,
a e
)

2τ
y
=

2δ
i (

a′ x,
a e
)

−τx

τy
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Axioms
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(IMPOSSIBLE) ESTHETICS

OF OPERATIONAL AXIOMATIZATIONS

• Few and simple axioms.

• Logically nice forms: symmetries, equivalences.

• There are no different axioms about the same things. E.g.: more than
one axioms trying to characterize the line-likeness of inertials,

• Axioms are still useful in the practice of high-level proofs.

• Axioms are about a group of agents performing experiments.
(the result will be part of the distributed knowledge of the group)

(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)
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(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)



Big Picture Coordinatization Axioms Theorems

(IMPOSSIBLE) ESTHETICS

OF OPERATIONAL AXIOMATIZATIONS

• Few and simple axioms.

• Logically nice forms: symmetries, equivalences.

• There are no different axioms about the same things. E.g.: more than
one axioms trying to characterize the line-likeness of inertials,

• Axioms are still useful in the practice of high-level proofs.

• Axioms are about a group of agents performing experiments.
(the result will be part of the distributed knowledge of the group)

(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)



Big Picture Coordinatization Axioms Theorems

(IMPOSSIBLE) ESTHETICS

OF OPERATIONAL AXIOMATIZATIONS

• Few and simple axioms.

• Logically nice forms: symmetries, equivalences.

• There are no different axioms about the same things. E.g.: more than
one axioms trying to characterize the line-likeness of inertials,

• Axioms are still useful in the practice of high-level proofs.

• Axioms are about a group of agents performing experiments.
(the result will be part of the distributed knowledge of the group)

(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)



Big Picture Coordinatization Axioms Theorems

(IMPOSSIBLE) ESTHETICS

OF OPERATIONAL AXIOMATIZATIONS

• Few and simple axioms.

• Logically nice forms: symmetries, equivalences.

• There are no different axioms about the same things. E.g.: more than
one axioms trying to characterize the line-likeness of inertials,

• Axioms are still useful in the practice of high-level proofs.

• Axioms are about a group of agents performing experiments.
(the result will be part of the distributed knowledge of the group)

(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)



Big Picture Coordinatization Axioms Theorems

(IMPOSSIBLE) ESTHETICS

OF OPERATIONAL AXIOMATIZATIONS

• Few and simple axioms.

• Logically nice forms: symmetries, equivalences.

• There are no different axioms about the same things. E.g.: more than
one axioms trying to characterize the line-likeness of inertials,

• Axioms are still useful in the practice of high-level proofs.

• Axioms are about a group of agents performing experiments.
(the result will be part of the distributed knowledge of the group)

(weak operationalism)

• Axioms are about arbitrary particular agent performing its own
experiments.
(the result will be known by the agent) (strong operationalism)



Big Picture Coordinatization Axioms Theorems

AxReals
The mathematical sort forms a real closed field.

(x + y) + z = x + (y + z)
∃0 x + 0 = x
∃(−x) x + (−x) = 0

x + y = y + x

(x · y) · z = x · (y · z)
∃1 x · 1 = x
x 6= 0→ ∃x−1 x · x−1 = 1

x · y = y · x
x · (x + y) = (x · y) + (x · z)

a ≤ b ∧ b ≤ a → a = b
a ≤ b ∧ b ≤ c → a ≤ c

¬a ≤ b → b ≤ a

a ≤ b → a + c ≤ b + c
a ≤ b ∧ 0 ≤ c → a · c ≤ b · c

0 ≤ x→ ∃r r · r = x

∃x(∀y ∈ ϕ)x ≤ y→ ∃i(∀y ∈ ϕ)(i ≤ y ∧ ∀i′((∀y ∈ ϕ)(i′ ≤ y→ i′ ≤ i))

∃x(∀y ∈ ϕ)x ≥ y→ ∃s(∀y ∈ ϕ)(s ≥ y ∧ ∀s′((∀y ∈ ϕ)(s′ ≥ y→ s′ ≥ s))
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AxFull
Every number occurs as a state of any clock in an event.

∀a∀x∃e P(e, a, x)
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AxExt
We do not distinguish between (1) indistinguishable clocks, (2) states of a
particular clock in an event and (3) two events where a clock shows the same
time.

(1) ∀a, a′
(
∀e∀x(P(e, a, x)↔ P(e, a′, x)

))
→ a = a′

(2) ∀e∀a∀x, y
(
P(e, a, x) ∧ P(e, a, y)

)
→ x = y

(3) ∀e, e′∀a∀x
(
P(e, a, x) ∧ P(e′, a, x)

)
→ e = e′
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AxForward
Clocks are ticking forward.

∀a(∀e, e′ ∈ wlinea)
(
e ≺ e′ ↔ a(e) < a(e′)

)
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AxSynchron
All clocks occupying the same worldline (i.e., cohabitants) use the same
measure system, and for every clock, and delay, there is a cohabitant clock
with that delay.

∀a(∀b ≈ a)∃x(∀e ∈ wlinea) a(e) = b(e) + x

∀a∀x(∃b ≈ a)(∀e ∈ wlinea) a(e) = b(e) + x
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AxCausality

∀

∀
∃

Causality is transitive.

(e1 ≺ e2 ∧ e2 ≺ e3)→ e1 ≺ e3
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AxChronology

∀ ∃

Interiors of lightcones are filled with clocks crossing through the vertex.

(e1 � e2 ∧ e2 � e3 ∧ e3 � e4)→ e1 � e4
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AxSecant

∃
∀

e′

e

Any two events that share a clock share an inertial clock as well.

e� e′ → (∃a ∈ In)(eEa ∧ e′Ea))
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AxInComoving

a b

∃e1

∃e2

∀e

x

x

x

If an inertial clock measures an other inertial clock with the same distance
twice, then they are comoving.

(
e1Eb ∧ e2Eb ∧ e1 6= e2 ∧ δi(a, e1) = δi(a, e2) ∧ a, b ∈ In

)
→ a

i
↑↑b
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AxPing

∀e

∃e1

∃e2

a

Every inertial clock can send and receive a signal to any event.

(∀a ∈ In)∀e(∃e1, e2 ∈ wlinea) e1  =e  =e2
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AxRays

e
ea

∃e1

e1
a

x
e

ea

∃e2

e2a

x

For every observer, for any positive x and every direction (given by a light
signal) there are lightlike separated events in the past and the future whose
distances are exactly x.

(∀x > 0)∀a∀e∃e1∃e2(∃ea, ea ∈ wlinea)

−−→e2eae ∧ δi(a, e2) = x ∧
−−→
eeae1 ∧ δi(a, e1) = x
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AxRound

ea
1

ec
1eb

1

ec
2

ea
2

ea
3 = ea

3
′

ea
4

eb
2

eb
3

=

=

Given comoving observers a, b and c, the travelling time of simultaneously
sent signals on the route 〈a, b, c, a〉 and 〈a, c, b, a〉 are (the same, namely,) the
average of the travelling time of the 〈a, c, a〉 and 〈a, b, c, b, a〉.

b
i
↑↑a

i
↑↑c ∧

 ea
1, e

a
2, e

a
3, e

a
3
′, ea

4 ∈ wlinea

eb
1, e

b
2, e

b
3 ∈ wlineb

ec
1, e

c
2 ∈ wlinec

 ∧


ea
1  e

b
1  e

c
2  e

a
3

ea
1  e

c
1  e

b
2  e

a
3
′

ec
2  e

b
3  e

a
4

ec
1  e

a
2

→
→
(

a(ea
3) = a(ea

3
′
) =

a(ea
2) + a(ea

4)

2

)
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AxPasch

c

p
q

a1

∃a2

b1

∃b2

∃x1

∃x2

c

a

bp
q

∃x

Pasch-axiom for light signals.

(
a

i
↑↑b ∧ (∃a1 ∈ wlinea)(∃b1 ∈ wlineb)(

−−→cpa1 ∧
−−→
cqb1)

)
→

→ (∃x
i
↑↑a)(∃x1, x2 ∈ wlinex)(∃a2 ∈ wlinea)(∃b2 ∈ wlineb)(

−−−→
px2b2 ∧ −−−→qx1a2)
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Ax5Segment

eb

e1

e2

b

d

δ de 1

δbe1

δbe2

δde2

δ
bd

eb′

e′1

e′2

b′
d′

δ de 1

δbe1

δbe2

δde2

δ
bd

III V

III

IV

a

d

cb

III V

III

IV

a′

d′

c′b′

If two pairs of observers b,d and b′,d′ measures two pair of lightlike
separated events e1, e2 and e′1, e

′
2 to the same distances, respectively, and the

lightline crosses the worldlines of b and b′, respectively, then the distances b-d
and b′-d′ are the same (for all of them).

d
i
↑↑d′ ∧ b

i
↑↑b′ ∧ ebEb ∧ e′bEb′ ∧ −−−→e1ebe2 ∧

−−−→
e′1e′be′2 ∧

∧ δi(b, e1) = δi(b′, e′1) ∧ δi(b, e2) = δi(b′, e′2) ∧

∧ δi(d, e1) = δi(d′, e′1) ∧ δi(b, d) = δi(b′, d′))→

→ δi(d, e2) = δi(d′, e′2)
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AxCircle

e1

e2

e3

a
b c∃d

ea

eb

ed

e′d

ec

For every three non-collinear inertial observer there is a fourth one that
measures them with the same distance.

(∀a, b, c ∈ In)
(
(a

i
↑↑b

i
↑↑c ∧

∧ ∃e1, e2, e3(e1Ea ∧ e2Eb ∧ e3Ec ∧ e1  e2  e3 ∧ ¬e1  e3))→
→ ∃d∃ea, eb, ec, ed, e′d(eaEa ∧ ebEb ∧ ecEc ∧ edEd ∧ e′dEd ∧

∧ ed  ea  e
′
d ∧ ed  eb  e

′
d ∧ ed  ec  e

′
d)
)
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AxMinDim : n

e1

e2

e3

e4

e5

e6

Tarski’s lower n-
dimensional axiom: Centers
of circumscribed spheres
around n − 1 points cannot
be covered with a line.

p1

p1

The dimension of the spacetime is at least n. The formula says that n− 1
lightcones never intersect in only one event.

∀e1, . . . , en

 ∧
i≤n−1

ei  en → ∃en+1

 ∧
i≤n−1

ei  en ∧ en 6= en+1
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AxMaxDim : n

e1

e2

e3

e4

e5

e6

Tarski’s upper n-
dimensional axiom: Centers
of circumscribed spheres
around n points are on a
line.

p1

p2

p3

The dimension of the spacetime is at most n. The formula says that there are
n lightcones that intersect at most in one event.

∃e1, . . . , en+1

∧
i≤n

ei  en+1 ∧ ∀en+2

∧
i≤n

ei  en+2 → en+1 = en+2
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Ax4Dim

e1

e2

e3

e4

e5

e6

The dimension of the spacetime is exactly 4; 3 lightcones never intersect in
only one event and there are 4 lightcones intersect in at most one event.

AxMinDim : 4 ∧ AxMaxDim : 4
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AxTangent

∃

For every event of every clock there is an inertial clock that shares that event
and the local instantaneous velocity of that observer.
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AxNoAcceleration
Every clock is inertial.

∀a In(a)
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AxAcceleration
For every coordinate system and every definable timelike curve there is a
clock having that wordline in the coordinate system.
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AXIOM SYSTEMS

We define SClTh to be the following sets of axioms.

SClTh def
=


AxFull
AxExt
AxForward
AxSynchron

AxCausality
AxChronology
AxSecant
AxInComovement

AxRay
AxPing
AxRound
AxPasch

Ax5Seg
AxCircle
Ax4Dim
AxTangent


SClThNoAcc def

= (SClTh− {AxSecant, AxTangent}) ∪ {AxNoAcceleration}

SClThAcc def
= SClTh ∪ {AxAcceleration}
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Theorems
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PLAN

1 Kronheimer-Penrose axioms (Immediate)

2 Signalling (radar-distance) is unique (Immediate)

3 There is an ISCM/point in every event (Nice)

4 There is a point in every event (Immediate)

5 Straight signals arrive sooner (Nice)

6
syn
↑↑ is an eq.rel. and δi is a metric on

syn
↑↑-related clocks (Important, long)

7 There are no two ISCM/points in an event. (simple)

8 ‘Equivalence’ of −−−→eaebec and B(a, b, c). (simple)

9 Tarski’s axioms. (Mostly trivial)

10 Coordinatization is a bijection between W and Q4. (simple)

11 Radar-based spatial distance and elapsed time defines the same
quantities as coordinate based definition. (Tarski)

12 Proving ‘Simple-SpecRel’. (simple)
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KRONHEIMER-PENROSE AXIOMS

e � e
(e1 � e2 ∧ e2 � e3)→ e1 � e3

(e1 � e2 ∧ e2 � e1)→ e1 = e2

¬e� e
e1 � e2 → e1 � e2

(e1 � e2 ∧ e2 � e3)→ e1 � e3

(e1 � e2 ∧ e2 � e3)→ e1 � e3

e1  =e2 ↔ (e1 � e2 ∧ ¬e1 � e2)

Are consequences of

¬e ≺ e (1)

(e1 ≺ e2 ∧ e2 � e3)→ e1 � e3 (2)

(e1 � e2 ∧ e2 ≺ e3)→ e1 � e3 (3)

• (1) comes from AxForward; e ≺ e would lead to a(e) < a(e).

• (2): is AxChronology where e1 6= e2 and e3 = e4.

• (3): is AxChronology where e1 = e2 and e3 6= e4.
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FORBIDDEN TRIANGLES

AxChronology

Contradiction

COROLLARY: If a (not necessarily inertial) clock can radar an event, then the
elapsed time (distance) is unique. COROLLARY: δi(a, e) = τ is a total function

by AxPing
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EXISTENCE OF ISCMS IN EVENTS
For every inertial observer, there is a synchronized
inertial observer in any event.

(∀a ∈ In)∀e∃b eEb ∧ a
syn
↑↑b

Let a ∈ In and e be arbitrary. If e ∈ wlinea then we are
ready. Suppose now that e /∈ wlinea. By AxPing, there are

ea, ea ∈ wlinea s.t. ea  e  e
a. Let x def

= a(ea)− a(ea). Note
that δi(a, e) = x is true. By AxCausality and AxForward
and by the assumption that e /∈ wlinea, this x is strictly
positive. By AxRay, there is an e0 s.t. e0 is 1 distance away
from a and −−→e0eae. By AxPing, there is an e0a ∈ wlinea s.t.
e0a  e0. By AxRay again, there is an event eb s.t. −−−−→ebe0ae0

and δi(a, eb) = x. Since eb  e0a � ea  e, by AxChronology
we have eb � e. By AxSecant, there is an inertial clock b
through eb and e. Now since both a and b are inertial and

δi(a, eb) = x and δi(a, e) = x, by AxInCoMovement, a
i
↑↑b,

and by AxSynchron again, there is an a-synchronized b′
cohabitant of b here as well; that is the clock having delay
x.

a
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Ping
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THERE IS A CLOCK IN EVERY EVENT.

∀e∃c eEc

Let e be an arbitrary event. There is a clock a in some event e0 by AxFull (and
by the tautology ∃a a = a). By AxSecant, there is an inertial clock at e0 as well.
By the previous proposition, there is an inertial comover of a at e.
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STRAIGHT SIGNALS ARRIVE SOONER

∀a∀e1, e2, e, e′(eEa ∧ e′Ea ∧ e1  =e ∧ e1  =e2  =e′)→ a(e) ≤ a(e′)

∀a∀e1, e2, e, e′(eEa ∧ e′Ea ∧ e′  =e2 ∧ e  =e1  =e2)→ a(e) ≤ a(e′)

Indirectly by the Kronheimer-Penrose axioms.
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METRIC THEOREM

syn
↑↑ is an equivalence relation and δi is a(n U-relative) metric on

syn
↑↑ related

clocks, i.e.,

a
syn
↑↑a

a1

syn
↑↑a2 ⇒ a2

syn
↑↑a1

a1

syn
↑↑a2 ∧ a2

syn
↑↑a3 ⇒ a1

syn
↑↑a3

δi(a, a) = 0

δi(a1, a2) = 0⇒ a1 = a2

δi(a1, a2) = δi(a2, a1)

δi(a1, a2) + δi(a2, a3) ≥ δi(a1, a3)

We prove these simultaneously.
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REFLEXIVITY OF
syn

↑↑, SELFDISTANCE=0

• Self-distance: By e  =e  =e we have δi(a, e) = a(e)− a(e) = 0. The truth of
δi(a, a) = 0 is trivially implied by that fact.

• Reflexivity of
syn
↑↑: By the self-distance we have a(e′) = a(e) + 0

whenever e  =e′, so
syn
↑↑ is reflexive.
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SYMMETRY OF
syn

↑↑ AND δi

Suppose that a1

syn
↑↑a2.

a2

a1

e1

e2

e′1

e′2 a1(e1) + δi(a1, a2)

a1(e1)− δi(a1, a2)

a1(e1)− 2δi(a1, a2)

a1(e1)
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IDENTITY OF INDISCERNIBLES

Take arbitrary iscm’s a1 and a2 for which δi(a1, a2) = 0, i.e.,

(∀e ∈ wlinea2)(∃w1,w2 ∈ wlinea1)w1  =e  =w2 ∧ a1(w2)− a1(w2) = 0

but that means that a1(w1) = a1(w2), so w1 = w2. Observe that

• w1  e and e  w2 = w1 are impossible (AxCausality, irreflexivity).

• w1 = e  w2 or w2 = e  w1 are impossible too since w1 and w2 share a.

So the only possiblity is that w1 = e = w2.
Since this is true for all e ∈ wlinea2 , we have that wlinea2 ⊆ wlinea1 . By
symmetry of δi we have that wlinea2 = wlinea1 . Now since a1 and a2 are
iscms, they show the same numbers in the same events, therefore a1 = a2.
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TRANSITIVITY OF
syn

↑↑
We have to show that a3(e3) = x + d13.

a1

a2

a3

x

a3(e3)

x + δ12

x + δ12 + δ23

τ

x + 2δ13

x + 2δ13 − δ12

x + 2δ13 − δ12 − δ13

τ

a3(e3) + δ12 + δ23

a3(e3) + δ23

τ

x + 2δ12 + 2δ23

τ

x + δ12 + 2δ23

Abbreviations:

x def
= a1(e1)

δij
def
= δi(ai, aj)

route(a1, a2, a1)
route(a1, a2, a3, a1)
route(a1, a3, a2, a1)
route(a1, a2, a3, a2, a1)
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TRIANGLE INEQUALITY

By AxPing, we can take e1 ∈ wlinea1 , e2 ∈ wlinea2 , e3, e∗3 ∈ wlinea3 s.t. e1  =e2  =e3

and e1  e
∗
3 . Since

syn
↑↑ is an eq.rel, we have that

a3(e3) = a1(e1) + δi(a1, a2) + δi(a2, a3)

a3(e∗3 ) = a1(e1) + δi(a1, a3)

Since straight signals arrive sooner, a(e∗3 ) ≤ a(e3), so

a1(e1) + δi(a1, a3) ≤ a1(e1) + δi(a1, a2) + δi(a2, a3)
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NO CLOCK HAS TWO ISCMS AT THE SAME EVENT

(∀a ∈ In)∀e(∀a1, a2 ∈ De) a1

syn
↑↑a

syn
↑↑a2 ⇒ a1 = a2

Let e ∈ wlinea1 ∩wlinea2 be arbitrary but fixed. Let a1 and a2 be inertial
comovers of a occurring at e.

• transitivity
syn
↑↑ : a1

syn
↑↑a2.

• Selfdistance: δi(a1, e) = δi(a2, e) = 0.

• Since a1

syn
↑↑a2 implies comovement, i.e., constant distance: δi(a1, a2) = 0.

• Identity of indiscernibles: a1 = a2.
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‘EQUIVALENCE’ OF BETWEENS
For any three distinct inertial comovers a, b and c, the clock b
is between a and c iff a can send a light signal to c through b.

∀a0(∀a, b, c ∈ Spacea0)

a 6= b 6= c ∧ B(a, b, c)↔ ∃ea, eb, ec(eaEa ∧ ebEb ∧ ecEc ∧ −−−→eaebec)

⇐: Since we have iscm observers

c(ec) = a(ea) + δi(a, b) + δi(a, c) by ea  eb  ec

= a(ea) + δi(a, c) by ea  ec

therefore δi(a, b) + δi(b, c) = δi(a, c).
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TARSKI’S AXIOMATIZATION OF GEOMETRY
1. ab ≡ ba (Reflexivity for ≡)
2. (ab ≡ pq ∧ ab ≡ rs)→ pq ≡ rs (Transitivity for ≡)
3. ab ≡ cc→ a = b (Identity for ≡)
4. ∃x(B(qax) ∧ ax ≡ bc) (Segment Construction)
5. (a 6= b ∧ B(abc) ∧ B(a′b′c′) ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧
xxxxxx ∧ ad ≡ a′d′ ∧ bd ≡ b′d′)→ cd ≡ c′d′ (Five-segment)
6. B(aba)→ a = b (Identity for B)
7. (B(apc) ∧ B(bqc))→ ∃x(B(pxb) ∧ B(qxa)) (Pasch)

8n. ∃a, b, c, p1, . . . pn−1

( ∧
i<j<n

pi 6= pj ∧
∧

1<i<n

(ap1 ≡ api ∧ bp1 ≡ bpi ∧ cp1 ≡ cpi)∧

xxxxxx ∧ ¬(B(abc) ∨ B(bca) ∨ B(cab))

)
(Lower n-dimension)

9n.

( ∧
i<j<n

pi 6= pj ∧
∧

1<i<n

(ap1 ≡ api ∧ bp1 ≡ bpi ∧ cp1 ≡ cpi)

)
→

xxxxxx → (B(abc) ∨ B(bca) ∨ B(cab)) (Upper n-dimension)
102. B(abc) ∨ B(bca) ∨ B(cab) ∨ ∃x(ax ≡ bx ∧ ax ≡ cx) (Circumscribed tr.)
11. ∃a∀x, y(α ∧ β → B(axy))→ ∃b∀x, y(α ∧ β → B(aby)) (Continuity scheme)

where α and β are first-order formulas, the first of which does not contain any free
occurrences of a, b and y and the second any free occurrences of a, b, x.
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EVERY EVENT IS COORDINATIZED WITH A 4-TUPLE.
(TOTALITY)

Let e be an arbitrary event. Since there exactly one iscm there, we have a
synchronized comover ae of a in e. Then by definition, ae(e) will be the time
coordinate. We can use Tarski’s axioms to conclude that there are (unique) a′x,
a′y and a′z that are projections of the point ae to the lines (a, ax), (a, ay) and
(a, az), respectively. By AxPing, these projections can ping ae, i.e., they can
measure the spatial distance between them and ae (and e), and thus we will
have the spatial coordinates of e as well.

COROLLARY: No event has two different coordinates. (Functionality)
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EVERY 4-TUPLE IS A COORDINATE OF AN EVENT.
(SURJECTIVITY)

Let (t, x, y, z) be an arbitrary 4-tuple. It follows from Tarski’s axioms that
there are planes there are inertial comovers a′x, a′y and a′z of a on the axes
(a, ax), (a, ay) and (a, az), respectively, such that δi(a, ax) = x, δi(a, ay) = y and
δi(a, at) = t. For all i ∈ {x, y, z} Let Pi denote the plane that contains a′i and is
orthogonal to the line (a, ai). Then by Tarski’s axioms, these planes has one
unique intersection, ae. By the definition of the Coord, any event of wlineae

are coordinatized on the spatial coordinates (x, y, z). Now we know from
Ax-Full that there is an event e of wlineae such that a(e) = t.

COROLLARY: No 4-tuple is a coordinatization of two different events.
(Injectivity)
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SPATIAL DISTANCE

sda(e, e′) = τ
def⇔ (∃a′ ∈ Spacea)(a ∈ De ∧ δi(a, e′) = τ)

sda(e, e′) = τ ⇐⇒ (∃〈ax, ay, az〉 ∈ CoordSys(a))∃~x~y
Coorda,ax,ay,az(e) = ~x ∧ Coorda,ax,ay,az(e

′) = ~y ∧ τ = |~x2−4 −~y2−4|

Pythagoras’s theorem:

δi(ae, ae′)
2 = δi(ae, b)2 + δi(b, ae′)

2

where b ∈ Spacea is a clock with which

Ort(a′x, a, b) ∧Ort(a′y, a, b) ∧Ort(a′z, a, b)

where a′x, a′y, a′z, are the projections of ae to the axes of the coordinate system
(see the figure of coordinatization).
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ELAPSED TIME

eta(e, e′) = τ
def⇔ (∃b, b′ ∈ Spacea) |b(e)− b′(e′)| = τ

eta(e, e′) = τ ⇐⇒ (∃〈ax, ay, az〉 ∈ CoordSys(a))∃~x,~y
Coorda,ax,ay,az(e) = ~x ∧ Coorda,ax,ay,az(e

′) = ~y ∧ τ = |~x1 −~y1|

The clocks that measures the time in the events are the same in both
definitions by Proposition ‘there are no two iscms in one event’, so
practically, both formula refer to the same measurement.
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SPEED

va(e, e′)
def
=

sda(e, e′)
eta(e, e′)
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SIMPLE SPECREL

Simple-AxSelf ∀a(∀e ∈ wlinea)(∀〈ax, ay, az〉 ∈ CoordSys(a))
∃t Coorda,ax,ay,az(e) = (t, 0, 0, 0)

Simple-AxPh (∀a ∈ In)∀e, e′ va(e, e′) = 1↔ e  e
′

Simple-AxEv ∀e(∀〈a, ax, ay, az〉, 〈a′, a′x, a′y, a′z〉 ∈ CoordSys)
∃~x Coorda,ax,ay,az(e) = ~x→ ∃~y Coorda′,a′x,a′y,a′z(e) = ~y

Simple-AxSym (∀a, a′ ∈ In)∀e, e′

eta(e, e′) = eta′(e, e′) = 0→ sda(e, e′) = sda′(e, e′)

Simple-AxThExp ∀a∀e, e′ va(e, e′) < 1→ (∃a′ ∈ In)e, e′ ∈ wlinea′
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