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1 Zero-order classical logic

1.1 Language

Symbols:

• Propositional variables/atoms: p, q, r, . . . At
def

= {pi : i ∈ ω}

• Logical symbols: ¬,∧

• auxiliary symbols: ), (

The set Form of formulas is given in the following way:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ

Abbreviations:

⊥ def⇔ p ∧ ¬p
> def⇔ q ∧ ¬q

ϕ− ψ def⇔ ϕ ∧ ¬ψ
(ϕ ∨ ψ)

def⇔ ¬(¬ϕ ∧ ¬ψ)

(ϕ→ ψ)
def⇔ ¬(ϕ ∧ ¬ψ) ⇔ ¬ϕ ∨ ψ

(ϕ↔ ψ)
def⇔ (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ(ψ/p)
def⇔ substitute all the (`free') occurrences of p with ψ

ϕ→ ψ → χ
def⇔ ϕ→ (ψ → χ)

and we follow the notation convention according to which the outermost paren-
theses can be omitted.

1.2 Models

A zero-order model, or just simply, a propositional variable-assignment, or val-
uation is a V : At→ {0, 1} function.

The truth or validity of formulas are given in the following way:

V |= p ⇐⇒ V (p) = 1
V |= ¬ϕ ⇐⇒ V |= ϕ is false

V |= ϕ ∧ ψ ⇐⇒ V |= ϕandV |= ψ
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The V function can also be extended to Form as well by the following way:

V (¬ϕ) = 1− V (ϕ)
V (ϕ ∧ ψ) = min(V (ϕ), V (ψ))

And the following equivalence can be proved by induction

V (ϕ) = 1 ⇐⇒ V |= ϕ

In this situation we say that V satis�es ϕ. The formula ϕ is said to be
satis�able if there is such V , and ϕ is said to be valid, |= ϕ, i�

(∀V : At→ {0, 1}) V |= ϕ

The formula set Γ is said to be satis�ed by V , V |= Γ if V satis�es all of its
formulas, Γ is said to be valid if |= Γ, i�

(∀V : At→ {0, 1}) V |= Γ

We say that Γ semantically implies ϕ, Γ |= ϕ, if

(∀V : At→ {0, 1}) (V |= Γ implies V |= ϕ)

1.3 Axioms

(PC1) ϕ→ ψ → ϕ

(PC2) (ϕ→ ψ → χ)→ (ϕ→ ψ)→ ϕ→ χ

(PC3) ϕ→ ψ → ϕ

(MP)
ϕ,ϕ→ ψ

ψ

Not that all the presented symbols refer to formula schemes, i.e., ϕ → ψ → ϕ
claims the theoremhood of the elements of

{ϕ→ ψ → ϕ : ϕ,ψ are 0-order classical formulas}

We say that ϕ is derivable from a Γ set of formulas, Γ ` ϕ if there is a �nite
list of formulas for which the following statement is true: For all element ϕ′ it
is true that

• ϕ′ is an instance of (PC1)�(PC3)

• ϕ′ ∈ Γ

• There is an earlier element ψ′ of that list for which ψ′ → ϕ′ also occurs
earlier than ϕ′.

Tautologies are those formulas for which ` ϕ def⇔ ∅ ` ϕ holds.

Remark 1 (syntactical compactness property). If Γ ` ϕ, then there is a �nite
subset Γ0 ⊆ Γ for which Γ0 ` ϕ.
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Theorem 1 (Deduction-theorem). By (PC1) and (PC2) the following rule is
admissible:

Γ ∪ {ϕ} ` ψ

Γ ` ϕ→ ψ

Theorem 2 (Substitutivity).

` ϕ

` ϕ(ψ/p)
for arbitrary p ∈ At and ψ ∈ Form

Homework 1. Is it true that

Γ ` ϕ

Γ ` ϕ(ψ/p)
for arbitrary p ∈ At and ψ ∈ Form?

Remark 2. Note that this is not the only standard in the literature. Some au-
thors say that (PC1)�(PC3) are not formula schemes, only formulas containing
the �rst three propositional variables p, q and r, and the rule of substitutivity is
not a theorem but an unquestionable derivation rule of the system. Obviously,
the set of derivable formulas of these two approaches are the same. There is,
however, a notable semantical di�erence between the two approach.

De�nition 1 (consistent formula sets). A set of formulas Γ is inconsistent i�
Γ ` ⊥, otherwise it is consistent.

Homework 2. Is it true (in both approach) that every satis�able set of formulas
are consistent?

1.4 Completeness

Theorem 3. The axiom system described above is sound w.r.t. the semantics,
i.e., if Γ ` ϕ then Γ |= ϕ.

Theorem 4. The axiom system described above is strongly complete w.r.t. the
semantics, i.e., if Γ |= ϕ then Γ ` ϕ.

Proof. Idea: We prove the contraposition �Γ 6` ϕ implies Γ 6|= ϕ, i.e., there is a
V for which V (ϕ) 6= 1.�

De�nition 2 (maximally consistent formula sets). Γ is maximally consistent
i� it is consistent but any proper extension of it is inconsistent, i.e., Γ 6` ⊥ but
for all Γ′ ⊃ Γ, Γ′ ` ⊥.

Remark 3. For every V , the set {ϕ : V (ϕ) = 1} is maximally consistent.
The characteristic function of a maximally consistent set is a valuation.

Our job is to create valuation V that dissatis�es ϕ. All we can use is the
fact that Γ 6` ϕ. Fortunately, this is implies Γ ∪ {¬ϕ} 6` ⊥, for if Γ ∪ {¬ϕ} ` ⊥
then by ded.thm. Γ ` ¬ϕ→ ⊥, i.e., Γ ` ¬¬ϕ which implies Γ ` ϕ. (to prove try
PC3.)

Homework* 1. Prove that.

So we have that Γ ∪ {¬ϕ} is consistent.
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Lemma 5 (Lindenbaum-lemma). Every consistent set can be extended to a
maximally consistent set.

Proof. Let Σ be a consistent set, i.e., Σ 6` ⊥. Let ` be a countable (because
we consider only countable languages) in�nite enumeration that lists all the
formulas. Consider now the following nested list of formula sets: Let Σ0 := Σ,
and let

Σn+1 :=

{
Σ ∪ {`n} if Σ ∪ `n 6` ⊥
Σ ∪ {¬`n} otherwise

Now let Σ+ :=
⋃
i∈ω Σi.

Homework* 2. Prove that Σ+ is a maximally consistent set. Use synt. com-
pactness property.

�

Let Γ+
¬ϕ a maximally consistent set that extends Γ∪{¬ϕ}. The existence of

this set is provided by Lindenbaum's lemma. Now the valuation that refutes ϕ
is the characteristic function of that function

V¬ϕ(ψ)
def

=

{
1 if ψ ∈ Γ+

¬ϕ
0 otherwise

Homework 3. Show that V¬ϕ(ϕ) = 0.

�

Remark 4. Note that the key to the completeness proof was the following: Since
Γ ∪ {¬ϕ} was consistent, there exists a set in which �truth is membership� ,
i.e.,

V¬ϕ |= ψ ⇐⇒ �Γ+
¬ϕ |= ψ� ⇐⇒ ψ ∈ Γ+

¬ϕ

We will follow this idea from now in every completeness proof we discuss.

1.5 Kripkean models for classical propositional logic

The Reader may also noticed during her/his logical education that logical rules
and the boolean rules of set theoretical operations are similar. One explana-
tion is that we use logical operations in the de�nition of ∩,∪, \, and an other
explanation is that this logic is complete w.r.t. (full) set algebras.

A Kripkean model of classical propositional logic is M = 〈W,V 〉 triples,
where W 6= ∅, and V : At → ℘W is a valuation that assigns subsets of W to
the propositional variables.

We refer to the elements of W by w, v, u, . . . and we call them worlds. All
these worlds are considered to be models of the previous interpretation in the
sense that ϕ is true in w i� w ∈ V (p).

The truth or validity of formulas in a world are given in the following way:

M, w |= p ⇐⇒ w ∈ V (p)
M |= ¬ϕ ⇐⇒ M |= ϕ is false

M |= ϕ ∧ ψ ⇐⇒ M |= ϕandM |= ψ
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The V function can also be extended to Form as well by the following way:

V (¬ϕ) = W \ V (ϕ)
V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ)

And the following equivalence can be proved by induction

V (ϕ) = X ⇐⇒ (∀w ∈ X)M, w |= ϕ

So V (ϕ) is the set of worlds in which ϕ is true.
We say that ϕ satis�able i� there is a M and a w for which M, w |= ϕ. The

formula ϕ is said to be true in M i� V (ϕ) = W . The formula ϕ is said to be
valid i� it is true in all models. A set of formulas is satis�able i� there is a single
M and w for which every formula of it is true. Γ is true in M i� every formula
of it is true in M. A set of formulas is valid if every formulas of it is valid.

1.6 Kripke completeness by canonical model construction

We will do more that just give a countermodel: we will give one single

countermodel which dissatis�es all the non-valid formulas. Because of
that property of it, we will call this model a canonical model.

The idea is, again, the construction via the �truth is membership� princi-
ple. The canonical worlds (worlds of the canonical model) will be maximally
consistent formulas sets. All of them.

The canonical model is C = 〈W,V〉, where W is the set of all maximally
consistent formula sets, and we de�ne the valuation to �t to the �truth is mem-
bership" idea: V(p) = {Γ ∈W : p ∈ Γ}.

This is a model indeed: W is not empty because there are consistent sets
(soundness thm) and by the Lindenbaum lemma.

Theorem 6 (�Truth is Membership�). For every Γ ∈W the following holds:

ϕ ∈ Γ ⇐⇒ Γ ∈ V(ϕ) ⇐⇒ Mc,Γ |= ϕ

Homework 4. Prove that statement.

Now the completeness proof goes like this:
Since Γ ∪ {¬ϕ} is consistent, it can be extended to a maximally consistent

set by the Lindenbaum lemma. This means that some possible world Γ+
¬ϕ ∈W

for which Γ ∪ {¬ϕ} ⊆ Γ+
¬ϕ. By the �truth is membership� theorem we have the

desired Mc,Γ
+
¬ϕ |= Γ but Mc,Γ

+
¬ϕ 6|= ϕ result. (This counts as a counter model,

since Mc is a model indeed.)

1.7 Admissible Kripke semantics

Remember the step when we said that V �is a valuation that assigns subsets of
W to the propositional variables. Why did we do that? Because ℘W has the
desired property we need, that is, it is logically well-behaving: It is closed under
conjunction (intersection) and negation (complementation). But also note that
it is also an overkill. The property �the set of subsets that are closed under in-
tersection and complementation� does not characterizes uniquely the powersets.
A trivial example is {∅,W} for any W .
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Homework 5. Consider the set ω of natural numbers. Let us call a set co�nite
i� its complementer is �nite. Show that the setA = {X ⊆ ω : X is �nite or co�nite}
is closed under intersection and complementation over ω.

Generalized Kripke semantics is when we builds that idea into the notion
of models. Right now, in classical logic the di�erence between these models are
only philosophical, but later we will see that the similar ideas in modal and
second-order logic are crucial in axiomatizability.

A generalized/admissible Kripkean model of classical propositional logic is
M = 〈W,V,A〉 triples, where W 6= ∅, and V : At → A is a valuation that
assigns �logically well behaving� subsets of W to the propositional variables.
The collection of logically well-behaving sets are A, where logical well-behavior
abbreviates the following two stipulations:

X ∈ A =⇒ W \X
X,Y ∈ A =⇒ X ∩ Y

Two trivial example for A are A = {∅,W} and A = ℘W . If A = ℘W , then
we call the Kripkean model full. (So Kripkean models are the same as those
admissible models that are full � therefore, we have more models in this way,
that is why we call them generalized models. The word �admissible� refers to
the fact that a valuation can not render arbitrary sets to the atoms, only the
admissible (∈ A) ones.)

All the other notions (truth, validity, . . . ) are the same.
The completeness proof is also the same, though generalized canonical model

is itself di�erent; we have to specify the third component, the logically well-
behaved sets. Again, we follow the �truth is membership� principle. The canon-
ical model is C = 〈W,V,A〉, where W and V(p) are the same, and A = {V(ϕ) :
ϕ ∈ Form} = {X ⊆W : ∃ϕ X = {Γ ∈W : ϕ ∈ Γ}}.

This is a generalized model indeed: The set A of admissible sets are ad-
missible indeed because the restrictions correspond to the criteria of maximal
consistency.

2 One-sorted �rst-order classical logic

2.1 Language

• Symbols:

� Variables: x1, x2, x3, . . . Var
def

= {xi : i ∈ ω}

� Constants: a1, a2, . . . Const
def

= {ai : i ∈ ω}

� Function symbols: f1, f2, . . . Func
def

= {fi : i ∈ ω}

� Mathematical predicate symbol: P1, P2, . . . Pred
def

= {Pi : i ∈ ω}
� Logical symbols: ¬,∧,=,∃

• Terms:
τ ::= x | a | f(τ, τ ′)

6



• Formulas:

ϕ ::= τ = τ ′ | P (τ1, τ2, . . . , τn)

¬ϕ | ϕ ∧ ψ | ∃xϕ |

De�nition 3 (free occurences, sentences, etc.). A term is closed if no variable
occurs in it. In any formula ∃xϕ, ϕ is called the scope of that particular token
of ∃x. An occurrence of x is free in ϕ i� that occurrence of x does not lie in a
scope of a ∃x in ϕ. A variable x is free in a formula ϕ i� it has a free occurrence
in ϕ. An x is free for τ(x1, x2, . . . , xn) i� no free occurrence of x is in the scope
of a ∃x1, ∃x2, . . .∃xn. (Roughly speaking, it is �not problematic� to substitute
τ for x in ϕ.)

A �rst-order formula ϕ is a �rst-order sentence if it has no free variables.

Homework* 3. De�ne the metalinguistic notion �x is free in ϕ� and �x is free
for τ(x1, . . . , xn) in ϕ� inductively.

2.2 Models

A FOL model is a (maybe in�nite) tuple

M =
(
U, aM1 , . . . , f

M
1 , . . . PM

1 , . . .
)
,

or sometimes just denoted as a pair

M =
(
U, (·)M

)
where U 6= 0, aMi ∈ U , fMi : Un → U , PM

i ⊆ Um for some n and m for all i.
Assignments are functions of form σ : Var → U . σ is an x-variant of σ′,

σ
x∼ σ′ i� σ(y) = σ′(y) for all y 6= x.
Extending the meaning of constants and functions to the meaning of arbi-

trary terms:

xM,σ
i

def

= σ(xi) for all i ∈ ω
(fi(τ1, . . . , τn))M,σ def

= fMi (τM,σ
1 , . . . , τM,σ

n ) for all i

Truth w.r.t. an assignment:

M, σ |= τ1 = τ2 ⇐⇒ τM,σ
1 = τM,σ

2

M, σ |= Pi(τ1, . . . , τn) ⇐⇒
(
τM,σ
1 , . . . , τM,σ

n

)
∈ PM

i

M, σ |= ¬ϕ ⇐⇒ M, σ 6|= ϕ
M, σ |= ϕ ∧ ψ ⇐⇒ M, σ |= ϕ and M, σ |= ψ

M, σ |= ∃xϕ ⇐⇒ there is a σ′ y∼ σ;M, σ′ |= ϕ

ϕ is true in M, M |= ϕ, i� M |= ϕ for all σ.

2.3 Generalized models

7


