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Abstract

I will sketch a possible way of empirical/operational definition of space
and time tags of physical events, without logical or operational circularities
and with a minimal number of conventional elements. As it turns out, the
task is not trivial; and the analysis of the problem leads to a few surprising
conclusions.

1 Introduction

The central issue of special relativity is the comparison of space and time tags
of physical events, defined in different inertial frames of reference. However,
the question of how these space and time tags are defined in one single frame
of reference is considered as unproblematic and is usually neglected. In this
paper, I will focus on this second question.

When I say “definition”, I mean empirical definition, somewhat similar to
Reichenbach’s “coordinative definitions”, Carnap’s “rules of correspondence”,
or Bridgman’s “operational definitions”; which give an empirical interpreta-
tion of the theory.

Einstein, at least in his early writings, strongly emphasizes that all spatio-
temporal terms he uses are based on operations applying measuring rods,
clocks and light signals. In his 1905 paper, he describes the measurement of
the length of a rod in an arbitrary (moving) inertial frame of reference as fol-
lows:

The observer moves together with the given measuring-rod and the
rod to be measured, and measures the length of the rod directly by
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superposing the measuring-rod, in just the same way as if all three
were at rest.

And this is a typical description of the empirical meaning of length or dis-
tance. However, these usual operational definitions so often suggested in the
textbook literature are untenable; they are full of obvious circularities. It is not
my aim here to address the problems in question, because the upshot of these
considerations is also quite common in the more sophisticated part of the liter-
ature of space-time physics: In order to avoid these obvious circularities and to
minimize the conventional elements in the empirical foundation of our physi-
cal theory of space and time, we must avoid using standard measuring rod in
the definition of distance and using slow transportation of the standard clock
in the definition of time tags, and the likes. We must also abstain from relying
on the concept of rigid body, reference frame, and inertial motion. Instead, we
have to use one standard clock and light signals.

Of course, using one standard clock and light signals for coordination of
space-time is an old idea; as old as the widespread belief that the task is as
trivial as it seems from the two-dimensional textbook examples, and that the
resulted spatio-temporal structure is, at least locally, necessarily identical with
the standard space-time geometry of special relativity. What will be new in
our analysis is the consequent performance of this task without operational
circularities. As we will see, the task is not trivial; and the analysis of the
spatio-temporal conceptions so obtained will raise some still open—although
experimentally testable—questions.

2 Empirical definition of space and time tags

First we chose an etalon clock. That is to say, we chose a system (a sequence
of phenomena) floating somewhere in the universe. Without loss of general-
ity we may stipulate that this is an equipment having a pointer and the read-
ings are real numbers. There is no assumption that this is a clock measuring
“proper time”. There is no assumption that it “runs uniformly”. And there is
no assumption that it is “at rest” relative to anything, or that it is of “inertial
motion”. The reason is that none of these concepts is defined yet.

We will call “marker” an equipment which can be triggered by a physical
event and can transmit and receive modulated radio waves containing some
information. Assume we have as many markers as we need, with the following
functions:

1. There is a distinguished marker floating together with the standard clock
and continuously transmitting the actual reading of the standard clock.

2. The others continuously receive the regular time signals from the stan-
dard clock.

3. They can transmit radio signals containing the following information:
a) an ID code of the device and information about the standard clock
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Figure 1: Operational definition of time tags. (This is just a symbolic sketch, not a real
“two dimensional space-time diagram” or the like.)

reading, so from the signal they send it always can be known which de-
vice was the transmitter and what was the standard clock reading re-
ceived by the transmitter at the moment of the emission of the signal,
b) information about the event on the occasion of which the signal was
transmitted.

4. They can receive the signals transmitted by the others.

By the emission of a radio signal the marker marks an event. It is far from
obvious, however, what must be regarded as an event in general—prior to the
concepts of time and distance. (See Brown 2005, pp. 11-14.) We do not dwell on
this problem here. The reader can easily imagine various operational solutions
of how to use a marker for marking various physical events/phenomena.

2.1 Time

Consider the experimental arrangement in Fig. 1. The marker at the standard
clock emits a radio signal at clock-reading t1 (event A). The signal is received
by another marker which immediately emits another signal (event B). This
“reflected” signal is detected by the marker at the standard clock at t2 (event
C). We assume, as an empirical fact, that the clock we have chosen is such that
a given reflected signal is received by the standard clock only once, at reading
t2, and

t2 ≥ t1 (1)

by which we have chosen, conventionally, an “arrow of time” (not the ar-
row of physical processes in time; see Price 1996, p. 16 and 58). (In fact, we
made two choices here. One is the choice of the direction of the parametriza-
tion of the clock’s pointer positions (1). There is however a more important
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one: by applying the terms “sending” and “receiving” a signal, we previously
determined the causal order of events A and C. To what extent this causal
order is purely conventional? How can we—without prior spatio temporal
conceptions—distinguish whether an event is a “sending” or a “receiving” of a
signal? How is this choice of causal order related to the change of information
content of the signal? To what extent this choice is determined by our free will
and free action experience at the modulation of the radio waves? Is this free-
dom an objective openness of future or merely a subjective experience? These
are delicate metaphysical questions; into the discussion of which it is not our
present purpose to enter.)

Definition (A1) The absolute time tag of event B is the following:

τ (B) := t1 + ε (t2 − t1) (2)

where ε = 1
2 by convention. (Of course, it could be a contingent fact of nature

that t2 = t1 , in which case the choice of the value of ε would not matter.)

It is important to emphasize that the choice of using radio signals in defi-
nition (A1) is purely conventional. This choice is by no means justified by the
“constancy and isotropy of the (round-trip) velocity of light”; simply because
we are prior to any spatio-temporal concepts that would make any statement
about the “velocity” of light meaningful.

2.2 Distance and the problem of “rest”

Denote Sτ the set of simultaneous events with time tag τ. One might think that
we are ready to define the spatial distance between two points of space, that is
distance between two simultaneous events. Surely, we can define the distance
between the simultaneous events D and B in Fig. 1 as 1

2 (t2 − t1) c, where the
value of c is taken as a convention. In this way however, as a little reflection
shows, we can define the distance only from the standard clock, but there is no
way to extend this definition for arbitrary pair of simultaneous events. In or-
der to define the distance between two arbitrary simultaneous events we need
further preparations.

We would like to base the definition of distance to the definition of time: the
distance between two points in a given Sτ will be defined through the period
of time in which a radio signal runs “from the one point to the other”. There-
fore, instead of signals sent and received by the marker at the standard clock,
we will use radio signals “sent from the one point and received at the other”.
However, we encounter the following difficulty. We would like to define dis-
tance between simultaneous events; but the travel of the signal takes some time;
the emission of the signal and the receiving of the signal are not simultane-
ous events. Whose distance is the one measured by the time of travel of the
signal—and when? The distance obtained by means of the time of travel of the
signal depends on the concept of “rest”; the concept of “being at the same place
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Figure 2: The distance defined by means of the time of travel of the radio signal depends
on the concept of “rest”; the concept of “being at the same place at different times”. In
general, τ (B)− τ (U1) 6= τ (B)− τ (U2)

at different times” (Fig 2). So, in order to define the distance of simultaneous
events we need a previous concept of “rest”; and, moreover, we have to define
this concept by the only means of the standard clock and radio signals.

It is necessary to be careful of a possible misunderstanding. Although they
are close to each other, the problem we are addressing here is different from the
problem of persistence of physical objects (Butterfield 2005). What we would
like to define is the identity of two locuses of space at two different times, and
not the genidentity of the physical objects occupying these locuses. One might
think that some definition of genidentity of physical objects must be prior to
our operational definition of space and time tags, at least in the case of the
standard clock. This is, however, not necessarily the case. The standard clock
is just an ordered (ordered by the clock readings) sequence of physical events,
but without the further metaphysical assumption that these events belong to
the same physical object. (We definitely do not make such assumption in the
case of a “clock-like” sequence of events that we will call a rest time sequence
below.)

Definition (A2) A one-parameter family of events γ(τ) is called time sequence
if γ(τ) ∈ Sτ for all τ.

One has to recognize that a time sequence is a “clock-like” sequence of
events. For every event, one can define a time-like tag in the same way as
(A1): Event A (Fig. 3) is marked with the emission of a radio signal at time
τ(A). The signal is reflected at event B. Event C is the first detection of the
reflected signal at time τ(C). We define the following time-like tag for event B:

τγ(B) := τ(A) + ε (τ(C)− τ(A))
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Figure 3: Clock-like time sequence

(If there is no detection of the reflected signal at all, then, say, τγ(B) := ∞.)

It is an empirical fact that τγ(B) 6= τ(B) in general. It is another empirical
observation however that for some particular cases τγ(B) = τ(B).

Definition (A3) A time sequence γ(τ) is a rest time sequence if for every event
B τγ(B) = τ(B).

Whether or not there exist rest time sequences is an empirical question. We
stipulate the following:

Empirical fact (E1) For any event A there exists a unique rest time sequence
γ(τ) such that A = γ (τ(A)).

Rest time sequence is a concept defined only by means of the standard clock
and radio signals. It singles out a “world line” through every event, that will
play the role of the “world line of a particle being at rest relative to the standard
clock”.

Now we are ready to define the distance between simultaneous events.

Definition (A4) The absolute distance between two simultaneous evens A, B ∈
Sτ is operationally defined in the following way. Take a rest time sequence γ
such that A = γ(τ) (Fig. 4). Let U = γ (τ(U)) be an event marked with the
emission of a radio signal at absolute time τ(U), such that the signal is received
and reflected at event B. The detection of the reflected signal marks the event
V = γ (τ(V)) of time tag τ(V). The absolute distance is

dτ(A, B) :=
1
2

(τ(V)− τ(U)) c (3)
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Figure 4: The distance between two simultaneous events

where c = 299792458 m
s by convention.

We know from (1) that for all A, B ∈ Sτ

dτ(A, B) ≥ 0 (4)
dτ(A, A) = 0 (5)

However, the following facts cannot be known without further empirical ob-
servations:

Empirical fact (E2) For all A, B, C ∈ Sτ

dτ(A, B) = 0 only if A = B (6)
dτ(A, B) + dτ(B, C) ≥ dτ(A, C) (7)

dτ(A, B) = dτ(B, A) (8)

The following proposition is however derivable:

Lemma 1 Let γ1 and γ2 be arbitrary two rest time sequences. For any two
moments of absolute time τ and τ′

dτ (γ1 (τ) , γ2 (τ)) = dτ′
(
γ1

(
τ′

)
, γ2

(
τ′

))
(9)

Having distance defined on a given Sτ , we introduce the following abbre-
viations:

Congτ(A, B, C, D) ⇐⇒ dτ(A, B) = dτ(C, D)
Betτ(A, B, C) ⇐⇒ dτ(A, C) = dτ(A, B) + dτ(B, C)
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In terms of these abbreviations we formulate the following—not necessarily
new—empirical facts:

(E3) ∀A∀B Congτ(A, B, B, A)

(E4) ∀A∀B∀C Congτ(A, B, C, C)→ A = B

(E5) ∀A∀B∀C∀D∀E∀F Congτ(A, B, C, D)
∧Congτ(C, D, E, F)→ Congτ(A, B, E, F)

(E6) ∀A∀B Betτ(A, B, A)→ A = B

(E7) ∀A∀B∀C∀D∀E Betτ(A, D, C) ∧ Betτ(B, E, C))
→ ∃F (Betτ(D, F, B) ∧ Betτ(E, F, A)

(E8) ∃E∀A∀B A ∈ α ∧ B ∈ β→ Betτ(E, A, B)
→ ∃F∀A∀B A ∈ α ∧ B ∈ β→ Betτ(A, F, B)
where α and β are two sets of events in Sτ .

(E9) ∃A∃B∃C∃D∃E ¬D = E ∧ Congτ(A, D, A, E)
∧Congτ(B, D, B, E) ∧ Congτ(C, D, C, E)
∧¬Betτ(A, B, C) ∧ ¬Betτ(B, C, A) ∧ ¬Betτ(C, A, B)

(E10) ∀A∀B∀C∀D∀E∀F ¬D = E ∧ ¬D = F ∧ ¬E = F
∧Congτ(A, D, A, E) ∧ Congτ(A, D, A, F)
∧Congτ(B, D, B, E) ∧ Congτ(B, D, B, F)
∧Congτ(C, D, C, E) ∧ Congτ(C, D, C, F)
→ Betτ(A, B, C) ∨ Betτ(B, C, A) ∨ Betτ(C, A, B)

(E11) ∀A∀B∀C∀D∀E∀F Betτ(A, B, F) ∧ Congτ(A, B, B, F)
∧Betτ(A, D, E) ∧ Congτ(A, D, D, E)
∧Betτ(B, D, C) ∧ Congτ(B, D, D, C)
→ Congτ(B, C, F, E)

(E12) ∀A∀B∀C∀D∀E∀F∀G∀H ¬A = B ∧ Betτ(A, B, C)
∧Betτ(E, F, G) ∧ Congτ(A, B, E, F)
∧Congτ(B, C, F, G) ∧ Congτ(A, D, E, H)
∧Congτ(B, D, F, H)→ Congτ(C, D, G, H)

(E13) ∀A∀B∀C∀D∃E Betτ(D, A, E) ∧ Congτ(A, E, B, C)

The quantification runs over Sτ . In brief, we stipulate, as an empirical fact,
that the two relations Congτ and Betτ , determined by the distances of simulta-
neous events, satisfy the axioms of 3-dimensional Euclidean geometry, namely
Tarski’s axioms of 3-dimensional Euclidean geometry (Tarski and Givant 1999).
It must be emphasized that all the statements (E3)–(E13) are stipulated, via in-
ductive generalization, merely on the basis of observations about distances of
simultaneous events.
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Figure 5: Straight line

2.3 Spatial coordination

Within this axiomatic framework, one can define the basic geometrical con-
cepts in the usual way; and one can derive a body of theorems, well known
from the textbooks on Euclidean geometry. Below are a few of the typical defi-
nitions and theorems we will use in the construction of space tags.

Definition A subset σ ⊂ Sτ is called (straight) line if satisfies the following
conditions (Fig. 5):

1. for any A, B, C ∈ σ exactly one of the following three relations hold:

dτ(A, C) + dτ(C, B) = dτ(A, B)
dτ(A, B) + dτ(B, C) = dτ(A, C)
dτ(B, A) + dτ(A, C) = dτ(B, C)

2. σ is maximal for property 1.

Definition Let σ1 and σ2 be two lines in Sτ such that σ1 ∩ σ2 = {O} (Fig. 6).
σ2 is orthogonal to σ1 if for every Z ∈ σ2 and for every X, Y ∈ σ1

dτ(X, O) = dτ(O, Y)⇔ dτ(X, Z) = dτ(Y, Z)

Theorem For every A, B ∈ Sτ there exists a unique line containing A and B.

Theorem Let A ∈ Sτ be an arbitrary event and let σ1 ⊂ Sτ be an arbitrary
line. There always exists a line σ2 orthogonal to σ1, such that A ∈ σ2.

Definition Using the notations of the above theorem, let σ1 ∩ σ2 = {O}.
Event O is called the orthogonal projection of A to σ1. Distance dτ(A, O) is called
the distance of A from σ1.
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Definition Let σ1 ⊂ Sτ be a line. A line σ2 is parallel to σ1 if for all X ∈ σ2 the
distance of X from σ1 is the same.

Theorem Let σ1 ⊂ Sτ be a line and let C ∈ Sτ be an arbitrary event. There
exists exactly one line σ2 such that C ∈ σ2 and σ2 is parallel to σ1.

Definition Let A, B ∈ σ be two events on line σ. Line segment between events
A, B ∈ Sτ is the following subset of σ:

σ(A, B) := {X ∈ σ| dτ(A, X) + dτ(X, B) = dτ(A, B)} (10)

These are however only examples. In what follows, the whole usual system
of definitions and theorems of Euclidean geometry are supposed to be known.

Now we are going to define the standard Cartesian coordinates in Sτ . First
we need a 3-frame.

Definition (A6) A 3-frame in Sτ consists of three pairwise orthogonal lines
σx, σy, σz in Sτ , such that σx ∩ σy ∩ σz = {O} and three events X, Y, Z 6= O such
that X ∈ σx, Y ∈ σy and Z ∈ σz. O is called the origin of the frame (Fig. 7). Let
us introduce the following notations:

σ+
x := {P ∈ σx|Betτ(X, O, P)}

σ−x :=
(
σx \ σ+

x
) ∪ {O}

σ+
y :=

{
P ∈ σy|Betτ(Y, O, P)

}
σ−y :=

(
σy \ σ+

y

)
∪ {O}

σ+
z := {P ∈ σz|Betτ(Z, O, P)}

σ−z :=
(
σz \ σ+

z
) ∪ {O}
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Figure 7: Cartesian coordinates in Sτ

The origin of the 3-frame is arbitrary, although it is a natural choice to take the
“τ-event” of the standard clock as origin.

In the following definition we give the operational definition of space tags
in one given Sτ . Let us call them τ-space tags.

Definition (A7) Let A be an arbitrary event in Sτ . Take a line segment
σ(B, C) 3 A parallel to σz (Fig. 7). Take another line segment σ(A, D) orthog-
onal to σz such that D ∈ σz. Let σ(O, E) be a line segment parallel to σ(A, D)
such that E ∈ σ(B, C). Finally, take the line segments σ(E, F) and σ(E, G) such
that σ(E, F) is parallel to σx and F ∈ σy, and σ(E, G) is parallel to σy and G ∈ σx.
Now, the τ-space tags are defined as follows:

xτ (A) :=
{

dτ(G, O) if G ∈ σ+
x

−dτ(G, O) if G ∈ σ−x

yτ (A) :=
{

dτ(F, O) if F ∈ σ+
y

−dτ(F, O) if F ∈ σ−y

zτ (A) :=
{

dτ(D, O) if D ∈ σ+
z

−dτ(D, O) if D ∈ σ−z

It must be emphasized that with the above definitions we only defined the
space tags in a given set of simultaneous events Sτ . Yet, we have no connec-
tion whatsoever between two Sτ and Sτ′ if τ 6= τ′. In principle, there exist
“infinitely” many possible bijections between the different Sτ’s. This is true,
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even if we prescribe that the bijection must be an isomorphism preserving dis-
tances.

Intuitively, a time sequence γ(τ) satisfying that

xτ (γ(τ)) = const. (11)
yτ (γ(τ)) = const. (12)
zτ (γ(τ)) = const. (13)

corresponds to a localized physical object being at rest. “At rest”—relative to
what? The actual behavior described by these equations depends on how the
different 3-frames are chosen in the different Sτ’s. One might think that an
object is at rest if equations (11)–(13) hold in one and the same 3-frame in all
Sτ . But, what does it mean that “one and the same 3-frame in all Sτ”? When
can we say that a line segment σ′x in Sτ′ is the same 3-frame axis as σx in Sτ?
When can we say that an event A′ is in the same place in Sτ′ as event A in Sτ?

When we are seeking for a correspondence between Sτ and Sτ′ , our aim is
not simply to find a mathematically “canonical” bijection—whatever it means.
What we wish is a one-to-one map

Tτ′
τ : Sτ → Sτ′

of natural physical meaning:

(a) It must be defined by means of physical operations.

(b) For all A, B ∈ Sτ , we require that dτ′
(

Tτ′
τ (A) , Tτ′

τ (B)
)

= dτ (A, B).

(c) It must reflect our intuition about being “at rest”. (For example, in our
traditional language, if the standard clock moves along a time-like straight
line of the Minkowski space-time, Tτ′

τ must be equal to the map (τ, x, y, z) 7→
(τ′, x, y, z), in the frame of reference of the standard clock. Of course, this
example should be understood only intuitively.)

We have already defined a concept of the unique rest time sequence through
every event. So condition (c) basically means that for any rest time sequence
γ we require that Tτ′

τ (γ(τ)) = γ (τ′). In fact, we will base the connection
between different time slices on the rest time sequences:

Definition (A8)

Tτ′
τ : Sτ → Sτ′

A 7→ Tτ′
τ (A) = γ(τ′)

where γ is a rest time sequence such that A = γ(τ). Let us call Tτ′
τ the time

shift between Sτ and Sτ′ . It follows from (E1) and Lemma 1 that this definition

is sound and Tτ′
τ is a distance preserving bijection. Now we have everything

at hand to define the space tags of events:

12



Definition (A9) Let A be an arbitrary event. The absolute space tags of A are
defined as follows:

ξ1(A) := x0

(
T0

τ(A) (A)
)

ξ2(A) := y0

(
T0

τ(A) (A)
)

ξ3(A) := z0

(
T0

τ(A) (A)
)

Thus, we are given the absolute space and time tags for every event: ξ1(A), ξ2(A),
ξ3(A), τ(A).

3 Inertial motion

A remark is in order on the empirical facts (E1)–(E13) to which we refer in con-
structing the space and time tags. When I call them empirical facts I mean that
they ought to be true according to our ordinary physical theories. The ordi-
nary physical theories are however based on the ordinary, problematic, space
and time conceptions, relaying on “reference frames realized by rigid bodies”
and the likes, without proper, non-circular, empirical definitions. Thus, espe-
cially in the context of defining the two most fundamental physical quantities,
distance and time, we must not regard our ordinary physical theories as empir-
ically meaningful and empirically confirmed claims about the world. Whether
these statements are true or not is, therefore, an empirical question, and it is far
from obvious whether they would be completely confirmed if the correspond-
ing experiments were performed with higher precision, similar to the recent
GPS measurements, especially for larger distances. Strangely enough, accord-
ing to my knowledge, these very fundamental facts have never been tested ex-
perimentally; no textbook or monograph on space-time physics refers to such
experimental results.

So, the best we can do is to believe that our physical theories based on the
usual sloppy formulation of spatio-temporal concepts are true (in some sense)
and to consider the predictions of these theories as empirical facts. However,
as the following analysis reveals, it is far from obvious whether the predictions
of the believed theories really imply (E1)–(E13).

Throughout the definition of space and time tags, we avoided the term “in-
ertial”, and because of a good reason. First of all, if “inertial” is regarded as a
kinematical notion based on the concept of straight line and constancy of ve-
locity, then it cannot be antecedent to the concept of space-time tags. If, on the
other hand, it is understood as a manner of existence of a physical object in the
universe, when the object is undergoing a free floating, in other words, when
it is “free from forces”, then the concept is even more problematic. The reason
is that “force” is a concept defined through the deviation from the trajectory
of inertial motion (first circularity), and neither the inertial trajectory nor the
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measure of deviation from it can be expressed without spatio-temporal con-
cepts; consequently, they cannot be antecedent to the definition of space and
time tags (second circularity). So there is no precise, non-circular definition of
inertial motion. It is to be emphasized that this operational/logical circularity
is a problem even in a special relativistic/flat/local space-time; and, therefore,
it has nothing to do with the problem of conventionality of demarcation be-
tween “inertial” or “geodetic” motion versus gravitation as universal force (cf.
Märzke and Wheeler’s 1964).

According to our believed special relativistic physical theory, space-time is
a 4-dimensional Minkowski space and inertial trajectory is a time-like straight
line in the Minkowski space. Since we are prior to the empirical definitions
of the basic spatiotemporal quantities, we cannot regard this claim as an em-
pirically confirmed physical theory. Nevertheless, let us assume for a moment
that our special relativistic theory is the true description of the world “from
God’s point of view”. It is straightforward to check that all the facts (E1)–
(E13) are true if 1) the standard clock moves along an inertial world line in the
Minkowski space-time and 2) it reads the proper time, that is, it measures the
length of its own word line, according to the Minkowski metric. However, we
human beings can know neither whether the standard clock (chosen by us) is
of inertial motion in God’s Minkowskian space-time nor whether it reads the
proper time. What if these conditions fail? What does special relativistic kine-
matics say about (E1)–(E13) if the standard clock is accelerated and/or it does
not read the proper time?

In order to answer this question, we have to follow up the operational def-
initions (A1), (A2),. . . and calculate whether statements (E1), (E2),. . . are true
or not if the standard clock moves along a given world line γ and the “time”
it reads is, say, a given function of the Minkowskian coordinate time, χ(t).
Although the task is straightforward, the calculation is too complex to give a
general answer in details. Fortunately, we do not need all the details: the es-
sential fact is that if we really can go through the whole operational procedure,
and (E1)–(E13) are true, then, at the end, we obtain a coordination of events
such that the equation describing the trajectory of a signal in the space of the
four coordinates is

(ξ1(τ)− ξ10)
2 + (ξ2(τ)− ξ20)

2 + (ξ3(τ)− ξ30)
2 = c2τ2

Now, due to the Alexandrov–Zeeman-theorem (Alexandrov 1950; Zeeman 1964),
one can derive the following results.

Theorem Facts (E1)–(E13) are true if and only if the standard clock moves along an
inertial world line and reads a time χ(t) which is an linear function of the Minkowskian
coordinate time.

Due to this theorem, in accord with our intuition based on the believed phys-
ical theories, we can give an objective meaning to “inertial motion” by means
of correct—neither logically nor operationally circular—experiments: the stan-
dard clock is of inertial motion if statements (E1)–(E13) are true. Assuming that the
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standard clock is inertial, one can extend the concept for an arbitrary time se-
quence γ(τ) of events: γ(τ) corresponds to an inertial motion if the absolute
space tags ξ1 (γ (τ)) , ξ2 (γ (τ)) , ξ3 (γ (τ)) are linear functions of the absolute
time tag τ.

There is a trivial but very important corollary of the above theorem: Imag-
ine that we successfully perform two different coordinations of events by means
of two different standard clocks. The theorem implies that the two coordina-
tions are identical up to an almost Lorentz transformation.

Of course, the Alexandrov–Zeeman theorem applies if all of (E1)–(E13) are
satisfied. It is perhaps interesting, that the essential condition is (E1). From an
analysis by computer one finds the following result:

Result 1 There are no unique rest time sequences if the standard clock moves non-
inertially in a Minkowski space.

Still, one must emphasize, whether (E1)–(E13) are true or false is an open
empirical question. Imagine that the standard clock is not inertial; for example
(E1) is not satisfied. It would also mean that the clock chosen by us would be
inappropriate for the definition of space-time tags. More exactly, we should
have to stop at definition (A1). We could define the time tags but could not
define the spatial notions, in particular the distances between simultaneous
evens. Consequently, it is meaningless to talk about “non-inertial reference
frame”, “space-time coordinates (tags) defined/measured by an accelerated
observer”, and the likes. In the light of these consequences, it is an intrigu-
ing question whether the standard clock contemporary physical laboratories
use for the coordination of physical events satisfies conditions (E1)–(E13), in
particular (E1).

4 Absolute, relative, conventional

I call τ(A) “absolute time” not in the sense of what Newton called “absolute,
true and mathematical time”, that is independent of any empirical definition,
but in the sense of what the 20th century physics calls absolute time; it is “in-
dependent of the position and the condition of motion of the system of co-
ordinates” (Einstein 1920, p. 51). The space and time tags ξ1(A), ξ2(A), ξ3(A),
τ(A) are absolute in the sense that they are not relative to a reference frame but prior
to any reference frame. (The concept of “reference frame” is still not defined,
and actually we do not need it.)

Absolute space and time tags are, of course, “relative” to the trivial semanti-
cal convention by which we define the meaning of the terms. They are “relative”
to the etalon clock-like process we have chosen in the universe; and to the par-
ticular way in which the space and time tags are defined, including the usage
of radio signals, the choice of “ε = 1

2 ”, etc. This kind of “relativism” is however
common to all physical quantities having empirical meaning.

15



But there are two things that do not follow from this kind of conventional-
ity. On the one hand, it does not follow that these physical quantities cannot
describe objective features of physical reality; in spite of the obvious fact that
these conventions play a constitutive role in the conceptual representation of
the world. On the other hand, it does not follow either that there are no objec-
tive constraints on the semantical conventions themselves. In this last passage,
I would like to give an example of how these objective constraints can restrict
the semantical conventions defining absolute space and time tags.

There has been a long discussion in the literature about the convention-
ality of simultaneity. As it is obvious from (2), we chose the standard “ε = 1

2 -
synchronization”. This choice was a part of the trivial semantical convention defin-
ing the term “absolute time tag”. It is, therefore, prior to any claim about the
one-way or even round-trip speed of electromagnetic signals, because there is
no such a concept as “speed” prior to the definition of time and space tags;
it is, of course, prior to “the metric of Minkowski space-time”, in particular
to the “light-cone structure of the Minkowski space-time”, because we have no
words to tell this structure prior to the space and time tags; and it is prior to the
causal order of physical events, because—even if we could know this causal
order prior to temporality—we cannot know in advance how causal order is
related with temporal order (which we have defined here). It is actually prior
to any discourse about two locuses in space, because there is no “space” (Sτ)
prior to definition (A1) and there is no concept of a “persistent space locus”
prior to definitions (A3) and (A8).

So far, it seems, we are entirely free in the choice of the value of ε, that is in
the choice of which objective feature of the physical reality—timeε—we want to
deal with. One might think that starting with some ε, that is with some timeε

tags τε(A) and the corresponding ε-simultaneity slices Sε
τ , one finally obtains

some spaceε tags ξε
1(A), ξε

2(A), and ξε
3(A), corresponding to the given value of

ε. This is true only if we can go through all the operational definitions (A1)–
(A13), and all the empirical facts (E1)–(E13) are true for the given ε 6= 1

2 .
This is, however, not necessarily the case. For, imagine we repeat the op-

erations described in (A1), (A2) and (A3) with some ε 6= 1
2 , and obtain the

concept of a (rest time sequence)ε. Then, we encounter the question of whether
the crucial empirical fact (E1) is true or not. Normally, in case of ε = 1

2 , we as-
sumed that there exists a unique rest time sequence through every event. This
assumption was confirmed by Result 1 derived from our believed physical the-
ories. But, a similar computer calculation in case of ε 6= 1

2 leads to the following
result:

Result 2 Fact (E1) is never true if ε 6= 1
2 , no matter if the standard clock moves

along an inertial world line, and no matter if the clock reads the proper time along its
world line.

Again, whether or not (E1) is true is an open empirical question in both the
ε = 1

2 and the ε 6= 1
2 cases. Nevertheless, assuming that the future empirical

findings will confirm what our present physical theories tell about (E1), there
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seems no way to build up the spatial concepts (restε, distanceε, spaceε tags,
etc.) operationally, if ε 6= 1

2 . And, given that our aim is to define not only the
temporal but also the spatial concepts, this is a strong experimentally testable
argument against the ε 6= 1

2 -synchronization.
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