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“The picture of theory often presented by philosophers of science is too aus-
tere, abstract and self-contained” Professor Suppes writes. While, as it turns
out from the two substantive examples considered in the paper, a closer anal-
ysis of the experimental details, the method of data processing and the most
important features of the measuring equipments can be fruitful in understanding
the basic concepts and the metaphysical conclusions drawn from the theoretical
description of the experimental scenario.

Since my field of interest is closer to quantum mechanics, I would like to
focus on Suppes’ second example based on de Barros and Suppes (2000) general
analysis of the realistic GHZ experiments, where experimental error reduces the
perfect correlations of the ideal GHZ case. The following important question
motivated their analysis: “How can one verify experimentally predictions based
on correlation-one statements, since experimentally one cannot obtain events
perfectly correlated?” De Barros and Suppes’ analysis makes use of inequalities
which are said to be “both necessary and sufficient for the existence of a local
hidden variable” for the experimentally realizable GHZ correlations. In applying
their analysis to the Innsbruck experiment, however, they only count events in
which all the detectors fire. While necessary for the analysis of that experiment,
they recognize that this selective procedure weakens the argument for the non-
existence of local hidden variables.
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In Szabó and Fine (2002) we pointed out that their analysis does not
rule out a whole class of local hidden variable models in which the
detection inefficiency is not (only) the effect of the random errors in
the detector equipment, but it is a more fundamental phenomenon,
the manifestation of a predetermined hidden property of the particles.
This conception of local hidden variables was first suggested in Fine’s prism
model (1982) and, arguably, goes back to Einstein.

Both, de Barros and Suppes’ analysis and our polemics, confirm,
however, Suppes’ thesis about the continuing interaction in science
between theory and experiment.

Theory ⇒ Experiment
De Barros and Suppes approach the problem in the following way. Without loss
of generality, the space of hidden variable can be identified with O = {+,−}6,
the set of the 26 = 64 different 6-tuples of possible combinations of the values
of σ1x, σ1y, . . . σ3y. Then the GHZ contradiction amounts to the assertion that
no probability measure over O reproduces the expectation values.

De Barros and Suppes demonstrate this by concentrating on the product
observables (A,B,C and ABC) for which they derive a system of inequalities
that play the same role for GHZ that the general form of the Bell inequalities do
for EPR-Bohm type experiments; namely, they provide necessary and sufficient
conditions for a certain class of local hidden variable models. Their inequalities
are just

−2 ≤ E(A) + E(B) + E(C)− E(ABC) ≤ 2
−2 ≤ E(A) + E(B)− E(C) + E(ABC) ≤ 2
−2 ≤ E(A)− E(B) + E(C) + E(ABC) ≤ 2
−2 ≤ E(A) + E(B) + E(C) + E(ABC) ≤ 2

and clearly this is violated by

E(A) = E(B) = E(C) = 1
E(ABC) = −1

Experiment ⇒ Theory
In the realistic experiments, due to inefficiencies in the detectors or to dark
photon detection, the observed correlations were reduced by some factor ε;
that is

E(A) = E(B) = E(C) = 1− ε
E(ABC) = −1 + ε

Theory ⇒ Experiment
Then, it follows immediately from the inequalities that, “the observed correla-
tions are only compatible with a local hidden variable theory” if ε > 1

2 . De Barros
and Suppes (2000) translated this condition into the language of the dark-count
rate and the detector efficiency.
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Figure 1: In a typical quantum measurement, quantum mechanical “probabilities”
are equal to the relative frequencies taken on a sub-ensemble of objects producing
any outcome

Experiment ⇒ Theory
Estimating the realistic values of the dark-count rate and the detector efficiency,
they found that the Innsbruck experiment is not compatible with a local
hidden variable theory.

Theory ⇒ Experiment
As in the case of the Bell inequalities, however, the de Barros and Suppes
derivation is based on the assumption that the variables σ1x, σ1y, . . . σ3y are two
valued (either +1 or −1).

Consider, however, a typical configuration of a quantum measurement shown
in Figure 1. We have no information about the original ensemble of emitted par-
ticles. Quantum mechanical “probabilities” are equal to the relative frequencies
taken on a sub-ensemble of objects producing any outcome (passing the ana-
lyzer).
In case when the conjunction of three properties are measured (Fig. 2), like the
GHZ experiment, quantum mechanical “probabilities” are experimentally iden-
tified with the relative frequencies calculated on sub-ensemble of the complex
systems that produce triple detection coincidences.

Fine’s prism model reflects the above experimental scenario. The variables
can take on a third value,“D”, corresponding to an inherent “no show” or defec-
tiveness. Consequently, the space Λ of hidden variables is a subset of {+,−, D}6.
In Szabó and Fine (arXiv:quant-ph/000102 v4, 2001) we gave explicit prism
models for a GHZ experiment with perfect detector efficiency and with zero
dark-photon detection probability. Each element of Λ is a 6-tuple that corre-
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Figure 2: Quantum mechanical “probabilities” are experimentally identified with
the relative frequencies calculated on sub-ensemble of the complex systems that
produce triple detection coincidences
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sponds to combinations like

σ1x, σ1y, σ2x, σ2y, σ3x, σ3y = (+−D −++)

which, for example, stands for the case when particle 1 is predetermined to
produce the outcome +1 if x-measurement is performed, −1 if the setup is y
in the measurement, particle 2 is x-defective, i.e., it gives no outcome if for an
x-measurement, but produces an outcome −1 for y, particle 3 produces outcome
+1 for both cases. Some of these combinations have probability zero, which rule
out a large number of 6-tuples. One can show that we achieve the best efficiency
if we take for Λ the subset, listed in Table 1, and simply omit all the others.
Each atomic element has probability 1

48 . Each GHZ event is represented as a
subset U ⊆ Λ. For instance, Ux+y−y− stands for the triple outcome x+y−y−
with probability

p
(
Ux+y−y−

)
= p ({λ32, λ34, λ37, λ39, λ41, λ44}) =

6

48

The probability of a triple detection for the measurement setups x, y, y:

p
(
Ux 6=Dy 6=Dy 6=D

)
= p

λ1, λ4, λ5, λ8, λ9, λ10, λ10, . . . λ44, λ45, λ48︸ ︷︷ ︸
24


 =

24

48

Quantum probabilities are reproduced as conditional probabilities:

pQM

(
x+y−y−

)
=

1

8

(
1 + sin

(π
2

+ 0 + 0
))

︸ ︷︷ ︸
1
4

= p
(
Ux+y−y−

∣∣Ux 6=Dy 6=Dy 6=D

)
=

6
48
24
48

=
1

4

etc. All quantum probabilities and the GHZ correlations are correctly repro-
duced in the model. The triple detection efficiency = 1

2 !

Experiment ⇒ Theory
The question is what is the triple detection/emission ratio in the realistic GHZ
experiments. Although the reported triple detection probability is very low
(≈ 10−4), this question is, actually, irrelevant in case of the Innsbruck exper-
iment. The reason is that the preparation of GHZ entangled states is
performed on selected sub-ensembles conditioned by the triple coin-
cidence detections. Therefore, all of these experimental observations
will be treated by our local hidden variable model.
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