
Formal Systems as Physical Objects: A
Physicalist Account of Mathematical Truth

László E. Szabó
Theoretical Physics Research Group of the Hungarian Academy of Sciences

Department of History and Philosophy of Science
Eötvös Loránd University, Budapest

E-mail: leszabo@hps.elte.hu

(Preprint)

Journal reference: International Studies in the Philosophy of Science 17 (2003) pp. 117–125.

Abstract

This paper is a brief formulation of a radical thesis. We start with the
formalist doctrine that mathematical objects have no meanings; we have
marks and rules governing how these marks can be combined. That’s all.
Then I go further by arguing that the signs of a formal system of mathe-
matics should be considered as physical objects, and the formal operations
as physical processes. The rules of the formal operations are or can be ex-
pressed in terms of the laws of physics governing these processes. In accor-
dance with the physicalist understanding of mind, this is true even if the
operations in question are executed in the head. A truth obtained through
(mathematical) reasoning is, therefore, an observed outcome of a neuro-
physiological (or other physical) experiment. Consequently, deduction is
nothing but a particular case of induction.

1. Introduction

The central question of the philosophy of mathematics is what is mathematical
truth, that is, what makes a mathematical proposition true.

Mathematical realism is the view that mathematical propositions are true in-
sofar as they correspond with our physical environment. In other words, math-
ematics is an empirical science: mathematical propositions express the most
general features of physical reality. Although it played an important role in
the history of mathematical sciences, this view cannot be taken seriously in the
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time of modern mathematics. For there is no such direct correspondence be-
tween mathematical notions and the elements of physical reality. For example,
nothing in the external world (outside mathematics) corresponds to the notion
of infinity. So, we reject the idea that “mathematics is an empirical science”, as
this thesis is usually understood, although, according to our final conclusion,
we will see that it is an empirical science in another sense. As such, it does
not express, however, the most general features of the physical world. On the
contrary, it reflects some particular and not necessarily important features of it.

According to mathematical Platonism, substantive existence can be attributed
to the classical concepts of mathematics, independently of whether or not any-
body has these concepts in mind. A truth about a mathematical concept can be,
like any other truth about any other existing thing, discovered. The particular
way of discovery in which a true mathematical proposition can be obtained is
the rational analysis of these concepts.

Intuitionists do not ascribe any existence to mathematical objects indepen-
dent of their (evidently finite) construction by the basic intuition. Instead, they
believe in the existence of “their god” (Curry, 1951, p. 6), Intuition, something
which is a priori given to the universal human apprehension, something which,
in this way, guarantees the objectivity and usefulness of mathematics.

Realists, Platonists and intuitionists jointly believe, however, that mathemat-
ical concepts and propositions have meanings, and when we formalize the lan-
guage of mathematics, these meanings are meant to be reflected in a more pre-
cise and more concise form.

2. The formalist thesis

According to the formalist understanding of mathematics (at least, according to
the radical version of formalism I am proposing here) the truth, on the contrary,
is that a mathematical object has no meaning. “The formulas are not about any-
thing; they are just strings of symbols” (Davis and Hersh, 1981, p. 319). Hilbert
characterized mathematics as a game played according to certain simple rules
with meaningless marks on paper (Bell, 1951, p. 38). That’s all. Mathematics
has nothing to do with the metaphysical concept of infinity. Mathematics does
not produce and does not solve Zeno paradoxes. According to the formalist
view (see Heyting, 1983, p. 71), one can write down a sign, say α, and call it
the cardinal number of the integers. After that, one can fix rules for its manip-
ulation. The whole finitist struggle is unnecessary. Such a sign as 101010

has
no other meaning than as a figure on the paper with which we operate accord-
ing to certain rules, just like any other symbols. Mathematical structures are
totally indifferent to our intuition about space, time, probability or continuity.
The words in a formal system have no meaning other than that which may be
given to them by the axioms. As Hilbert—allegedly—expressed this idea in a
famous aphorism about Euclidean geometry: “One must be able to say at all
times—instead of points, straight lines, and planes—tables, chairs, and beer
mugs.” (Fang, 1970, p. 81)

2



Objecting to the formalist approach, many ask “How is it possible then that
mathematics is applicable to the real world?” To be sure, mathematics is not
“applicable” to the real world, but we can construct physical theories that do
refer to the elements of reality. A physical theory P is a formal system L + a
semantics S pointing to the empirical world. In the construction of the for-
mal system L one can use previously prepared formal systems which come
from mathematics and/or logic. For example, within the framework of a cer-
tain physical theory the physical space coordinates, as physical quantities, can
be conveniently described in terms of Euclidean geometry. But this fact has
nothing to do with the truth of a mathematical statement like a2 + b2 = c2. The
truth of such a statement means only that a2 + b2 = c2 follows from the axioms,
according to the derivation rules of that very formal system called Euclidean
geometry.

It is an interesting philosophical question, of course, how a semantics S
works. But that problem is completely separate from the problems related to
mathematics. This separation is obvious, if we take into account, for example,
that a new empirical fact about physical space(-time) can alter the correspond-
ing physical theory (for example, we replace the whole Euclidean geometry
with another one), while it leaves Euclidean geometry itself intact.

A sentence A in physical theory P can be true in two different senses:

Truth1: A is a theorem of L, that is, L ` A (which is a mathematical truth
within the formal system L, a fact1 of the formal system L).

Truth2: According to the semantics S, A refers to an empirical fact (about
the physical system described by P).

For example, “The electric field strength of a point charge is kQ
r2 ” is a theorem

of Maxwell’s electrodynamics—one can derive it from the Maxwell equations.
(This is a fact of the formal system consisting of the symbols and the derivation
rules.) On the other hand, according to the semantics relating the symbols of
the Maxwell theory to the empirical terms, this sentence corresponds to an
empirical fact (about the point charges). Truth1 and Truth2 are independent, in
the sense that one does not imply the other.2

If mathematics is nothing but the science of formal systems consisting of
meaningless marks and rules governing how these marks can be combined,
then one can raise the question “What makes a system of marks and rules
a formal system?” There is, however, no objective criterion for a system of
marks and rules to be a formal system—and not every system of marks and
rules counts as a formal system, relevant for mathematics. Some “structures”
are traditionally regarded as “mathematical structures”, and there are systems

1I do not have any scruple about using the word ’fact’ here, since I actually mean ’empirical
fact’ about the formal system—as will be seen in section 4.

2Moreover, assume that Γ is a set of true2 sentences in L, i.e., each sentence in Γ refers to an
empirical fact, and also assume that Γ ` A in L. It does not automatically follow that A is true2.
If so, then it is new information about the empirical world, confirming the validity of the whole
physical theory P = L + S (including the rules of inference—of L—in P).
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regarded as “formal/symbolic representations” of these “mathematical struc-
tures”. Perhaps beauty and convenience are the two most important internal cri-
teria mathematicians today have adopted to decide whether to study a struc-
ture as mathematical—as Mark Steiner (1998) sees it. Our concern here is not
how this tradition has developed. Let us simply accept this tradition, and de-
fine a formal system as a system of marks and rules by which—according to
the tradition—a “mathematical structure is represented”. For example, chess
is a system of marks and rules, but it is not considered as representing a math-
ematical structure, so it is not a formal system. On the contrary, for example,
the following simple system first defined and investigated by the logician Paul
Lorenzen (see Podnieks, 1992, p. 28) is traditionally regarded as a formal sys-
tem: The marks are strings consisting of letters a and b. The axioms are the
following:

L =





a
X ` Xb (Rule 1)
X ` aXa (Rule 2)

For example, the sequence of strings

a `
(1)

ab `
(2)

aaba `
(1)

aabab `
(1)

aababb (1)

is a proof of the mathematical truth aababb.

3. The physicalist ontology of formal systems

From the point of view of the original question of what makes a mathematical
proposition true, the complete elimination of intuition, i.e. full reduction to a
list of axioms and mechanical rules of inference, is possible. The work initiated
by Frege, Russell, and Hilbert showed how this could be achieved even with
the most complicated mathematical theories. No step of reasoning can be taken
without a reference to an exactly formulated list of axioms and rules of infer-
ence. Even the most “self-evident” logical principles must be explicitly formu-
lated in the list of axioms and rules. Thus, a precisely formalized mathematical
derivation, making a mathematical proposition true, is like a “machinery of
cogwheels”, rather than the discovery of the “rational order in the world” by
an “uncomputable consciousness” in its “clear and distinct intuitions”.

The ontology of formal systems is crystal-clear: marks, say ink molecules dif-
fused among paper molecules, more exactly, their interaction with the electro-
magnetic field illuminating the paper, or something like that. The rules accord-
ing to which the marks are written on the paper form a strict mechanism which
is, or easily can be, encoded in the regularities of real physical processes. Of
course, a derivation on paper is rather similar to a production line in a factory
employing low-paid workers: at certain points of the technological process
human hands (and brains) transpose the workpiece from one conveyor belt
to the other. This is, however, an unimportant technical problem. Since each
step of manipulation is governed by strict rules, human beings can be replaced
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by trained animals, robots, etc. Also the marks can be of an entirely different
nature, like, for instance, the cybernetic states of a computer, supervening on
the underlying physical processes. For example, one can easily imagine a chip
(a computer) designed to “realize” the formal system of Lorenzen described
above: it can print strings consisting of letters a and b. It starts by printing
the string a. Then it works according to the mechanical rule: a string X is fol-
lowed by either Xb or aXa, and it prints all possible sequences of strings up
to a certain length, then it prints out all possible sequences up to the double
length, and so on. In a little while this machine will print out the proof (1) of
the theorem aababb.

Sometimes one executes simple formal derivations also in the head.3 How-
ever, from the point of view of the physicalist interpretation of mind this case of for-
mal manipulation does not differ in principle from any other cases of deriva-
tion processes. If the signs and the rules of a formal system can be embodied in
various physical states/processes, why not let them be embodied in the neuro-
physiological, biochemical, biophysical brain configurations—more exactly, in
the physical processes of the human brain? If this is the case, that one of the
paths—as some rationalists believe, the only path—to trustworthy knowledge,
the deductive/logical thinking, can be construed as a mere complex of physi-
cal (brain) phenomena, without any reference to the notions of “meaning” and
“intentionality”, or the vague and untenable concept of the acausal “global”
supervenience on the physical (cf. Chalmers, 1996, pp. 33–34), then this is,
actually, a very strong argument for physicalism.

Moreover, there are derivations that are not ’surveyable’ by the human
mind—we cannot observe the whole derivation process, only the outcome of
the process, the proved theorem. This is the case, for example, in the proof
of the four-colour theorem (see Tymoczko, 1979), where certain steps of the
proof are performed through very complex computer manipulations. Some-
times even the theorem obtained through the derivation process is not sur-
veyable. It often happens, for example, that the result of a symbolic computer
language manipulation is a formula printed on dozens of pages, completely
incomprehensible to the human mind.

So, from certain point of view we must agree with David Deutsch, Artur
Ekert, and Rossella Lupacchini:

Numbers, sets, groups and algebras have an autonomous reality
quite independent of what the laws of physics decree, and the prop-
erties of these mathematical structures can be just as objective as
Plato believed they were (and as Roger Penrose now advocates).
But they are revealed to us only through the physical world. It is
only physical objects, such as computers or human brains, that ever
give us glimpses of the abstract world of mathematics. (Deutsch et
al., 2000, p. 265)

3Much more rarely than one would think. Even in the simplest cases, a proper formal derivation
is much too complex to be executable in one’s head.
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On the one hand, Deutsch, Ekert, and Lupacchini rightly emphasize that math-
ematical truths are revealed to us only through real physical processes. On the
other hand, they still maintain a Platonistic concept of truth in logic and pure
mathematics as independent of any contingent facts. The reason is the distinc-
tion they draw between knowledge and truth:

It seems that we have no choice but to recognize the dependence of
our mathematical knowledge (though not, we stress, of mathemati-
cal truth itself) on physics, and that being so, it is time to abandon
the classical view of computation as a purely logical notion inde-
pendent of that of computation as a physical process. (Deutsch et
al., 2000, p. 268)

Again, while one can accept the main message of this sentence, in the brackets
Deutsch, Ekert, and Lupacchini take a step back towards the untenable Platon-
istic distinction between provability and (mathematical) truth. They are not
radical enough as to recognize that the existence of a physical process of deriva-
tion that leads us to the knowledge of the truth of a mathematical proposition is
nothing but the truth-condition of the mathematical proposition in question.

The same ambivalent views we find in Curry:

... although a formal system may be represented in various ways,
yet the theorems derived according to the specifications of the
primitive frame remain true without regard to changes in repre-
sentation. There is, therefore, a sense in which the primitive frame
defines a formal a system as a unique object of thought. This does
not mean that there is a hypostatized entity called a formal system
which exists independently of any representation. On the contrary,
in order to think of a formal system at all we must think of it as rep-
resented somehow. But when we think of it as formal system we
abstract from all properties peculiar to the representation. (Curry,
1951, p. 30)

What does such an “abstraction” actually mean? What do we obtain if we ab-
stract from some unimportant, peculiar properties of a physical system Z? In
accordance with what we said about the physical theories in the previous sec-
tion, we obtain a theory P = L + S about Z, that is, a formal system L with a
semantics S relating the marks of the formal system to the (important) empiri-
cal facts of the physical system Z—where L is a formal system in the head, or it
is realized with paper and pen, etc. Now, the same holds if the physical system
is a formal system (a “representation of a formal system”, in Curry’s terminol-
ogy) Z = L1: through the abstraction we obtain a theory L2 + S describing
some important properties of the system L1. That is, instead of an “abstract
structure” we obtain another formal system L2 “represented somehow”—in
Curry’s expression.

By the same token, one cannot obtain an “abstract structure” as an “equiva-
lence class of isomorphic formal systems” or something like that, since in order
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to think of such things as “isomorphism”, “equivalence”, “equivalence class”
at all we must think of them as living in a formal system “represented some-
how”.

The upshot of this is that “representation”—together with “translation”, “iso-
morphism” and “understanding”—is a word to be avoided. As a complex of
particular physical phenomena, a formal system is a metaphysically clear con-
cept. There is no reason to suppose that it “represents” an “abstract mathemat-
ical structure”—there is no place where we could accommodate such an ab-
stract structure, other than the Platonic realm or Popper’s nth world or some-
thing like these. Since formal systems do not represent anything, it cannot be
the case that different formal systems are different representations of some one
common thing. Consequently, there is no “translation” between them. One
formal system cannot “understand” the other.

Interaction is the proper term instead of representation, translation and un-
derstanding. That is what is going on in reality: a physical interaction between
two formal systems as two particular physical systems. Wittgenstein would
probably call the use of language the interaction of a brain with another for-
mal system, first of all the interaction with another brain, which is usually re-
alized through a third intermediate formal system. It is not our nominalism
but rather an ontological clarity that keeps us from imagining “translation” or
“understanding” of a “represented meaning”, an “abstract mathematical struc-
ture”, behind these interactions.

The whole language game is one complex of physical interaction
processes—interactions between the builder’s brain, the builder’s body, the air
(with the sound-wave patterns), the assistant’s body, the assistant’s brain, and
the stone (cf. Wittgenstein 2002, p. 3). There is no “meaning” and no “intention-
ality” in this picture—just as there are no “abstract mathematical structures”.
These blue flowers are completely dissolved in physical reality. But we have
ontological uniformity, instead. In this way, for example, a physical theory
P = L + S becomes intelligible for physics itself: not only is the formal sys-
tem L a physical system but also the semantics S can be construed as a causal
chain of physical interactions connecting the physical system L with another
physical system described by the theory P.

To sum up, a formal system is a physical system, the marks of the formal
system are embodied in different phenomena related to the system and the
derivation rules are embodied in the regularities of the system’s behaviour. A
mathematical derivation, making a mathematical proposition true, is nothing
but a physical process going on in the formal system, and a theorem is the
output of the process. To prove a theorem is nothing but to observe a deriva-
tion process in a formal system—that is, to observe a physical process in a
physical system. That is all! In this physicalist ontological picture there are
no “mathematical structures”, as abstract thoughts, which are “represented”
in the various formal systems.

Thus, physicalism—including the physicalist account of the mental—
completes the formalist foundation of mathematics and removes the last
residues of Platonism. The physicalist ontology of mathematical truth makes
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it completely pointless in mathematics to introduce a concept of truth differ-
ent from that of being proved. Such a radical physicalist-formalist approach
has interesting and important consequences in the philosophical analysis of
Gödel’s theorems and other foundational questions of mathematics, as I shall
discuss elsewhere. In the last section of this paper we confine our attention to
an important epistemological consequence of the physicalist ontology of for-
mal systems.

4. Induction versus deduction

It is a widespread opinion that one cannot justify a general statement about
the world by induction. According to this opinion, deduction, contrary to induc-
tion, provides secure confidence because it is based on pure reasoning, without
referring to empirical facts.

According to the key idea of rationalism, cognition is an independent
source of trustworthy knowledge. Moreover, it is the only secure source of
knowledge, the rationalists say, because cognition is the only source of neces-
sary truth, while experience cannot deliver to us necessary truths, i. e., truths
completely demonstrated by reason.

Let us leave aside the epistemological valuation of knowledge we obtain
through inductive inference and consider in more detail the problem of de-
duction. The empiricist encounters difficulties in connection with the truths of
formal logic and mathematics, as Ayer writes:

For whereas a scientific generalization is readily admitted to be fal-
lible, the truths of mathematics and logic appear to everyone to be
necessary and certain. But if empiricism is correct no proposition
which has a factual content can be necessary or certain. Accord-
ingly the empiricist must deal with the truths of logic and mathe-
matics in one of the following ways: he must say either that they
are not necessary truths, in which case he must account for the uni-
versal conviction that they are; or he must say that they have no
factual content, and then he must explain how a proposition which
is empty of all factual content can be true and useful and surprising.
...

If neither of these courses proves satisfactory, we shall be
obliged to give way to rationalism. We shall be obliged to admit
that there are some truths about the world which we can know in-
dependently of experience; ... (Ayer, 1952, p. 72.)

According to the mathematical realist Mill, mathematical and logical truths are
not certain and not necessary, since they are nothing but generalizations of
our fundamental experiences about the physical world, and, as such, they are
admitted to be fallible.

Logical empiricists, on the contrary, did not reject the necessity and certainty
of mathematical and logical truths. According to their solution, analytical
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truths do not refer to the facts of reality. For we cannot obtain more informa-
tion through deductive inference than that already contained in the premises.
In other words, according to the logical empiricism, there are no synthetic a
priori statements.

Popper’s falsification principle also accepts the necessity and certainty of
mathematical and logical truths. This is the basis of the principal distinc-
tion between induction and deduction. Similarly, this principal distinction be-
tween the “trustworthy deductive inference” and the “always uncertain induc-
tive generalization” is the fundamental tenet upon which the widely accepted
hypothetico-deductive and Bayesian theories of science are built up, seemingly
eliminating the problem of induction.

Now, from the standpoint of the physicalist ontology of formal systems, one
can arrive at the following conclusion: mathematical and logical truths are not
necessary and not certain, but they do have factual content referring to the real world.

For “deduction” is a concept which is meaningful only in a given formal
system. On the other hand, as we have seen, a formal system is nothing but
a physical system, and derivation is a physical process. The knowledge of
a mathematical truth is the knowledge of a property of the formal system in
question—the knowledge of a fact about the physical world. The formal system
is that part of physical reality to which mathematical and logical truths refer.

It must be emphasized that this reference to the physical world is of a na-
ture completely different from that assumed by Mill in his realist philosophy
of mathematics. In the terminology we introduced in section 2 with respect
to physical theories, the formal statements still do not have any reference to
the real world in the sense of the truth-conditions of Truth2, since mathematics
does not provide us with a semantics directed from the formal system to the
outside world. When we are talking about the empirical character of math-
ematical truths, we are still talking about Truth1, namely we assert that even
Truth1 is of empirical nature, the factual content of which is rooted in our expe-
riences with respect to the formal system itself. Mathematics is, in this sense,
empirical science.

The knowledge we obtain through a deductive inference is nothing but an
empirical knowledge we obtain through the observation of the derivation pro-
cess within the formal system in question. In other words, deduction is a partic-
ular case of induction. Consequently, the certainty of mathematics, that is the degree
of certainty with which one can know the result of a deductive inference, is the same
as the degree of certainty of our knowledge about the outcomes of any other physical
processes.

For example, the reason why the truth of the height theorem is uncertain
is not that our knowledge about the properties of “real triangles” is uncertain,
as Mill takes it, but rather that our knowledge about the deductive (physical)
process, the outcome of which is the height theorem, is uncertain, no matter
how many times we repeat the observation of this process.

In order to explain the universal conviction that mathematical truths are
necessary and certain, notice that there are many elements of our knowledge
about the world which seem to be necessary and certain, although they are ob-
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tained from inductive generalization. If we need a shorter stick, we break a
long one. We are “sure” about the outcome of such an operation: the result is
a shorter stick. This regularity of the physical world is known to us from ex-
periences. It can be known also to a chimp, from its own experiences obtained
by trying to use a long stick. The certainty of this knowledge is, however, not
less than the certainty of the inference from the Euclidean axioms to the height
theorem.

Thus, mathematical truths are nothing but knowledge obtained through
inductive generalization from experiences with respect to a particular physical
system, the formal system itself. Reasoning is, if you like, a physical experi-
ment. So, contrary to Leibniz’s position that

There are ... two kinds of truths: those of reasoning and those of
fact. The truths of reasoning are necessary and their opposite is
impossible; the truths of fact are contingent and their opposites are
possible. (Rescher, 1991, p. 21)

we must draw the following epistemological conclusion: The certainty available
in inductive generalization is the best of all possible certainties!
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