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Abstract

There is no such property of an event as its “probability.” Rather, I ar-
gue that probability is a reducible concept, supervening on physical quan-
tities characterizing the state of affairs corresponding to the event in ques-
tion. The term “probability” can be used only collectively: it means differ-
ent dimensionless [0, 1]-valued physical quantities (measures) in the dif-
ferent particular situations. I also argue that “probability” is not the lim-
iting value of relative frequency, and not even necessarily related to the
notion of frequency. In some cases, the conditions of the sequential rep-
etitions of a particular situation are such, however, that the “probability”
(the corresponding physical quantity) is approximately equal to the rela-
tive frequency of the event in question. Sometimes we do not know the
value of the physical quantity X, identified with the “probability” of an
event A. In this case, if we are convinced about the relationship between X
and the relative frequency of A, we can measure X by counting the relative
frequency of A. Furthermore, I will argue that “probability” has nothing
to do with indeterminism and, on the other hand, has nothing to do with
“lack of knowledge.”

Introduction

This paper develops a new interpretation of probability, which sidesteps the
usual difficulties intrinsic to the various standard interpretations and, on the
other hand, in some sense incorporates much of the intuition behind them. I
call it Physicalist Interpretation. The term “physicalist” is borrowed from the
philosophy of mind. According to the physicalist account of mind, the mental
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is completely describable in physical terms. In other words, the mental super-
venes1 on the physical. Similarly, the main idea of the physicalist interpretation
of probability is that there is no such property of an event as its “probability.”
Rather, I argue that probability is a reducible concept, supervening on physical
quantities characterizing the state of affairs corresponding to the event in ques-
tion. More radically, I claim that probability is a concept which can be com-
pletely eliminated from the scientific discourse. The term “probability” can be
used only collectively: it means different dimensionless [0, 1]-valued physical
quantities, more precisely, different dimensionless normalized measures com-
posed by different physical quantities in the different particular situations.

According to this approach, the physical quantity identified with “proba-
bility” is not the limiting value of relative frequency, and not even necessarily
related to the notion of frequency. Although, in some cases, the conditions
of the sequential repetitions of a particular situation are such, that the “prob-
ability” (the corresponding physical quantity) is approximately equal to the
relative frequency of the event in question. Neither is “probability” a new ob-
jective property of a system, expressing its propensity to behave in a certain
way, although, the physical quantities characterizing the system are definitely
capable to describe such a propensity. In this approach, “probability” is not
the measure of the degree of belief of an agent in one proposition or another.
However, according to the physicalist account of mind, one can imagine a col-
lection of physical quantities characterizing the agent’s brain, which compose
a dimensionless measure playing the same role in a typical betting scenario as
the “subjective probability.”

Difficulties of the standard interpretations of proba-
bility

We need to make a distinction between mathematical and realistic interpreta-
tions of probability. Mathematical interpretation means that the formal mathe-
matical structure PROBABILITY THEORY is represented in ANOTHER FORMAL
MATHEMATICAL STRUCTURE. Discussing the Bertrand-paradox,2 for example,
we consider a representation of the probability-theoretic notions in geometrical
terms. (The alleged “paradox” consists in the simple fact that we have a kind of
freedom in constructing such a representation.) It is a mathematical represen-
tation when probabilities are represented by the limiting values of convergent
relative-frequency-like infinite sequences, or when the (“subjective”) probabil-
ities are represented in game-theoretic terms.

The mathematical interpretations do not raise difficulties at all. Our con-
cern is, however, not a mathematical but a realistic interpretation. A realistic
interpretation is nothing but the way in which we apply probability theory to

1I mean supervenience in the sense of local supervenience in Chalmer’s terminology (D. J.
Chalmers, The Conscious Mind, Oxford University Press, 1996).

2M. Kac and S. M. Ulam, Mathematics and Logic, Dover Publications, NY, 1968.
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the real world. The similarity between the mathematical and realistic inter-
pretations is that in both cases we construct a representation of PROBABILITY
THEORY in ANOTHER LANGUAGE. But, in case of a realistic interpretation this
other language must be, in final analysis, translatable into empirical terms.

In this section I would like to briefly review the standard interpretations,3

and to illustrate that none of them is tenable, because none of them provides a
sound definition of what probability is.

Classical Interpretation

The classical interpretation goes back to Laplace. According to his definition
the probability of an outcome is the ratio of favorable cases to the number of
equally possible cases. Two outcomes are meant “equally possible” if we have
no reason to prefer one to the other (principle of indifference). Consider the
following often quoted example: A symmetric die has six faces numbered 1-
6. When it is tossed in the standard way there are six possible outcomes. The
probability of getting an <even number> is 3

6 , for three of the possible outcomes
(2, 4, 6) are favorable.

Tossing the die

1

2
3 4

5

6

Figure 1: In the moment of tossing the die the history of the universe is branching into
six branches. Three of them are favorable

Since we are talking about a realistic interpretation, we must translate the
probability-theoretic notions into an observational language. But how can we
perform such a translation into empirical terms? In no way, it seems. For either
we obtain a concept of probability which is brutally indifferent to the facts of
the world, or we must tacitly refer to another, for instance the frequency in-
terpretation of probability. In the case of the above example of the symmetric
die, the essential fact is that in the moment of tossing the die the history of
the universe is (objectively or epistemically, all the same) branching into six
branches (Fig. 1). More precisely, the possible histories can be sorted into six

3J. Earman and W. Salmon, The Confirmation of Scientific Hypotheses, In M. H. Salmon, et al.,
Introduction to Philosophy of Science, Prentice Hall, Englewood Cliffs, New Jersey, 1992.
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classes corresponding to the outcomes 1-6. There are three branches that cor-
respond to the event <even number>. Therefore, p (< event number >) = 3

6 .
All other facts of the world are negligible. For instance, if the die were biased,
the probability of getting an even number would be the same. ’But a biased die
is not symmetric anymore, – we could argue – so one cannot apply the princi-
ple of indifference in the same way!’ This argument is, however, problematic,
because it appeals to two different conceptions of probability. Of course, the
biased die is not symmetric in respect of some properties. The mass-density,
for example, is not symmetric. But even a standard die is not completely sym-
metric in all properties. Otherwise we were not able to differentiate the six
outcomes. For instance, different numbers are written on the different faces
of the die. So, it seems, we must conclude, that there are relevant and irrele-
vant asymmetries: only those asymmetries are relevant, which can influence
the probabilities of the six outcomes. ’But what kind of “probability” do we
mean here?’, we should ask ourselves. And the only possible answer could be
something like this: It is an observable fact that the biased die produces one
outcome more often than the other. That is, we should refer to the frequency
interpretation of probability.

Relative Frequency Interpretation

The frequency interpretation is based on the following idea: Probability of an
outcome is not a concept which could be assigned to an individual experiment,
but rather it is assigned to a long sequence of repeated experiments. Denote A
the Boolean algebra of the outcome events, and let p : A → [0, 1] be the prob-
ability to be interpreted in empirical terms. Performing an experiment, each
of the possible outcome events does or does not occur, and this fact can be de-
scribed by a suitable “outcome function” (classical two-valued truth function,
if you want) u : A → {0, 1} satisfying the following conditions:

u (∅) = 0
u (¬A) = 1− u (A)

u (A ∧ B) = u (A) u (B)

where the outcome function has value 0 if the corresponding event does not
occur, and has value 1 if does.

Consider now the sequential repetitions of an experiment. Let

u1, u2, . . . , uN , . . . (1)

be the sequence of the outcome functions we obtain. For each N we define the
relative frequency function as follows:

νN : A ∈ A 7→ νN (A) =
1
N

N

∑
i=1

ui (A) ∈ [0, 1] (2)
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One can easily prove that if the sequence

ν1, ν2, . . . , νN , . . . (3)

is pointwise convergent, then the function p = limN→∞ νN is a probability
function on A, satisfying the Kolmogorov axioms.4

Here we encounter the first difficulty of the Frequency Interpretation: the
limit of an infinite sequence is independent of the first N elements, where N can
be an arbitrarily large number. In other words, the observed relative frequency
in any finite sample is irrelevant to the probability. How, then, we are supposed
to find out what these probabilities are? Or if we have a hypotheses about the
value of a probability, how can we empirically confirm this hypotheses, if there
is no logical relationship between what we observe in a finite sample and the
value we would like to confirm?

The second difficulty is that (1) is the sequence of the real outcomes of the
consecutive experiments, therefore, there is no guarantee that the sequence (3)
is convergent. Note, that the randomness of the outcomes does not guarantee
the convergence. To illustrate this, consider the following simple example: We
flip two coins. If the result is <Heads> & <Heads> then the outcome of the
experiment is <1>, otherwise the outcome is <0>. Repeat the experiment until
the relative frequency of <1> is less than 0.4. Then we change the roles of <0>
and <1>, and repeat the experiment until the relative frequency of <1> becomes
larger than 0.6. Then we change again, and so on. The sequence of outcomes
obtained through this method is completely random, but there is no limiting
value of the relative frequencies. So, if we insist that probability is nothing but
limiting relative frequency, we must conclude that probabilities p (< 0 >) and
p (< 1 >) do not exist.

This conclusion is, however, counter-intuitive, because we “know” that in
each run of the experiment probabilities p (< 0 >) and p (< 1 >) do exist, for
instance p (< 1 >) = 0.25 for a while, then it changes for 0.75, then changes for
0.25 again, and so on.

The above example also throws light on the third problem of the Frequency
Interpretation. Namely, that it does not account for the probability of the out-
come of an individual experiment, which probability, on the other hand, is a
meaningful concept in our intuition.

Propensity Interpretation

Karl Popper’s Propensity Interpretation aimed to solve the problem how to
assign probability to the outcome of an individual experiment. While the Clas-
sical and the Frequency Interpretations try to reduce the notion of probability
to other, already known concepts, the Propensity Interpretation identifies prob-
ability with a new quantity, called “propensity”, expressing the measure of the
“probabilistic causal tendency” of the system to behave in a certain way.

4This is actually a trivial consequence of the Pitowsky theorem (I. Pitowsky, Quantum Probability
– Quantum Logic, Lecture Notes in Physics 321 , Springer, Berlin 1998).
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The standard objection against propensity says that it does not provide an
admissible interpretation of probability. Consider two events A and B which
are causally related, therefore p(B|A) > p(B). p(B|A) can be interpreted as
propensity, for we can speak meaningfully of the tendency of a cause to pro-
duce the effect. Consider now p(A|B) which is also a meaningful concept, in
the sense that it can be easily expressed by the Bayes rule: p(A|B) = p(A∧B)

p(B) .
However, p(A|B) cannot be interpreted as propensity, the argument goes, be-
cause it does not make sense to talk about the causal tendency of the effect to
have been produced by one cause or another.

This usual objection is, however, not acceptable, in my view, because it is
based on a misinterpretation of conditional probability, in general. Conditional
p(B|A) is nothing but the ratio p(A∧B)

p(A)
and, in general, it has nothing to do with

“the tendency of a cause A to produce the effect B.” As in any other interpre-
tation of probability, the correlation p(A|B) > p(A) is only a necessary but
not a sufficient condition for a causal relationship. The origin of the misun-
derstandings is that conditional probability is often saddled with completely
unjustified meaning: it does not mean, for example, the value for which the
probability of event B changes when event A happens, or it is not equal to the
probability of event B if the system is prepared such that event A occurs with
probability 1, etc. In case of dicing, for example, the conditional probabil-
ity p (< 4 > | < even >) is nothing but the rate p(<4>)

p(<even>)
= 1

3 . But, it does

not mean that p (< 4 >) = 1
3 if the die is prepared such that p (< even >) =

1. In this case, the conditional probability p (< 4 > | < even >) would not
be a well-defined notion, because the “p (< even >) = 1” preparation does
not correspond to a unique condition: if the die is biased in such a way that
p (< 2 >) = 1, then p (< even >) = 1, and p (< 4 >) = 0. While in another
case, if it is biased such that p (< 4 >) = 1, then, again, p (< even >) = 1, but
p (< 4 >) = 1.

There is, on the contrary, a more difficult problem with propensity. In
Propensity Interpretation, probability – propensity – is a separate quantity,
which is not expressed in terms of other, empirically defined quantities. How,
then, is the numerical value of propensity determined? We have no starting
point for the empirical test of the value of propensity. Consequently, there is
no empirical basis for such a proposition as “the probability of getting <Heads>
is 1

2 ”, and the whole talk about probabilities loses empirical control. We do not
even know whether propensities satisfy Kolmogorov axioms, or not.

Subjective Interpretation

Finally we must briefly mention the Subjective Interpretation. It identifies
probability with a person’s degree of conviction or belief in one proposition
or another.5 Surprisingly, Subjective Interpretation is, in my view, a realistic

5I use the term “subjective probability” in the usual text-book sense, as a degree of belief. And
this concept is different from Olimpia Lombardi’s “degree of knowledge” – “probability due to
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one, since it aims to apply probability theory to the real world. For, when we
say that “Mr. Smith has subjective probability 0.9 for that the lovely bay mare
Willow will come in first”, we are talking about a real person’s degree of belief
in a real event, a real winning of a real mare, shown by the photo-finish.

Beyond the obvious problem that subjective probability could be applied
only for a very restricted part of reality, Subjective Interpretation suffers from
the same difficulty as the propensity approach: It claims the existence of a
separate quantity, the degree of belief of a person, which is not yet empirically
defined. How, then, is the numerical value of the degree of belief determined?

Physicalist Interpretation of Probability

As we have seen, although each of the standard interpretations can grasp some-
thing from our intuition about probability, none of them can provide an ultimate
explanation, in empirical terms, of what probability is. How is it possible, on the
other hand, that physics and other empirical sciences can apply the formal
theory of probability, without perceiving anything from this unanswered fun-
damental question? In the second part of the paper I shall make an attempt
to develop a new interpretation of probability, which perhaps can resolve this
contradiction.

The key idea of my proposal is that probability is a concept which can be
completely eliminated from the scientific discourse. This fact explains why the
standard interpretations are unable to give a sound definition of probability,
and also explains why empirical sciences can manage without such a defini-
tion.

Thesis 1 There is no such property of an event as its “probability.” What we call
probability is always a physical quantity characterizing the state of affairs correspond-
ing to the event in question.

Consider the following example: A gun is hinged in such a way that it can
shoot uniformly into a square of size a × a on the wall (Fig. 2). Inside, there
is a round target of radius R and an air-balloon of radius r, in front of the tar-
get. What is the probability that the balloon bursts out (event A)? What is the
probability that the shot hits the target (event B)? And what is the conditional
probability of that the balloon bursts out, given that the bullet hits the target?

The physicist’s standard answer to these questions is the following:

p(A) =
πr2

a2

p(B) =
πR2

a2

p(A|B) =
r2

R2

ignorance,” which is rather identical with Professor Primas’ “epistemic probability.”
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Figure 2: A gun is hinged in such a way that it can shoot uniformly into a square of
size a× a on the wall. Inside, there is a round target of radius R and an air-balloon of
radius r, in front of the target. What is the probability that the balloon will burst out?
What is the probability that the bullet hits the target? And what is the conditional
probability of that the balloon bursts out, given that the bullet hits the target?

Let it remain in obscurity how the physicist arrives at these results. What is
important is the fact that “probability” is expressed in terms of known, well-
defined physical quantities, composing a dimensionless normalized measure
on a space, the measurable subsets of which represent the outcome events in
question. My suggestion is to give up the independent concept of “probabil-
ity” with an overall context-independent meaning. In my view, this is what
we must learn from the failure of the standard interpretations. The reason why
none of these standard approaches can provide a sound meaning for the term
“probability” is that there is no such a property of an event as its “probabil-
ity.” That is, when we say that p(A) = πr2

a2 , we do not mean that there is a
known, well-defined quantity, p(A), on the left hand side, which is, contin-
gently, equal to πr2

a2 . We just mean, that the measure µ(...) = area of ...
a2 satisfies

the Kolmogorov axioms and shows many other features we usually assign, in-
tuitively, to probability.

In case of a completely different scenario, “probability” is identified with a
dimensionless normalized measure composed by completely different physical
quantities. So, the best what we can say about probability is the following:

Thesis 2 The term “probability” can be used only collectively: it means different
dimensionless [0, 1]-valued physical quantities, more precisely, different dimensionless
normalized measures composed by different physical quantities in the different partic-
ular situations.
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Figure 3: If the size of the balloon is constant and the uniform distribution of the shots
on the square is provided then the relative frequency of event A is approximately equal
to πr2

a2 .

From the point of view of the everyday practice of sciences, the most im-
portant question is how probability is related to relative frequency. According
to the above two Theses, it cannot be claimed, in general, that probability is
equal to the limiting relative frequency, first of all because we do not know
what probability is, in general. In the above example, we used the term “prob-
ability” for the quantity πr2

a2 . In general, it has nothing to do with the relative

frequency of event A. The value of πr2

a2 – although it is a well-defined number
in each individual experiment, so, in this sense, “probability” is a meaningful
notion for an individual event – can change during the sequential repetitions of
the experiment (we can change the size of the balloon, for example), therefore
there is no guarantee that the sequence of relative frequencies will converge to
a limiting value. But, in particular cases, if πr2

a2 is constant and the uniform dis-
tribution of the shots on the square is provided (Fig. 3), the relative frequency
of event A is approximately, o

(
1
N

)
, equal to “probability” πr2

a2 . (And this is
not a probability-theoretic result but it is an elementary fact of kinematics.) In
general,

Thesis 3 The physical quantity identified with “probability” is not the limiting value
of relative frequency, and not even necessarily related to the notion of frequency. In
some cases, the conditions of the sequential repetitions of a particular situation are
such, however, that the probability (the corresponding physical quantity) is approxi-
mately equal to the relative frequency of the event in question.
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Assume now, that we do not know the size of the balloon, therefore, we do
not know the value of πr2

a2 , i.e., the value of p(A), but we know that it is con-
stant, and we can also guarantee the uniform distribution of the shots. In this
case, we can measure, o

(
1
N

)
, the “probability” p(A), that is, πr2

a2 , by measuring
the relative frequency of A. That is,

Thesis 4 Sometimes we do not know the value of the physical quantity X, corre-
sponding to the “probability” of an event A. In this case, if we are convinced about the
relationship between X and the relative frequency of A, we can measure X by counting
the relative frequency of A.

The physical quantity πr2

a2 exists and has a well-defined value, indepen-
dently whether the laws of nature governing the shooting and the motion of
the bullets are deterministic or not. Moreover, the relationship between πr2

a2

and the relative frequency of A (if there is such a relationship at all) is not in-
fluenced by the deterministic or indeterministic character of the physical pro-
cess in question. The relative frequency can be equal to πr2

a2 even if the uniform
distribution of the shots are provided through a deterministic ergodic process,
by the random number generator of a computer, for instance.

Similarly, nothing can influence the value of πr2

a2 , which would be related to
our knowledge about the details of the process. Similarly, if the condition of
the uniform distribution of shots is satisfied, this value will be approximately
equal to the relative frequency of A, independently of whether we know the
direction of the subsequent shot, or not.

Finally, we have to emphasize that it is a matter of fact, whether the dis-
tribution of the shots is uniform or not. A priori we must not suppose that it
is uniform, only because we have no information about how the directions of
the consecutive shots are determined, and, on this basis, we have no reason to
prefer one direction to the other.

So, our last three Theses are the following:

Thesis 5 The value of the physical quantity identified with “probability” is not in-
fluenced by the fact whether the process in question is indeterministic or not. And a
priori there is no reason to suppose that this value can be only 0 or 1, only because the
process is deterministic.

Thesis 6 The value of the physical quantity identified with “probability” is not in-
fluenced by the extent of our knowledge about the details of the process.

Thesis 7 Neither the value of the physical quantity identified with “probability,” nor
the existence of the conditions under which this value and the relative frequency of the
corresponding event are approximately equal can be knowable a priori.
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Although the standard interpretations do not provide a coherent defini-
tion in empirical terms, they grasp many important aspects of our intuition of
probability. The physical quantity like πr2

a2 , in our example, seems to fit very
well to these intuitive descriptions of probability: 1) In some sense it reflects
the ratio of favorable cases to the number of equally possible cases. 2) Under
suitable circumstances it is approximately equal to the relative frequency mea-
sured during the sequential repetitions of the experiment. 3) It is meaningful
and has a definite value in each individual experiment. 4) In the example we
investigated, the rate πr2

a2 expresses indeed the measure of the “tendency” of
the whole system to behave in such a way that the balloon will burst out.

Of course, in the above context we could not deal with subjective proba-
bility. According to the physicalist account of mind, however, one can imag-
ine a collection of physical quantities characterizing an agent’s brain, which
compose a dimensionless measure playing the same role in a typical betting
scenario as the “degree of belief.”

So, our physicalist account of probability grasps a big part of the intuition
behind the standard approaches.
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