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Hogyan is kell érteni a relativitas elvét a klasszikus
és a relativisztikus fizikAban?

1. It is a widely accepted view that special relativity, beyond its claim about
space and time, is a theory providing a powerful method for the physics of
objects moving at constant velocities. The basic idea is the following: Consider
a physical object at rest in an arbitrary inertial frame K. Assume we know the
relevant physical equations and know the solution of the equations describing
the physical properties of the object in question when it is at rest. All these
things are expressed in the terms of the space and time coordinates z1, x2, x3,t
and some other quantities defined in K on the basis of x1,x2,x3,t. We now
inquire as to the same physical properties of the same object when it is, as
a whole, moving at a given constant velocity relative to K. In other words,
the issue is how these physical properties are modified when the object is in
motion. The standard method for solving this problem is based on the relativity
principle/Lorentz covariance. It follows from the covariance of the laws of nature
relative to Lorentz transformations that the same equations hold for the primed
variables @}, 2, x5, ... defined in the co-moving inertial frame K’. Moreover,
since the moving object is at rest in the co-moving reference frame K’, it follows
from the relativity principle that the same rest-solution holds for the primed
variables. Finally, we obtain the solution describing the system moving as
a whole at constant velocity by expressing the primed variables through the
original 1, x2,x3,1,... of K, applying the Lorentz transformation.

This is the way we usually solve problems such as the electromagnetic field
of a moving point charge, the Lorentz deformation of a rigid body, the loss of
phase suffered by a moving clock, the dilatation of the mean life of a cosmic ray
p-meson, etc.

I would like to show that this method, in general, is not correct; the system
described by the solution so obtained is not necessarily identical with the original
system set in collective motion. The reason is, as will be shown, that Lorentz
covariance in itself does not guarantee that the physical laws in question satisfy
the relativity principle in general. The principle of relativity actually only holds
for the equilibrium quantities characterising the equilibrium state of dissipative
systems.



The relativity principle

2. The first formulation of the relativity principle appeared in the following
passage of Galilei’s Dialogue:

the butterflies and flies will continue their flights indifferently
toward every side, nor will it ever happen that they are concentrated
toward the stern, as if tired out from keeping up with the course
of the ship, from which they will have been separated during long
intervals by keeping themselves in the air. And if smoke is made by
burning some incense, it will be seen going up in the form of a little
cloud, remaining still and moving no more toward one side than the
other. The cause of all these correspondences of effects is the fact
that the ship’s motion is common to all the things contained in it,
and to the air also. (Galilei 1953, p. 187)

In Einstein’s formulation it is the following:

If, relative to K, K’ is a uniformly moving co-ordinate system devoid
of rotation, then natural phenomena run their course with respect
to K’ according to exactly the same general laws as with respect to
K. (Einstein 1920, p. 16)

Finally, in a typical text book formulation, relativity principle is the following
assertion:

All the laws of physics take the same form in any inertial frame.

Let us try to unpack what this principle actually asserts. First of all it must be
clear that the same law of physics must take the same form in all inertial frames.
What are the same laws of physics in different inertial frames? Of course, the
laws of physics can be identified by means of the physical phenomena they
describe. If so, then one can think that the same physical phenomenon must
be described by the same solution of the same equations in all frames. This
is however obviously not the case. For example, the motion of the plasma of
the same solar flare is described differently by two observers in two different
inertial frames. Thus, the opposite must be true: different physical phenomena
are described by the same solutions of the same equations in different inertial
frames. So, our first task will be to clarify what are those different physical
phenomena the description of which must have the same form in all inertial
frame.

3. The second problem is how the phrase “same form” should be understood.
For, in terms of different variables, one and the same physical law in one
and the same inertial frame of reference can be expressed in different forms.
Therefore we have to add to the principle that the physical laws must be
expressed in terms of the same physical quantities. This immediately raises
the next question of how the physical quantities defined in different inertial



frames are identified. Obviously, we identify those physical quantities that have
identical empirical definitions. It is however far from obvious how these identical
empirical definitions are actually understood.

The empirical /operational definitions require etalon measuring equipments.
But how do the observers in different reference frames share these etalon
measuring equipments? Do they all base their definitions on the same etalon
measuring equipments? They must do something like that, otherwise any
comparison between their observations would be meaningless. But, is principle
of relativity really understood in this way? Is it true that the laws of physics
in K and K’, which ought to take the same form, are expressed in terms of
physical quantities defined /measured with one and the same standard measuring
equipments? Not exactly! “The cause of all these correspondences of effects
is the fact that the ship’s motion is common to all the things |italics mine]
contained in it” Galilei writes in the above quoted passage. Or, consider how
Einstein applies the principle:

Let there be given a stationary rigid rod; and let its length be
! as measured by a measuring-rod which is also stationary. We
now imagine the axis of the rod lying along the axis of x of the
stationary system of co-ordinates, and that a uniform motion of
parallel translation with velocity v along the axis of z in the direction
of increasing z is then imparted to the rod. We now inquire as to the
length of the moving rod, and imagine its length to be ascertained
by the following two operations:

(a) The observer moves together with the given measuring-rod and
the rod to be measured, and measures the length of the rod
directly by superposing the measuring-rod, in just the same
way as if all three were at rest [italics mine)|.

(b) ...

In accordance with the principle of relativity the length to be
discovered by the operation (a)-we will call it “the length of the
rod in the moving system”must be equal to the length [ of the
stationary rod. (Einstein 1905)

That is to say, if the standard measuring equipment defining a physical quantity
XK is, for example, at rest in K and, therefore, moving in K’, then the observer
in K’ does not define the corresponding XK' as the physical quantity obtainable
by means of the original standard equipment being at rest in K and moving in
K’ but rather as the one obtainable by means of the same standard equipment
in another state of motion, namely when it is at rest in K’ and moving in K.

4. Let us return to the first problem posed at the end of Point 2. Now we
can specify those different physical phenomena the description of which must
have the same form in all inertial frame. For, what we told about the measuring
equipments, also holds for the physical systems to be measured. That is to say,



the principle says that the description of the behaviour of a system when it is
co-moving with inertial frame K takes the same form as the description of the
same system when it is co-moving with inertial frame K'.

5 . Putting all these details together, now we are ready to give a more accurate
formulation of the relativity principle:

Relativity Principle The laws of physics describing the behaviour of a
system co-mowving as a whole with inertial frame K, expressed in terms of the
results of measurements obtainable by means of measuring-rods, clocks, etc.,
co-moving with K takes the same form as the laws of physics describing the
similar behaviour of the same system when it is co-moving with inertial frame
K', expressed in terms of the measurements with the same equipments when
they are co-moving with K'.

Whether or not the relativity principle holds is, it must be clear, a contingent
fact of nature. If the laws of physics known in any one inertial frame of reference,
say K, account for all physical phenomena then these laws unambiguously
predetermine whether the principle holds or not. The reason is that these laws
also describe the behaviour of moving (relative to K) physical systems including
both the measuring equipments co-moving with another inertial frame K’ and
the system to be measured co-moving with K.

Nevertheless, there are still vague points here. But before entering in the
discussion of these further problems, let us recall how the relativity principle
implies Galilean/Lorentz covariance.



Galilean and Lorentz covariance

6 . Consider two inertial frames of reference K and K'. Assume that K’ is
moving at constant velocity v relative to K along the axis of z. Assume that laws
of physics are known and empirically confirmed in inertial frame K, including
the laws describing the behaviour of physical objects in motion relative to K.
Denote x(A),y(A),z(A),t(A) the space and time tags of an event A, obtainable
by means of measuring-rods and clocks at rest relative to K, and denote
2'(A),y' (A),z'(A),t'(A) the similar data of the same event, obtainable by means
of measuring-rods and clocks co-moving with K’. In the approximation of
classical physics (v < ¢), the relationship between z'(A),y'(A), 2'(A),t'(A) and
x(A),y(A), z(A),t(A) can be described by the Galilean transformation:
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Due to the relativistic deformations of measuring-rods and clocks, the exact
relationship is described by the Lorentz transformation:

_ va(d)
) = W )
S(A) = x(A)—vtz(A) (6)
-5
y'(4) = y4) (7)
Z(A) = 2(4) (8)

Since physical quantities are defined by the same operational procedure in
all inertial frames, the transformation rules of the space and time coordinates
(usually) predetermine the transformations rules of the other physical variables.
So, depending on the context, we will mean by Galilean/Lorentz transformation
not only the transformation of the space and time tags, but also the
corresponding transformation of the other variables in question.

Following Einstein’s 1905 paper, the Lorentz transformation rules are usually
derived from the relativity principle the general validity of which we are going
to challenge in this essay. As we will see, this derivation is not in contradiction
with our final conclusions. Nevertheless, it is worth while to mention that
Lorentz transformation can also be derived independently of the principle of
relativity, directly from the facts that a clock slows down by factor /1 — v2/c?
when it is gently accelerated from K to K’ and a measuring-rod suffers a
contraction by factor y/1 —v?/c? when it is gently accelerated from K to K’
(see Point 37).



7. In classical physics, the space and time tags obtained by means of
measuring-rods and clocks co-moving with different inertial reference frames
can be connected through the Galilean transformation. According to special
relativity, the space and time tags obtained by means of measuring-rods and
clocks co-moving with different inertial reference frames are connected through
the Lorentz transformation. Consequently, the laws of physics must preserve
their forms with respect of the Galilean /Lorentz transformation. Thus, it must
be emphasised, the Galilean/Lorentz covariance is a consequence not only of
the fact that the laws of physics satisfy the relativity principle but also of the
other physical fact that the space and time tags in different inertial frames are
connected through the Galilean/Lorentz transformation.

8 . Let us now try to unpack the verbal formulations of the relativity principle
in a more mathematical way. Let £ be a set of differential equations describing
the behaviour of the system in question. Let us denote by ¢ a typical set of
(usually initial) conditions determining a unique solution of £. Let us denote
this solution by [¢]. Denote £ and v’ the equations and conditions obtained
from & and 1 by substituting every z; with «}, and ¢ with ¢/, etc. Denote
Gy, (€),G, (¢) and Ay (€), Ay (1) the set of equations and conditions expressed
in the primed variables applying the Galilean and the Lorentz transformations,
respectively (including, of course, the Galilean/Lorentz transformations of all
other variables different from the space and time coordinates). Finally, in order
to give a strict mathematical formulation of relativity principle, we have to fix
two further concepts, the meaning of which are vague: Let a solution [¢y] is
stipulated to describe the behaviour of the system when it is, as a whole, at
rest relative to K. Denote 1, the set of conditions and [t),] the corresponding
solution of £ that are stipulated to describe the similar behaviour of the system
as [1o] but, in addition, when the system was previously set, as a whole, into a
collective translation at velocity v.
Now, what relativity principle states is equivalent to the following;:

Gu(&) = ¢ (9)
Gy (Yu) = (10)
in the case of classical mechanics, and
Ay (&) = & (11)
Ay (o) = g (12)

in the case of special relativity.

9. Although, in conjunction with the Galilean/Lorentz transformation rules,
relativity principle implies Galilean/Lorentz covariance, the relativity principle,
as we can see, is not equivalent to the Galilean covariance (9) in itself or the
Lorentz covariance (11) in itself. It is equivalent to the satisfaction of (9) in
conjunction with condition (10) in classical physics, or (11) in conjunction with
(12) in relativistic physics.



10. Note, that &, g, and 1, as well as the transformations G, and A,
are given by contingent facts of nature. It is therefore a contingent fact of
nature whether a certain law of physics is Galilean or Lorentz covariant, and,
independently, whether it satisfies the principle of relativity. The relativity
principle and its consequence the principle of Lorentz covariance are certainly
normative principles in contemporary physics, providing a heuristic tool for
constructing new theories. We must emphasise however that these normative
principles, as any other fundamental law of physics, are based on empirical facts;
they are based on the observation that the behaviour of any moving physical
object satisfies the principle of relativity. I will show, however, that the laws of
relativistic physics, in general, do not satisfy this condition.

11. Before we begin analysing our examples, it must be noted that the major
source of confusion is that there still exists some vagueness in the relativity
principle (Point 5). Namely, the vagueness of the concepts like “a system co-
moving as a whole with an inertial frame” and “the similar behaviour of the
same system when it is co-moving with a given inertial frame”. In other words,
the vagueness of the definitions of conditions ¥y and v,. In principle any [t¢]
can be considered as a “solution describing the system’s behaviour when it is, as
a whole, at rest relative to K”. Given any one fixed 1), it is far from obvious,
however, what is the corresponding 1,,. When can we say that [¢,] describes the
similar behaviour of the same system when it was previously set into a collectives
motion at velocity v? As we will see, there is an unambiguous answer to this
question in the Galileo covariant classical physics. But v, is vaguely defined in
relativity theory. Note that Einstein himself uses this concept in a vague way,
for example in the passage quoted in Point 3. (What exactly does “a uniform
motion of parallel translation with velocity v ... imparted to the rod” mean?)

The following examples will illustrate that the vague nature of this concept
complicates matters. In all examples we will consider a set of interacting
particles. We assume that the relevant equations describing the system are
Galilean /Lorentz covariant, that is (9) and (11) are satisfied respectively. As
it follows from the covariance of the corresponding equations, Gt (1)) and,
respectively, A ! (i) are conditions determining new solutions of £. The
question is whether these new solutions [G,* (¥()] and [A;* ()] are identical
with [¢,] the one determined by v,. If so then the relativity principle is
satisfied.



The relativity principle in classical mechanics

12 . Let us start with an example illustrating how the relativity principle
works in classical mechanics. Consider a system consisting of two point masses
connected with a spring (Fig. 1). The equations of motion in K,

dQZCl (t)

L = ke -n®)-L) (13)
dQZCQ (t) -
m—— = k(@) — o (1) - L) (14)

are indeed covariant with respect to the Galilean transformation, that is,
expressing (13)—(14) in terms of variables 2/, ¢’ they have exactly the same form
as before:

&2z () L ot g
— k(xh (t) — 2 (') — L) (15)
Lah () 't
= k@) -2 (1) - L) (16)

Consider the solution of the (13) (14) belonging to an arbitrary initial
condition g:

Il(t = O) = 10
i) (t = O) = 20
dxy - v (17)
dt l¢=0 — 710
dzo —
dt lt=0 — Y20
The corresponding “primed” initial condition ¢ is
:v’l (t/ = 0) = 10
I/Q (t/ = O) = X20
x| _ (18)
: = v
EI 10
dxh = g
at’ | _g

Applying the inverse Galilean transformation we obtain a set of conditions
G, ! (¥)) determining a new solution of the original equations:

X1 (t = 0) = 210
X9 (t = 0) = X920
19
% =0 — VotV (19)
7 ‘t:O = UtV
m m
0 . k, L l X
X X2

Figure 1. Two point masses are connected with a spring of equilibrium length L
and of spring constant k
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One can recognise that this is nothing but ,. It is the set of the original
initial conditions in superposition with a uniform translation at velocity wv.
That is to say, the corresponding solution describes the behaviour of the same
system when it was (at ¢ = 0) set into a collective translation at velocity v, in
superposition with the original initial conditions.

13 . In classical mechanics, as we have seen from this example, the equations
of motion not only satisfy the Galilean covariance, but also satisfy the condition
(10). The principle of relativity holds for all details of the dynamics of the
system. There is no exception to this rule. In other words, if the world were
governed by classical mechanics, relativity principle would be a universally valid
principle. With respect to later questions, it is worth noting that the Galilean
principle of relativity therefore also holds for the equilibrium characteristics of
the system, if the system has dissipations. Imagine for example that the spring
has dissipations during its distortion. Then the system has a stable equilibrium
state in which the equilibrium distance between the particles is L. When we
initiate the system in collective motion corresponding to (19), the system relaxes
to another equilibrium state in which the distance between the particles is the
same L.
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Violation of relativity principle in relativistic
physics

14 . Let us turn now to the relativistic examples. It is widely held that the
new solution determined by A; ! (¢(), in analogy to the solution determined by
G, 1 (¥)) in classical mechanics, describes a system identical with the original
one, but co-moving with the frame K’, and that the behaviour of the moving
system, expressed in terms of the results of measurements obtainable by means
of measuring-rods and clocks co-moving with K’ is, due to Lorentz covariance,
the same as the behaviour of the original system, expressed in terms of the
measurements with the equipments at rest in K in accordance with the
principle of relativity. However, the situation is in fact far more complex, as I
will now show.

15. Imagine a system consisting of interacting particles (for example,
relativistic particles coupled to electromagnetic field). Consider the solution
of the Lorentz covariant equations in question that belongs to the following
general initial conditions:

n(t=0) = R, (20)
dri (t) - )
at |, = w; (21)

(Sometimes the initial conditions for the particles unambiguously determine the
initial conditions for the whole interacting system. Anyhow, we are omitting
the initial conditions for other variables which are not interesting now.) It
follows from the Lorentz covariance that there exists a solution of the “primed”
equations, which satisfies the same conditions,

r't' =0) = Ry (22)
/ /

W, (23)
" Jy—o

Eliminating the primes by means of the Lorentz transformation we obtain
K
YR
tr = 2 (24)
2
1-%
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v (t=1t7) = R.. (25)
R

<
SRS

Yr

Z

and

drre (1) e
Ll OF DR (26)

i Wy




12

It is difficult to tell what the solution deriving from such a nondescript “initial”
condition is like, but it is not likely to describe the original system in collective
motion at velocity v. The reason for this is not difficult to understand. Let me
explain it by means of a well known old example (Dewan and Beran 1959, Evett
and Wangsness 1960, Dewan 1963, Evett 1972, Bell 1987, Nikolic 1999, Field
2004).

16 . In stead of two rockets connected with a thread as the original example
says—consider the system consisting of two particles connected with a spring
(Point 12). Let us first ignore the spring. Assume that the two particles are
at rest relative to K, one at the origin, the other at the point d, where d = L,
the equilibrium length of the spring when it is at rest. It follows from (24)
(26) that the Lorentz boosted system corresponds to two particles moving at
constant velocity v, such that their motions satisfy the following conditions:

=0
2d
ty = —
-5
e 0) = 0
2d d
e | 2= = —— (27)
1-% 1-4%

However, the corresponding new solution of the equations of motion does not
“know” about how the system was set into motion and/or how the state of
the system corresponding to the above conditions comes about. Consider the
following possible scenarios:

Example 1

The two particles are at rest; the distance between them is d (see Fig. 2).
Then, particle 1 starts its motion at constant velocity v at ¢ = 0 from the
point of coordinate 0 (the last two dimensions are omitted); particle 2 start
its motion at velocity v from the point of coordinate d with a delay at time
t”. Meanwhile particle 1 moves closer to particle 2 and the distance between
them is d”’ = dy/1 — v?/c?, in accordance with the Lorentz contraction. Now,
one can say that the two particles are in collective motion at velocity v relative
to the original system K—or, equivalently, they are collectively at rest relative

to K'—for times t > t5 = vd/ (02\/1 - v2/c2). In this particular case they
have actually been moving in this way since ¢t”. Before that time, however, the

particles moved relative to each other, in other words, the system underwent
deformation.
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the original system

&Yide 1 particle 2

the Lorentz boosted systel

Figure 2. Both particles are at rest. Then particle 1 starts its motion at
t = 0. The motion of particle 2 is such that it goes through the point (t5,d'),
where d' = d/\/1 —v2/c?, consequently it started from the point of coordinate

d at t" = d(v/ (02«/1 —1)2/02) - (1 —4/1 —1)2/02) / (v\/l —02/02>>. The
distance between the particles at t” is d’ = d\/1 —v2%/c2, in accordance with
the Lorentz contraction.

Example 2

Both particles started at t = 0, but particle 2 was previously moved to the point
of coordinate dy/1 — v?/c? and starts from there. (Fig. 3)

Example 3

Both particles started at ¢ = 0 from their original places. The distance between
them remains d (Fig. 4). They are in collective motion at velocity v, although
this motion is not described by the Lorentz boost.

Example 4

If, however, they are connected with the spring (Fig. 5), then the spring (when
moving at velocity v) first finds itself in a non-equilibrium state of length d, then
it relaxes to its equilibrium state (when moving at velocity v) and—assuming
that the equilibrium properties of the spring satisfy the relativity principle,
which we will argue for later on—its length (the distance of the particles) would
relax to dv/1 — v2/c?, according to the Lorentz boost.

17 . We have seen from these examples that the relationship between the
Lorentz boost—the motion determined by the conditions A; ! (y))—and the
systems being in collective motion determined by v, is not so trivial. In
Examples 1 and 2 although, at least for large ¢, the system is identical with the
one obtained through the Lorentz boost—it would be entirely counter intuitive
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t the original system

patticle 1 particle 2

o :
YA
R =
; “\i z
¢\
d\

X the Lorentz boosted syst

Figure 3. Both particles start at t = 0. Particle 2 is previously moved to the

point of coordinate d"’ = d\/1 — v2/c2.

t the original system

particle 1 particle 2

\ the Lorentz boosted systel

Figure 4. Both particles start at t = 0 from the original places. The distance
between the particles does not change.
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t the original system

particle 1~ particle 2

the spring in equilibrium stat

the spring in non—equilibriu
state

z

[ —— the Lorentz boosted systel

Figure 5. The particles are connected with a spring (and, say, the mass of
particle 1 is much larger)

to say that we simply set the system in collective motion at velocity v, because
we first distorted it: in Example 1 the particles were set into motion at different
moments of time; in Example 2, before we set them in motion, one of the
particles was relocated relative to the other. In contrast, in Examples 3 and 4
we are entitled to say that the system was set into collective motion at velocity v.
But, in Example 3 the system in collective motion is different from the Lorentz
boosted system (for all ¢), while in Example 4 the moving system is indeed
identical with the Lorentz boosted one, at least for large ¢, after the relaxation
process.
Thus, as Bell rightly pointed out:

Lorentz invariance alone shows that for any state of a system at rest
there is a corresponding ‘primed’ state of that system in motion.
But it does not tell us that if the system is set anyhow in motion, it
will actually go into the 'primed’ of the original state, rather than
into the ‘prime’ of some other state of the original system. (Bell
1987, p. 75)

18 . However, neither Bell’s paper nor the preceding discussion of the “two
rockets problem” provide proper explanation of this fact. For instance, after the
above passage Bell continues:

In fact, it will generally do the latter. A system set brutally
in motion may be bruised, or broken, or heated or burned. For
the simple classical atom similar things could have happened if
the nucleus, instead of being moved smoothly, had been jerked.
The electron could be left behind completely. Moreover, a given
acceleration is or is not sufficiently gentle depending on the orbit in
question. An electron in a small, high frequency, tightly bound orbit,
can follow closely a nucleus that an electron in a more remote orbit
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— or in another atom — would not follow at all. Thus we can only
assume the Fitzgerald contraction, etc., for a coherent dynamical
system whose configuration is determined essentially by internal
forces and only little perturbed by gentle external forces accelerating
the system as a whole. (Ibid., p. 75)

The possible “damage” of the system due to “brutal” acceleration is a completely
different issue (to which we will return in Point 26) which obscures a more
essential problem. As the above examples show,! gentle acceleration in itself
does not guarantee that the Lorentz boosted solution describes the original
system gently accelerated from K to K'.

19 . Before I proceed to formulate my thesis about this question, let me give
one more example.

Example 5

Consider a rod at rest in K. The length of the rod is [. At a given moment of
time to we take a record about the positions and velocities of all particles of the
rod:

dTi t
dt

—~
~—

= Ww; (29)
t=to

Then, forget this system, and imagine another one which is initiated at moment
t = to with the initial condition (28) (29). No doubt, the new system will be
identical with a rod of length [, that continues to be at rest in K.

Now, imagine that the new system is initiated at ¢t = ty with the initial
condition

T (lf = to) = Ri (30)
d?‘i (t) o
dt t=to a v i (31)

instead of (28) (29). No doubt, in a very short interval of time (to, to + At) this
system is a rod of length [, moving at velocity v; the motion of each particle is
a superposition of its original motion, according to (28) (29), and the collective
translation at velocity v. In other words, it is a rod co-moving with the reference
frame K'. Still, its length is [, contrary to the principle of relativity, according
to which the rod should be of length I,/1 — v2/c?—as a consequence of I’ = [.

n our examples we omitted the acceleration period—symbolised by a black point on the
figures for the sake of simplicity.
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Region IlI
Region Il

ct

c(t=t)

t=0 t=t 0
Region

Figure 6. Scheme of regions I, II and II1

The restricted relativity principle as a principle of
thermodynamics

20 . The resolution of this “contradiction” is that the system initiated in state
(30)—(31) at time tg finds itself in a non-equilibrium state and then, due to
certain dissipations, it relazes to the new equilibrium state. What such a new
equilibrium state is like, depends on the details of the dissipation/relaxation
process. It is, in fact, a thermodynamical question. The concept of “gentle
acceleration” not only means that the system does not go irreversibly far apart
from its equilibrium state, but, more essentially, it incorporates the assumption
that there is such a dissipation /relaxation phenomenon.

Without entering into the quantum mechanics of solid state systems, a good
way to picture it is imagine that the system is radiating during the relaxation
period. This process can be followed in details by looking at one single point
charge accelerated from K to K’ (see Janossy 1971, pp. 208-210). Suppose the
particle is at rest for ¢ < 0, the acceleration starts at ¢ = 0 and the particle
moves with constant velocity v for ¢ > tg. Using the retarded potentials, we
can calculate the field of the moving particle at some time t > ¢3. We find
three zones in the field (see Fig. 6). In Region I, surrounding the particle, we
find the “Lorentz-transformed Coulomb field” of the point charge moving at
constant velocity (see (71)—(76) in Point 44). This is the solution we usually
find in textbooks. In Region II, surrounding Region I, we find a radiation field
travelling outwards which was emitted by the particle in the period 0 < t < ¢y
of acceleration. Finally, outside Region II, the field is produced by the particle
at times ¢t < 0. The field in Region III is therefore the Coulomb field of the
charge at rest (Point 44 eqs. (65)—(70)). Thus, the principle of relativity never
holds exactly. Although, the region where “the principle holds” (Region I) is
blowing up at the speed of light. In this way the whole configuration relaxes to
a solution which is identical with the one derived from the principle of relativity.



18

21 . Thus, we must draw the conclusion that, in spite of the Lorentz covariance
of the equations, whether or not the solution determined by the condition
At () is identical with the solution belonging to the condition 1, in other
words, whether or not the relativity principle holds, depends on the details of
the dissipation/relaxation process in question, given that 1) there is dissipation
in the system at all and, 2) the physical quantities in question, to which
the relativity principle applies, are equilibrium quantities characterising the
equilibrium properties of the system. For instance, in Example 5, the relativity
principle does not hold for all dynamical details of all particles of the rod.
The reason is that many of these details are sensitive to the initial conditions.
The principle holds only for some macroscopic equilibrium properties of the
system, like the length of the rod. Tt is a typical feature of a dissipative
system that it unlearns the initial conditions; some of the properties of the
system in equilibrium state, after the relaxation, are independent from the initial
conditions. The limiting (¢ — o0) electromagnetic field of the moving charge
and the equilibrium length of a solid rod are good examples. These equilibrium
properties are completely determined by the equations themselves independently
of the initial conditions. If so, the Lorentz covariance of the equations in itself
guarantees the satisfaction of the principle of relativity with respect to these
properties: Let X be the value of such a physical quantity characterising the
equilibrium state of the system in question, fully determined by the equations
independently of the initial conditions—ascertained by the measuring devices
at rest in K. Let X’ be the value of the same quantity of the same system
when it is in equilibrium and at rest relative to the moving reference frame K’,
ascertained by the measuring devices co-moving with K’. If the equations are
Lorentz covariant, then X = X’. We must recognise that whenever in relativistic
physics we derive correct results by applying the principle of relativity, we apply
it for such particular equilibrium quantities. But the relativity principle, in
general, does not hold for the whole dynamics of the systems in relativity theory,
in contrast to classical mechanics.

22 . When claiming that relativity principle, in general, does not hold for the
whole dynamics of the system, a lot depends on what we mean by the system set
into uniform motion. One has to admit that this concept is still vague. As we
pointed out, it was not clearly defined in Einstein’s formulation of the principle
either. By leaving this concept vague, Einstein tacitly assumes that these details
areirrelevant. However, they can be irrelevant only if the system has dissipations
and the principle is meant to be valid only for some equilibrium properties with
respect to which the system unlearns the initial conditions. So the best thing
we can do is to keep the classical definition of 1,,: Consider a system of particles
the motion of which satisfies the following “initial” conditions:?

I‘i(t:to) = RiO

dry — )
dt lt=t, Vio

(32)

2A condition like (32) does not necessarily mean either that ¢y = 0 nor that the solution in
question describes the motion only for t > ¢¢, it just fixes a particular solution by prescribing
the state of the particle at a given moment of time.
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The system is set in collective motion at velocity v at the moment of time ¢ if
its motion satisfies

ri(t=t)) = Rio
d _ (33)
% t=to - V7’O +v

I have basically two arguments for such a choice:

(a) The first is a methodological one. The usual Einsteinian derivation
of Lorentz transformation, simultaneity in K’, etc., starts with the
declaration of the relativity principle. In order to formulate the principle,
we need the concept of a physical system in uniform motion relative to
K. This concept, therefore, must logically precede relativity theory. (See
also Point 77?)

(b)  The second support comes from what Bell calls “Lorentzian pedagogy”.

Its special merit is to drive home the lesson that the laws
of physics in any one reference frame account for all physical
phenomena, including the observations of moving observers.
And it is often simpler to work in a single frame, rather than to
hurry after each moving objects in turn. (Bell 1987, p. 77.)

In reference frame K, the concept of setting a system of state (32) in
collective motion at velocity v in turn means nothing but setting it in
state (33).

23 . Thus, we have seen that in classical mechanics the principle of relativity is,
indeed, a universal principle. It holds, without any restriction, for all dynamical
details of all possible systems described by classical mechanics. In contrast, in
relativistic physics this is not the case:

1. The principle of relativity is not a universal principle. It does not
hold for the whole range of validity of the Lorentz covariant laws of
relativistic physics, but only for the equilibrium quantities characterising
the equilibrium states of dissipative systems. Since dissipation, relaxation
and equilibrium are thermodynamical conceptions par excellence, the
special relativistic principle of relativity is actually a thermodynamical
principle, rather than a general principle satisfied by all dynamical laws of
physics describing all physical processes in details. One has to recognise
that the special relativistic principle of relativity is experimentally
confirmed only in such restricted sense.

2. The satisfaction of the principle of relativity in such restricted sense is
indeed guaranteed by the Lorentz covariance of those physical equations
that determine, independently of the initial conditions, the equilibrium
quantities for which the principle of relativity holds. In general,
however, Lorentz covariance of the laws of physics does not guarantee
the satisfaction of the relativity principle.
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3. It is an experimentally confirmed fact of nature that some laws of physics
are ab ovo Lorentz covariant. However, since relativity principle is not a
universal principle, it does not entitle us to infer that Lorentz covariance
is a fundamental symmetry of physics.

4. The fact that the space and time tags obtained by means of measuring-
rods and clocks co-moving with different inertial reference frames can be
connected through the Lorentz transformation is compatible with our
general observation that the principle of relativity only holds for such
equilibrium quantities as the length of a solid rod or the characteristic
periods of a clock-like system.

The fact that relativity principle is not a universal principle throws new light
upon the discussion of how far the Einsteinian special relativity can be regarded
as a principle theory relative to the other (constructive) approaches (cf. Einstein
1969, p. 57; Bell 1992; Brown and Pooley 2001; Brown 2001; 2003). It can also
be interesting from the point of view of other reflections on possible violations
of Lorentz covariance (see, for example, Kostelecky and Samuel 1989).

It must be emphasised that the physical explanation of this more complex
picture is rooted in the physical deformations of moving measuring-rods and
moving clocks by which the space and time tags are defined in moving reference
frames. In Einstein’s words:

A Priori it is quite clear that we must be able to learn something
about the physical behaviour of measuring-rods and clocks from the
equations of transformation, for the magnitudes z, y, x, t are nothing
more nor less than the results of measurements obtainable by means
of measuring-rods and clocks. (Einstein 1920, p. 35)

Since therefore Lorentz transformation itself is not merely a mathematical
concept without contingent physical content, we must not forget the real
physical content of Lorentz covariance and relativity principle.

Comments

24 . It is sometimes thought that the Lorentz transformations, and the
relativity principle, say nothing about what happens when a physical system
that is at rest in reference frame K is accelerated in such a way that it becomes
at rest in another reference frame K’. They are only about the relations between
systems that already were at rest in K and K’, respectively; and that are in the
same conditions as judged from their respective rest frames.

In this view, however, beyond the vagueness of the concept of “a system
being at rest in a given reference frame” which has been our main concern
so far, there also appears a methodological nonsense. How can our physical
theories, including the Lorentz transformation rules and the relativity principle,
be empirically confirmed scientific theories, if we have no empirical knowledge
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about the systems’ behaviours when they are accelerated from one reference
frame into the other? How can we identify systems of the same kind, “living” in
different reference frames K and K’, without having experience about a system,
say, in K accelerated in such a way that it becomes a system moving together
with the other reference frame K’? How can we ascertain they identical states?
How can we transfer the standard measuring equipments from one frame to the
other, if we have no empirical information about their behaviours when they
are moving? Or, if it is taken that we have independent standard equipments in
every reference frames, existing there from eternity, how can we identify these
different standard measuring equipments and how can we identify the different
physical quantities defined in terms of these independent etalons? How can
our physical world view be consistent if a “system already moving at constant
velocity v relative to K” has nothing to do with the “same system having been
(gently) accelerated to velocity v relative to K” and if the latter has nothing to
do with the “same system being at rest in the frame K’ moving at velocity v
relative to K”—whatever these phrases mean.

On the contrary, as we pointed out in Point 5, the empirically confirmed
laws of physics in any one reference frame K must describe—and, actually, do
describe the behaviour of all physical systems performing arbitrary motions,
including acceleration relative to K. Applying these laws, we can determine
the results of measurements obtainable by means of measuring equipments co-
moving with K’ on various systems including those which are co-moving with
K'. Whether or not these results, in comparison with the similar results of
measurements obtainable by means of measuring equipments at rest relative to
K, satisfy the Lorentz transformation rules and/or the relativity principle is a
contingent fact of nature inscribed in the physical laws in question in K. If so,
then the Lorentz transformation rules and/or the relativity principle describe
nothing but the physical behaviours of the (measuring and measured) systems
in question performing various motions relative to K.

25 . Another source of confusion is the widespread view that accelerated
systems, especially accelerated observers, are always problematic within the
context of the principle of special relativity; by definition, such things fall outside
of the scope of the relativity principle. It must be clear, however, that only
accelerated reference frames fall outside the scope of the relativity principle in
the sense that the principle asserts that the corresponding physical laws take
the same form in all inertial frames—but not accelerated physical objects.
Moreover, note that an accelerated reference frame falls outside of the scope
of the relativity principle only as the subject of the principle, but not as its
object. For, in any inertial reference frame K the special relativistic laws of
physics must account for the behaviour of all physical objects, including both
accelerated measuring equipments and the other physical objects (of arbitrary
motion) to be measured. Therefore the Lorentz covariant special relativistic
laws must account for how the things look like even in an arbitrary accelerated
frame IC. For example, if the description is correct, it must reflect the fact that
relativity principle does not hold for the reference frames of relative acceleration.
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Moreover, relativity principle also holds—in the usual restricted sense—for these
descriptions. For imagine another inertial frame K’ moving at velocity v relative
to K. The laws of physics in K’ also account for what an observer observes
in K. The relativity principle relates two such descriptions in the following
sense: Let the described phenomenon be <how the things look like in K>. Let
things, symbolically denote the same things when they are in collective motion
at velocity v relative to K, and similarly let /C,, be a frame which performs the
same accelerating motion as GG in superposition with a translation at velocity v
relative to K. (Of course, these all are vague concepts, as usual.) Now, according
to the relativity principle the <how the things, look like in /C,,>> expressed in
the terms of the results of measurements obtained by means of measuring-rods,
clocks, etc. co-moving with K’ takes the same form as the <how the things look
like in K>, expressed in terms of the measurements with the devices at rest in
K.

26 . Another reason why accelerated systems are eyed with suspicion is that
brutal acceleration may damage the physical object in question. As I pointed out
in Point 18, this problem is different from what has been our main concern that
the relativity principle has only limited validity in relativistic physics, simply
because the principle can fail even if the system is gently accelerated. Let us
now examine this difference in more details.

Recall first what the relativity principle says in classical physics. It asserts
that equations (9) (10) hold for initial conditions like (32) (33):

r; (t = to) = RiO

dj = { dr _ (34)
0 d_tl t=to - VZO
r; (t = to) = RiO

- 35

d] { dstl t=tg = ViO +v ( )

That is, Gy (¢,) = (), no matter how brutally the system is set in state
1. The point is that the principle is about the comparison of the system’s
behaviour initiated from the sate (34) with the system’s behaviour initiated
from state (35). The only difference between the two states is that the latter
contains a collective motion of all particles at velocity v. In other words, if
(35) describes the sate of the system right after it was brutally accelerated to
co-moving with K’ then (34) describes the sate of the system right after it was
brutally accelerated to co-moving with K. The principle has nothing to do with
the difference between the states before and after the brutal acceleration.

Let me illustrate this with an example. Imagine a system of interacting

particles in state
r; (t = t,) = Ri,
CEES dry - V.
dt lt=t_ b

at time t_. Then at time {5 — At the system is exploded, and right after the
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explosion its state is

I‘i(t = to) = RiO
Yo = dry - V.,
dt lt=tq - 0
Now, imagine that the system is exploded in a slightly different way, such
that a very strong but homogeneous gravitational field is turned on during the
explosion, so all particles obtain an additional velocity v = a - At. Therefore
the system’s state at ty will be

d] _{ I‘i(f:to) = RiO
! dstl t=tg Vio +v
As a result, the system of state 1)_ is set in collective motion at velocity v
relative to K in the most brutal way. Of course, the principle tells nothing
about the differences either between the states ¥y and ¥ _ or between 1, and
1_. But, in spite of the brutality of the state preparation, in classical physics,
the relativity principle always holds: G, (1,) = 9.
Now, as we have seen, the same is not true in relativistic physics. Namely,
even if the laws of physics satisfy condition (11), A, (¢,) # ¢{ in general—no
matter how brutal or gentle was the change from ¥_ to ¢y /,.
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Does Special Relativity Theory Tell Us Anything
New About Space and Time?

Prolog

27 . Consider the following definitions of electrodynamical quantities:

Q=

Figure 7. X is defined as the force felt by the unit test charge

X (r) Locate a test charge @ at point r and measure the force F felt by the
charge. X (r) = g (Fig 7).

Y (r)  Locate two contacting metal plates of area A at point r. Separate them
and measure the influence charge @) on one of the plates. Y (r) = %.
The direction of Y(r) is determined by the normal vector of the plates,
when the charge separation is maximal (Fig 8).

@/vy

Figure 8. Y is defined by means of the influence charge divided by the surface

It is a well known empirical fact that these quantities are not independent of
each other. For the sake of simplicity, assume the simplest material equation

Y =X (36)
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where e, called dielectric constant, is a scalar field characterising the medium.
Traditionally, in phenomenological electrodynamics, physical quantity X

is called ‘electric field strength’ and denoted by E, and Y is called ‘electric

displacement’ and denoted by D. Due to the material equation (36) one can

eliminate one of the field variables.

28 . Imagine a text book (I shall refer to it as the “old” one), which only uses

E. The equations of electrostatics are written as follows:

diveE = »p (37)
rot E = 0 (38)

For example, the book contains the following exercise and solution:

Exercise Consider the static electric field around a point charge ¢
located at the border of two materials of dielectric constant 7 and
€o. Is the electric field strength spherically symmetric, or not?

Solution (see Fig 9)

1 q
E = ——= 39
! 27T(51+52)T3r ( )
1
E, = — 4, (40)

Consequently,

(S1)  The electric field strength is spherically symmetric.

29 . Now, imagine a new electrodynamics text book which is non-traditional
in the following sense: it uses only field variable Y (traditionally called ‘electric
displacement’ and denoted by D), but it systematically calls Y ‘electric field
strength’ and denotes it by E. Accordingly, the equations of electrostatics are
written as follows:

divE = »p (41)
0 (42)

—
o
=
|
Il

This new book also contains the above exercise, but with the following solution:

Solution (see Fig 10)

€1 q
E, = — = 43
! 27T(51+52)T3r ( )
€2 q
E, = ——> = 44
2 27T(51+52)T3r ( )

Consequently,
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(S2)  The electric field strength is not spherically symmetric.

Figure 9. The ‘electric field strength’ of the static electric field around a point
charge q located at the border of two materials of dielectric constants €1 and e

Figure 10. The ‘electric field strength’ of the static electric field around a point
charge q located at the border of two materials of dielectric constants 1 and e

Now, does sentence (S2) of the new book contradict to sentence (S1) of the
old book? TIs it true that the theory described in the new book is a new theory
of electromagnetism? Of course, not. Seemingly the two sentences contradict to
each other, on the level of the words. However, in order to clarify the meaning of
sentence (S1) and (S2), one has to go back to the first pages of the corresponding
book and clarify the definition of the physical quantity called ‘electric field
strength’. And it will be clear that the term ‘electric field strength’ stands
for two different physical quantities in the two books. Moreover, both text
books provide complete descriptions of electromagnetic phenomena. Therefore,
although the theory in the old book does not use the field variable Y, it is
capable to account for the physical phenomena by which physical quantity Y
is empirically defined. It is capable to determine the influence charge on the
separated plates (by calculating e EA). In other words, it is capable to determine
the value of Y, that is, the value of what the new book calls ‘electric field
strength’. And vice versa, on the basis of the theory described in the new book
one can calculate the force felt by a unit test charge (by calculating %), that is,
one can predict the value of X, what the old book calls ‘electric field strength’.
And both, the theory in the old book and the theory in the new book have the
same predictions for both, X and Y. That is to say, although they use different
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terminology, the two text books contain the same electrodynamics, they provide
the same description of physical reality.
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What will be challenged

30. It is widely believed that the principal difference between FEinstein’s
special relativity and its contemporary rival Lorentz theory was that while
the Lorentz theory® was also capable of “explaining away” the null result of
the Michelson Morley experiment and other experimental findings by means of
the distortions of moving measuring-rods and moving clocks, special relativity
revealed more fundamental new facts about the geometry of space-time behind
these phenomena. According to this widespread view, special relativity theory
has radically changed our conceptions about space and time by claiming that
space-time is not like an E2 x E! space, as was believed in classical physics, but
it is a four dimensional Minkowski space M*. One can express this revolutionary
change by the following logical schema: Earlier we believed in G1 (M), where M
stands for space-time and G denotes some predicate (like E* x E!). Then we
discovered that =G (M) but G2 (M), where G2 denotes a predicate different
from G (something like M*).
Contrary to this common view, our first thesis will be the following:

Thesis 1. In comparison with the pre-relativistic Galileo-invariant conceptions,
special relativity tells us nothing new about the geometry of space-time. It
simply calls something else “space-time”, and this something else has different
properties. All statements of special relativity about those features of reality that
correspond to the original meaning of the terms “space” and “time” are identical
with the corresponding traditional pre-relativistic statements.

Thus the only new factor in the special relativistic account of space-time is the

decision to designate something else “space-time”. In other words: Earlier we
believed in Gy (M). Then we discovered for some M # M that -Gy (M) but

Go (1\7) Consequently, it still holds that Gy (M).

31. So the real novelty in special relativity is some Go (M) As we will
see, this is nothing but the description of the physical behaviour of moving
measuring-rods and clocks. It will be also argued, however, that G, (M) does
not contradict to what Lorentz theory claims. More exactly, as our second thesis

asserts, both theories claim that G; (M) &Gs (M)

Thesis 2.  Special relativity and Lorentz theory are completely identical in
both senses, as theories about space-time and as theories about the behaviour of

31 use the term “Lorentz theory” as classification to refer to the similar approaches of
Lorentz, FitzGerald, and Poincaré, that save the classical Galilei covariant conceptions of
space and time by explaining the null result of the Michelson Morley experiment and other
similar experimental findings through the physical distortions of moving objects (first of all of
moving measuring-rods and clocks), no matter whether these physical distortions are simply
hypothesised in the theory, or prescribed by some “principle” like Lorentz’s principle, or they
are constructively derived from the behaviour of the molecular forces. From the point of view
of my recent concerns what is important is the logical possibility of such an alternative theory.
Although, Lorentz’s 1904 paper is very close to be a good historic example.
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moving physical objects.

On the meaning of the question “What is space-
time like?”

32. A theory about space-time describes a certain group of objective features
of physical reality, which we call (the structure of) space-time. According to
classical physics, the geometry of space-time E? x E!, where E3 is a three-
dimensional Euclidean space for space, and E! is a one-dimensional Euclidean
space for time, with two independent invariant metrics corresponding to the
space and time intervals. In contrast, special relativity claims that the geometry
of space-time understood as the same objective features of physical reality is
different: it is a Minkowski geometry.

Physics describes objective features of reality by means of physical quantities.
Our scrutiny will therefore start by clarifying how classical physics and relativity
theory define the space and time tags assigned to an arbitrary event. It will be
seen that these empirical definitions are different.

The empirical definition of a physical quantity requires an etalon measuring
equipment and a precise description of the operation how the quantity to be
defined is measured. For example, assume we choose, as the etalon measuring-
rod, the meter stick that is lying in the International Bureau of Weights and
Measures (BIPM) in Paris. Also assume—this is another convention—that
“time” is defined as a physical quantity measured by the standard clock also
sitting in the BIPM. When I use the word “convention” here, I mean the
semantical freedom we have in the use of the uncommitted signs “distance”
and “time”—a freedom what Griinbaum (1974, p. 27) calls “trivial semantical
conventionalism”.

33 . Now we are going to describe the empirical definitions of the space and
time tags of an arbitrary event A, relative to the reference frame K in which the
the etalons are at rest, and to another reference fame K’ which is moving (at
constant velocity v) relative to K. For the sake of simplicity consider only one
space dimension and assume that the origin of both K and K’ is at the BIPM
at the initial moment of time.

(D1) Time tag in K according to classical physics

Take a synchronised copy of the standard clock at rest in the BIPM,
and slowly? move it to the locus of event A. The time tag % (A) is
the reading of the transfered clock when A occurs.?

44Slowly” means that we move the clock from one place to the other over a long period
of time, according to the reading of the clock itself. The reason is to avoid the loss of phase
accumulated by the clock during its journey.

5With this definition we actually use the standard “c = %—synchronisa‘cion”. I do not want
to enter now into the question of the conventionality of simultaneity, which is a hotly debated
problem, in itself. (See Point 67.)



(D2) Space tag in K according to classical physics

The space tag 2% (A) of event A is is the distance from the origin of
K of the locus of A along the z-axis® measured by superposing the
standard measuring-rod, being always at rest relative to K.

(D3) Time tag in K according to special relativity
Take a synchronised copy of the standard clock at rest in the BIPM,

and slowly move it to the locus of event A. The time tag t* (A) is
the reading of the transfered clock when A occurs.

(D4) Space tag in K according to special relativity

The space tag 7% (A) of event A is the distance from the origin of
K of the locus of A along the z-axis measured by superposing the
standard measuring-rod, being always at rest relative to K.

(D5) Time tag of an event in K’ according to classical physics

The time tag of event A relative to the frame K’ is
iK' (A) .= K (A) (45)

(D6) Space tag of an event in K’ according to classical physics

The space tag of event A relative to the frame K’ is
K (A) = 25 (A) — viE(A) (46)

where v = 9 (K') is the velocity of K’ relative to K in the sense of
definition (D9).

(D7) Time tag in K’ according to special relativity

Take a synchronised copy of the standard clock at rest in the BIPM,
gently accelerate it from K to K’ and set it to show 0 when the
origins of K and K’ coincide. Then slowly (relative to K’) move it
to the locus of event A. The time tag X (A) is the reading of the
transfered clock when A occurs.

(D8) Space tag in K’ according to special relativity

The space tag 25 (A) of event A is the distance from the origin of
K’ of the locus of A along the z-axis measured by superposing the
standard measuring-rod, being always at rest relative to K’, in just
the same way as if all were at rest.

6The straight line is defined by a light beam.

30
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(D9) Velocities in the different cases

Velocity is a quantity derived from the above defined space and time

tags:
A K
P
AtE
~ ATE
7 = =
AtE
N AK
N2
~K’ o AZEK/
v =
ALK

34 . With these empirical definitions, in every inertial frame we define four
different quantities for each event, such that:

K = K4 (47)
i) = %4 (48)
i) 2 34 (49)
i'(4) 2 (4) (50)

where = denotes the identical empirical definition.

In spite of the different empirical definitions, it could be a contingent fact of
nature that 25 (A4) = 75 (A) and/or {5 (A) = 15" (A) for every event A. Let
me illustrate this with an example. The inertial mass m; and gravitational
mass m, are two quantities having different experimental definitions. But,
it is a contingent fact of nature (experimentally proved by E&tvos around
1900) that, for any object, the two masses are equal, m; = mgy. A little
reflection reveals, however, that this is not the case here. It follows from
special relativity that Z(A),#5(A) are related with 75 (A), 5 (A) through
the Lorentz transformation, while 5 (A), % (A) are related with 25 (A), 5" (A)
through the corresponding Galilean transformation, therefore, taking into
account identities (47) (48), 25 (A) # #5'(A) and iK' (A) # 15 (A), if v # 0.

Thus, our first partial conclusion is that different physical quantities are
called “space” tag, and similarly, different physical quantities are called “time”
tag in special relativity and in classical physics.” In order to avoid further
confusion, from now on space and time tags will mean the physical quantities
defined in (D1), (D2), (D5), and (D6) according to the usage of the terms
in classical physics , and “space” and “time” in the sense of the relativistic
definitions (D3), (D4), (D7) and (D8) will be called space and time.

Special relativity theory makes different assertions about somethings which
are different from space and time. In our symbolic notation, classical physics

"This was first recognised by Bridgeman (1927, p. 12), although he did not investigate the
further consequences of this fact.
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claims G4 (M) about M and relativity theory claims Go (M) about some

other features of reality M. The question is what special relativity and classical
physics say when they are making assertions about the same things.

Special relativity does not tell us anything new
about space and time

35 . Classical physics calls “space” and “time” what we denoted by space and
time. So relativity theory would tell us something new if it accounted for
physical quantities # and ¢ differently. If there were any event A and any inertial
frame of reference K* in which the space or time tag assigned to the event by
special relativity, [;%K*(A)} relativity’ [tAK* (A)]relativity’ were different from the
similar tags assigned by classical physics, [JEK* (A)] lassical” [tAK* (A)} classical: 1T
for example, there were any two events simultaneous in relativity theory which
were not simultaneous according to classical physics, or vice versa—to touch on
a sore point. But a little reflection shows that this is not the case. Taking into
account empirical identities (47) (48), one can calculate the relativity theoretic
prediction for the outcomes of the measurements described in (D1), (D2), (D5),
and (D6), that is, the relativity theoretic prediction for :%K/(A):

the value of which is equal to
() = o (K = [ @) (52)
Similarly,
CK! _ 3K _ K _ [k’
|:t (A)i| relativity =t (A) =1 (A) a [t (A):| classical (53)

This completes the proof of Thesis 1.

Lorentz theory and special relativity are
completely identical theories

36 . Since Lorentz theory adopts the classical conceptions of space and ti/IrTe,
it does not differ from special relativity in its assertions about space and time.

What about the other claim Gy (M) about space and time? In order to

prove what Thesis 2 asserts, that is to say the complete identity of Lorentz
theory and of special relativity, we also have to show that the two theories have
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identical assertions about 7 and ¢, that is,

[ ()] = [#()]

relativity
{t ,(A):|relativity - {t ,(A)LT

According to relativity theory, the space and time tags in K’ and in K are
related through the Lorentz transformations. From (47) (48) we have

7 (4)] - L (54)

relativity v2

[sz’ (A)] = (55)

relativity v2

37 . On the other hand, taking the assumptions of Lorentz theory that the
standard clock slows down by factor /1 — Z—; and that a rigid rod suffers a

contraction by factor /1 — Z—; when they are gently accelerated from K to

K’, one can directly calculate the space tag 7% (A) and the time tag i (A),
following the descriptions of operations in (D7) and (D8).

First, let us calculate the reading of the clock slowly transported in K’ from
the origin to the locus of an event A. The clock is moving with a varying
velocity®

08 () = v + o™ ()
where WX (£K) is the velocity of the clock relative to K, that is, W% (0) = 0
when it starts at £5(0) = 0 (as we assumed, ¥ = 0 and the transported clock
shows 0 when the origins of K and K’ coincide) and @ (£{) = 0 when the clock
arrives at the place of A. The reading of the clock at the time £ will be

L wrak@)
T_/O \/1 i (56)

Since W’ is small we may develop in powers of W, and we find from (56) when
neglecting terms of second and higher order

K

s K
(E{‘v+f[fl W (i) df)v

7K K (A) — (A
T=- < G b (57)
1-4% 1-4%

8For the sake of simplicity we continue to restrict our calculation to one space dimension.
For the general calculation of the phase shift suffered by moving clocks, see Janossy 1971, pp.
142 147.
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(where, without loss of generality, we take ti = {5 (A)). Thus, according to the
definition of ¢, we have

K’ — c2
t™ (A } = —°- 58
T — (58)
C2
which is equal to FKI (A)} l in (54).
relativity

Now, taking into account that the length of the co-moving meter stick is

only /1 — Z—;, the distance of event A from the origin of K is the following:

5 (A) = 5 (Ao + 75 (A /1 - z—j (59)

and thus

LT o2 -
l-=

[5;« ( A)} K (A) —vi®(4) [5;« A }

relativity

This completes the proof The two theories make completely 1dent1cal assertions
not, only about the space and time tags &, but also about the space and time
tags ¥, t.

38 . Consequently, there is full agreement between the Lorentz theory and
special relativity theory in the following statements:

(a)  Velocity—which is called “velocity” by relativity theory—is not an additive
quantity,
~K (K”) + 5K (K///)

~K' (g v
K = 7 ~K /7
( ) 1 + oK (KN)C,L;K (K/H)

while v&)—ay that is, what we traditionally call “velocity” is an additive
quantity, ) ) B
f;K (K///) _ ’[)K (K//) + ’DK (K///)

where K’, K", K" are arbitrary three frames. For example,
K (light signal) = o (K" + oK (light signal)

(b) The (51, To, T3, f)—map of the world can be conveniently described through
a Minkowski geometry, such that the t-simultaneity can be described
through the orthogonality with respect to the 4-metric of the Minkowski
space, etc.

(¢) The (il,iz,gﬁg,f)—map of the world, can be conveniently described
through a traditional “space-time geometry” like E3 x [E!.
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(d) The veToay of light is not the same in all inertial frames of reference.
(e) The vmy of light is the same in all inertial frames of reference.

(f) Time and distance are invariant, the reference frame independent

concepts, time and distance are not.

(g) {-simultaneity is an invariant, frame-independent concept, while ¢-
simultaneity is not.

(h) For arbitrary K’ and K”, #X'(A),f5'(A) can be expressed by
K" (A), 5" (A) through a suitable Galilean transformation

(i) For arbitrary K’ and K", 7K'(A),t5'(A) can be expressed by
757 (A),t57 (A) through a suitable Lorentz transformation.

Moreover, in all cases when it holds, they will agree in the relativity principle:

(j)) The behaviour of similar systems co-moving as a whole with different
inertial frames, expressed in terms of the results of measurements
obtainable by means of co-moving measuring-rods and clocks (that is, in

terms of quantities = and t) is the same in every inertial frame of reference.
Combining this with (i),

(k) The laws of physics, expressed in terms of  and ¢, must be given by means
of Lorentz covariant equations.

Finally, they agree that

(1) All facts about z and t (and, consequently, all facts about Z and ) can
be derived backward from (e) and (j).

To sum up symbolically, Lorentz theory and and special relativity theory
have identical assertions about both M and M: they unanimously claim that
Gy (M) &Gy (7).

39 . Finally, note that in an arbitrary inertial frame K’ for every event A
the tags 2K (A4), 25 (4), 25 (A), % (A) can be expressed in terms of 7K (A),
K (A), TK'(4), %' (A) and vice versa. Consequently, we can express the laws
of physics _as is done in special relativity —equally well in terms of the variables
Ty, %o, T3, t instead of the Space and time tags &1, 29, &3, . On the other hand,
we should emphasise that the one-to-one correspondence between 7, %o, T3, t
and Iy, &2, 23, also entails that the laws of physics (so called “relativistic” laws
included) can be equally well expressed in terms of the (traditional) Space and
time tags @, &9, &3, instead of the variables &1, T, &3, t. In brief, physics could
manage equally well with the classical Galileo-invariant conceptions of space
and time.
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Comments

40 . In a strict logical sense we have fished the argumentation for our two
theses in Point 30. We proved that special relativity and Lorentz theory are
completely identical theories. Nevertheless, the following comments may aid the
reader in arriving at his own appraisal.

Are relativistic deformations real physical changes?

41 . Many believe that it is an essential difference between the two theories that
relativistic deformations like the Lorentz—FitzGerald contraction and the time
dilatation are real physical changes in Lorentz theory, but there are no similar
physical effects in special relativity. Let us examine two typical argumentations.
According to the first argument the “Lorentz contraction/dilatation” of a rod
cannot be an objective physical deformation in relativity theory, because it is
a frame-dependent fact whether “the rod is shrinking or expanding”. Consider
a rod accelerated from the sate of rest in reference frame K’ to the state of
rest in reference frame K. According to relativity theory, “the rod shrinks
in frame K’ and, at the same time, expands in frame K’”. But this is a
contradiction, the argument says, if the deformation was a real physical change.
(In contrast, the argument says, Lorentz’s theory claims that “the length of a
rod” is a frame-independent concept. Consequently, in Lorentz’s theory, “the
contraction/dilatation of a rod” can indeed be an objective physical change.)
However, we have already clarified, that the terms “distance” and “time”
have different meanings in relzﬂx\/_it/y theory and Lorentz’s theory. Due to the

difference between length and length, we must also differentiate dilatation from

dilatation, contraction from contraction, and so on. For example, consider the
reference frame of the etalons K and another frame K’ moving relative to K.
The following statements are true about the “length” of a rod accelerated from
the sate of rest in reference frame K (state;) to the state of rest in reference
frame K’ (states):

60
61
62

63

I (statey) contraction in K

I (states)  contraction in K

” (60)
> K (states) contraction in K’ (61)
- (62)
< 1% (statey)  dilatation in K’ (63)

And there is no difference between relativity theory and Lorentz’s theory: all of
the four statements (60)—(63) are true in both theories. If, in Lorentz’s theory,
facts (60)—(61) provide enough reason to say that there is a real physical change,
then the same facts provide enough reason to say the same thing in relativity
theory. And vice versa, if (62) (63) contradicted to the existence of real physical
change of the rod in relativity theory, then the same holds for Lorentz’s theory.
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Figure 11. One and the same objective physical process is traced in the increase
of kinetic energy of the spaceship relative to frame K’, while it is traced in the
decrease of kinetic energy relative to frame K"

42 . Tt should be mentioned, however, that there is no contradiction between
(62)—(63) and the existence of real physical change of the rod. Relativity

—~—

theory and Lorentz’s theory unanimously claim that length is a relative physical
quantity. It is entirely possible that one and the same objective physical change
is traced in the increase of the value of a relative quantity relative to one
reference frame, while it is traced in the decrease of the same quantity relative
to another reference frame (Fig 11). (What is more, both, the value relative to
one frame and the value relative to the other frame, reflect objective features of
the objective physical process in question.)

43 . According to the other wide-spread argument the relativistic deformations
cannot be real physical effects since they can be observed by an observer also if
the object is at rest but the observer is in motion at constant velocity. And these
“relativistic deformations” cannot be explained as real physical deformations of
the object at rest the argument says.

There is, however, a triple misunderstanding behind such an argument:

e Of course, no real distortion is suffered by an object which is continuously
at rest relative to a reference frame K’, and, consequently, which is
continuously in motion at a constant velocity relative to another frame
K. None of the observers can observe such a distortion. For example,

7K’ ( distortion free > 7K’ < distortion free )

rod at fl rod at, t~2
K" distortion free _ " distortion free
rod at t; o rod at ty

e It is surely true for any ¢ that

fvir< distortion );&TK”< distortion ) (64)

free rod at £ free rod at
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—_~—

This fact, however, does not express a contraction of the rod—neither a

real nor an apparent contraction.

e On the other hand, inequality (64) is a consequence of the real physical
distortions suffered by the measuring equipments—with which the Space
and time tags are empirically defined—when they are transfered from the
BIPM to the other reference frame in question.’

44 . Finally, let me give an example for a well known physical phenomenon
which is of exactly the same kind as the relativistic deformations, but
nobody would question whether it is a real physical change. Consider the
electromagnetic field of a point charge q. One can easily solve the Maxwell
equations when the particle is at rest in a given K'). The result is the familiar
spherically symmetric Coulomb field (Fig. 12):

- @K
Eff = : ; (65)
atrest ~KN\2 | (~EN\2 L (~KkN2) 2
in K’ (@) + @)+ @)
EX' - 4 (66)
> latrest = kN2 L (<2 L =k 2\ 2
in K’ ((xl ) +(‘E2 ) +(‘E3 ) )
~K/
~ o qI’3
B atrest = kN2 L (<2 L (~x 2\ 2 (67)
in K’ ((%)"‘(2)"‘(3))
~ et B
| atrest 0 (68)
in K’
_— B
B; atrest 0 (69)
in K’
"'/K/ o
By atrest 0 (70)
in K’

How does this field change if we set the charge in motion at constant velocity

v along the I3 axis? Maxwell’s equations can also answer this question. First
we solve the Maxwell equations for arbitrary time-depending sources. Then,
from the retarded potentials such obtained, we derive the Lienart-Wiechert
potentials, from which we can determine the field. (See, for example, Feynman,
Leighton and Sands 1963, Vol. 2.) Here is the result:

1

~7! ~2\ 2

. qzf (1—2—2) i
K : = (71)
L | moving

3
in K’ (@) + @)+ B2)

9For further details of what a moving observer can observe by means of his or her distorted
measuring equipments, see Bell 1983, pp. 75 76.
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1

Z3

moving

in K'

NK/ "“K! )

at rest moving

in K’ in K’
Electromagnetic field Electromagnetic field of a point

of a point charge at rest charge moving in Z3-direction

Figure 12. The electric field of a point charge

1
- ~2\ 2
it (1-7)

k5 movin, - 3 (72)
g ~K’ 2 ~K’ 2 2 2
in K’ (@) + @) + B2)
’ qB
E3 movin = 2 (73)
g ~K! 2 ~K! 2 2) 2
in K’ (@) + @)+ B2)
PK’ Uy
By moving CEQ (74)
in K’
By S (75)
moving ¢
in K’
NIK/ o
By moving 0 (76)
n K’
where
- XK (1
B= M
=

and XBK/ (f) is the p&i\t_i;n of the charge at time £.

So, the electromagnetic field of the charge changed: earlier it was like (65)—
(70), then it changed for the one described by (71)—(76). There appeared a
magnetic field (turning the magnetic needle, for example) and the electric field
flattened in the direction of motion (Fig. 12). No physicist would say that this
is not a real physical change in the electromagnetic field of the charge, only
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because we can express the new electromagnetic field of the moving charge in
terms of the variables relative to the co-moving reference frame K",

~K

ElKN moving - 9 £ 5 N (77)
in K’ (@) + @)+ @)°)
~K"
=K _ qry
P2 moving K2 | ~kn2 L~ 2) 2 (78)
in K’ ((331 )+ (@) + (7 ))
~K"
~K// - q,’EB
E3 moving B ~K 11\ 2 ~K\ 2 ~K 1\ 2 % (79)
in K’ (@) + @) + @)
""K// o
By moving 0 (80)
in K’
"'K// o
2 | moving 0 (81)
in K’
NK// o
3 | moving 0 (82)
in K’

and it has the same form as the old electromagnetic field, when the charge was
at rest in K, expressed in the terms of the variables relative to K’.

45 . Thus, relativistic deformations are real physical deformations also in
special relativity theory. One has to emphasise this fact because it is an
important part of the physical content of relativity theory. It must be clear,
however, that this conclusion is independent of our main concern. What
is important is the following: Lorenﬁz_’\s/theory and specia/l_\lﬂativity have

identical assertions about 1@1 and length, duration and duration, shmng

and shrinking, etc. Consequently, whether or not these facts provide enough
reason to say that the deformations are real physical changes, the conclusion is
common to both theories.

The intuition behind the definitions

46 . Before entering into the discussion of the intuitions behind definitions
(D1)—(D9), T would like to emphasise that, from the point of view of our
main concern, it is not important how the different definitions are justified
and whether these justifications are correct or not. What is important is the
mere fact of the terminological confusion that the “space” and “time” tags mean
different physical quantities in classical physics and relativity theory.

The basic difference between the intuitions behind the classical and
relativistic definitions is the following. As we have seen, both Lorentz theory
and special relativity “know” about the distortions of measuring-rods and clocks
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when they are transfered from the BIPM to the moving (relative to the BIPM)
reference frame K’. In the relativistic definitions, (D7) and (D8), we ignore
this fact and define the space and time tags as they are measured by means of
the distorted equipments. In contrast, as it follows from the whole tradition of
classical physics, in definitions (D5) (D6) we take into account the distortions
of the measuring equipments. That is why the space and time tags in K’ are
defined through the original space and time data, measured by the original
distortion free measuring-rod and clock, which are at rest relative to the BIPM.

47 . 1In order to see this “compensatory view” of the classical definition in a
more explicit form, it worth while to mention possible alternative definitions
instead of (D5) and (D6). We know that the standard clock slows down by

factor /1 — % and that a rigid rod suffers a contraction by factor -
c 8 y c

when they are gently accelerated from K to K’. Therefore, according to the
compensatory view, if we measure a distance and the result is X, then the “real

distance” is X /1 — Z—; Similarly, taking into account the phase shift suffered

by a moving clock, we know from (57) that if the reading of the clock is T" then

the “real time” is
T+Xz

Ji-z

Accordingly, the alternative definitions are the following:

(D6’) Space tag of an event in K’ according to classical physics

Let X be the “distance” from the origin of K’ of the locus of A
along the z-axis measured by superposing the standard measuring-
rod, being always at rest relative to K’, in just the same way as if
all were at rest. The space tag 5 (A) of event A is

#(A) = X1 - v (83)

c2

(D5’) Time tag of an event in K’ according to classical physics

Take a synchronised copy of the standard clock at rest in the BIPM,
gently accelerate it from K to K’ and set it to show 0 when the
origins of K and K’ coincide. Then slowly (relative to K’) move it
to the locus of event A. Let T" be the reading of the transfered clock
when A occurs. The time tag 5 (A) is

/ T+ X%
iK(A) = ——<=

(84)
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Since X and T are nothing but 75 (A) and X' (A), it follows from (58) and
(59) that

) = KA
K = 5

On the null result of the Michelson—-Morley experiment

48 . Consider the following passage from Einstein:

A ray of light requires a perfectly definite time T' to pass from one
mirror to the other and back again, if the whole system be at rest
with respect to the aether. It is found by calculation, however,
that a slightly different time 7' is required for this process, if
the body, together with the mirrors, be moving relatively to the
aether. And yet another point: it is shown by calculation that
for a given velocity v with reference to the aether, this time 7'
is different when the body is moving perpendicularly to the planes
of the mirrors from that resulting when the motion is parallel to
these planes. Although the estimated difference between these two
times is exceedingly small, Michelson and Morley performed an
experiment involving interference in which this difference should
have been clearly detectable. But the experiment gave a negative
result  a fact very perplexing to physicists. (Einstein 1920, p. 49)

The “calculation” that Einstein refers to is based on the Galilean “kinematics”,
that is, on the invariance of “time” and “simultaneity”, on the invariance
of “distance”, on the classical addition rule of “velocities”, etc. That is to
say, “distance”, “time”, and “velocity” in the above passage mean the classical
dis/tzﬁze, time, and me defined in (D1), (D2), (D5), and (D6). The negative
result was “very perplexing to physicists” because their expectations were based
on traditional concepts of space and time, and they could not imagine other
that if the @ of light is ¢ relative to one inertial frame then the gee\d of the
same light signal cannot be the same c relative to another reference frame.

49 . On the other hand, Einstein continues this passage in the following way:

Lorentz and FitzGerald rescued the theory from this difficulty by
assuming that the motion of the body relative to the aether produces
a contraction of the body in the direction of motion, the amount of
contraction being just sufficient to compensate for the difference in
time mentioned above. Comparison with the discussion in Section
11 shows that also from the standpoint of the theory of relativity
this solution of the difficulty was the right one. But on the basis of
the theory of relativity the method of interpretation is incomparably
more satisfactory. According to this theory there is no such thing as
a “specially favoured” (unique) co-ordinate system to occasion the
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introduction of the aether-idea, and hence there can be no aether-
drift, nor any experiment with which to demonstrate it. Here the
contraction of moving bodies follows from the two fundamental
principles of the theory, without the introduction of particular
hypotheses; and as the prime factor involved in this contraction
we find, not the motion in itself, to which we cannot attach any
meaning, but the motion with respect to the body of reference chosen
in the particular case in point. Thus for a co-ordinate system moving
with the earth the mirror system of Michelson and Morley is not
shortened, but it is shortened for a co-ordinate system which is at
rest relatively to the sun. (Einstein 1920, p. 49)

What “rescued” means here is that within the framework of the classical space-
time theory and Galilean kinematics Lorentz and FitzGerald proved that if
the assumed deformations of moving bodies exist then the expected result of
the Michelson—Morley experiment is the null effect. On the other hand, we
have already clarified, what Einstein also confirms in the above quoted passage,
that these deformations also derive from the two basic postulates of special
relativity. Putting all these facts together (see Schema 1), we must say that the
null result of the Michelson—Morley experiment simultaneously confirms both,
the classical rules of Galilean kinematics for & and t, and the violation of these

rules (Lorentzian kinematics) for the Space and time tags Z,¢. It confirms the
classical addition rule of velocities, on the one hand, and, on the other hand, it

also confirms that velocity of light is the same in all frames of reference.

This actually holds for all other experimental confirmations of special
relativity. That is why the only difference Einstein can mention in the quoted
passage is that special relativity does not refers to the aether. (As a historical
fact, this difference is true. Although, as we will see in Points 55 56 and
59-61, the concept of aether can be entirely removed from the recent logical
reconstruction of the Lorentz theory.)

50 . Finally, it is no surprise that the deformations can be “derived” from the

Lorentz kinematics. The physical information about the deformations suffered
by objects accelerated from one state of motion to another, say from the state
of rest relative to K’ to the state of rest relative to K", is inbuilt into the
relationship between the tags #% (A), 75 (A) and #5"(A),75" (A). For these
relations are determined by the physical behaviour of measuring rods and clocks
during the acceleration and relaxation process, as Einstein warns us (see the
quotation in Point 23).

The conventionalist approach

51 . According to the conventionalist thesis,!? Lorentz’s theory and Einstein’s
special relativity are two alternative scientific theories which are equivalent on

10Friedman 1983, p. 293; Einstein 1983, p. 35. (see Point 77)
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violation of these rules (Lorentzian kinematics) for the space and time tags 7, t.
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empirical level. Due to the empirical underdeterminacy, the choice between
these alternative theories is based on external aspects.!! Following Poincaré’s
similar argument about the relationship between geometry, physics, and the
empirical facts, the conventionalist thesis asserts the following relationship
between Lorentz theory and special relativity:

. hysical
classical Py - .. -
. content of empirical
space-time + =
3 1 Lorentz facts
E° x E L .
L . theory
relativistic special - .. -
. .. empirical
space-time + relativistic =
4 . facts
M physics L e

Continuing the symbolic notations we used in the Introduction, denote Z
those objective features of physical reality that are described by the alternative
physical theories P; and P; in question. With these notations, the logical schema
of the conventionalist thesis can be described in the following way: We cannot
distinguish by means of the available experiments whether Gy (M) &Py (Z) is
true about the objective features of physical reality M U Z, or G (M) &P» (Z)
is true about the same objective features M U Z. Schematically,

Gy (M) + [P (2)] = { emfggi;:al ]

[Go (M)] + [P (2)] = [ empirical ]

facts

52 . However, it is clear from the previous sections that the terms “space”
and “time” have different meanings in the two theories. Lorentz theory claims

G1 (M) about M and relativity theory claims G (M) about some other

features of reality M. Of course, this terminological confusion also appears in the
physical assertions. Let us symbolise with Z the objective features of physical
reality, such as the 1@1 of a rod, etc., described by physical theory P;. And
let Z denote some (partly) different features of reality described by P», such as

the length of a rod, etc. Now, as we have seen, both theories actually claim that
G1 (M) &Gy (M) It is also clear that, for example, within Lorentz’s theory,

we can legitimately query the length of a rod. For Lorentz’s theory has complete
description of the behaviour of a moving rigid rod, as well as the behaviour of
a moving clock and measuring-rod. Therefore, it is no problem in Lorentz’s
theory to predict the result of a measurement of the “length” of the rod, if the
measurement is performed with a co-moving measuring equipments, according
to empirical definition (D8). This prediction will be exactly the same as the

1 Cf, Zahar 1973; Griinbaum 1974; Friedman 1983; Brush 1999; Janssen 2002.
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prediction of special relativity. And vice versa, special relativity would have the
same prediction for the length of the rod as the prediction of the Lorentz theory.
That is to say, the physical contents of Lorentz’s theory and special relativity

also are identical: both claim that P; (Z) &Py (2) So we have the following;:
{G1 (M) &Go (M)} + [Pl (Z) &Py (2)}

o () (7)) + [ () ()] - [ ]

In other words, since there are no two different theories, there is no choice,
based neither on internal nor on external aspects.

empirical
facts

Methodological remarks

53 . It worth while emphasising that my argument is based on the following
very weak “operationalist” premise: physical terms, assigned to measurable
physical quantities, have different meanings if they have different empirical
definitions. This premise is one of the fundamental pre-assumptions of Einstein’s
1905 paper and is widely accepted among physicists. Without clear empirical
definition of the measurable physical quantities a physical theory cannot
be empirically confirmable or disconfirmable. In itself, this premise is not
yet equivalent to operationalism or verificationalism. It does not generally
imply that a statement is necessarily meaningless if it is neither analytic nor
empirically verifiable. However, when the physicist assigns time and space tags
to an event, relative to a reference frame, (s)he is already after all kinds of
metaphysical considerations about “What is space and what is time?” and
means definite physical quantities with already settled empirical meanings.

54 . In saying that the meanings of the words “space” and “time” are different
in relativity theory and in classical physics, it is necessary to be careful of a
possible misunderstanding. I am talking about something entirely different from
the incommensurability thesis of the relativist philosophy of science.'> How is
it that relativity makes any assertion about classical space and time, and vice
versa, how can Lorentz’s theory make assertions about quantities which are
not even defined in the theory? As we have seen, each of the two theories is
sufficiently complete account of physical reality to make predictions about those
features of reality that correspond—according to the empirical definitions—to
the variables used by the other theory, and we can compare these predictions.
For example, within Lorentz’s theory, we can legitimately query the reading of a
clock slowly transported in K’ from one place to another. That exactly is what
we calculated in section ?7. Similarly, in relativity theory, we can legitimately
query the space and time tags of an event in the reference frame of the etalons
and then apply formulas (46) (45). This is a fair calculation, in spite of the fact

12See Kuhn 1970, Chapter X; Feyerabend 1970.
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that the result so obtained is not explicitly mentioned and named in the theory.
This is what we actually did. And the conclusion was that not only are the two
theories commensurable, but they provide completely identical accounts of the
same physical reality.

Privileged reference frame

55 . Due to the popular/textbook literature on relativity theory, there is a
widespread aversion to a privileged reference frame. However, like it or not,
there is a privileged reference frame in both special relativity and classical
physics. It is the frame of reference in which the etalons are at rest. This
privileged reference frame, however, has nothing to do with the concepts of
“absolute rest” or the aether, and it is not privileged by nature, but it is
privileged by the trivial semantical convention providing meanings for the terms
“distance” and “time”, by the fact that of all possible measuring-rod-like and
clock-like objects floating in the universe, we have chosen the ones floating
together with the International Bureau of Weights and Measures in Paris. In
Bridgman’s words:

It cannot be too strongly emphasised that there is no getting away
from preferred operations and unique standpoint in physics; the
unique physical operations in terms of which interval has its meaning
afford one example, and there are many others also. (Bridgman 1936,
p. 83)

56 . Many believe that one can avoid a reference to the etalons sitting in a
privileged reference frame by defining, for example, the unit of time for an
arbitrary (moving) frame of reference K’ through a cesium clock, or the like,
co-moving with K’. In this way, one needs not to refer to a standard clock
accelerated from the reference frame of the etalons into reference frame K'.
But further thought reveals that such a definition has several difficulties. For
if this operation is regarded as a convenient way of measuring time, then we
still have time in the theory, together with the privileged reference frame of the
etalons. If, however, this operation is regarded as the empirical definition of
a physical quantity, then it must be clear that this quantity is not time but a

new physical quantity, say time. In order to establish any relationship between

time tags belonging to different reference frames, it is a must to use an “etalon
cesium clock” as well as to refer to its behaviour when accelerated from one
inertial frame into the other.

The physics of moving objects

57 . Although special relativity does not tell us anything new about space
and time, both special relativity and Lorentz theory enrich our knowledge of
the physical world with the physics of objects moving at constant velocities—
in accordance with the title of Einstein’s original 1905 paper. The essential
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physical content of their discoveries is that physical objects suffer distortions
when they are accelerated from one inertial frame to the other, and that these
distortions satisfy some uniform laws.

FitzGerald, Lorentz'® and Poincaré derived these laws from the requirement
that the deformations must explain the null result of the Michelson Morley
experiment. They arrived to the conclusion that the standard clock slows

down by factor 4/1 — Z—; and that a rigid rod suffers a contraction by factor
\/1 = Z—; when they are gently accelerated from K to K’. As we have shown

in Point 37, this claim is equivalent with the assertion that the space and
time tags #%"(A), 5" (A) measured by the co-moving distorted equipments
can be expressed from the similar tags #% (A),7% (A) by a suitable Lorentz
transformation.

The general laws of deformations apply to both the measuring-equipment
and the object to be measured. Therefore, it is no surprise that the “length”

of a moving, consequently distorted, rod measured by co-moving, consequently
distorted, measuring-rod and clock, that is the length of the rod, is the same
as the length of the corresponding stationary rod measured with stationary

measuring-rod and clock. The duration of a slowed down process in a moving
object measured with a co-moving, consequently slowed down, clock will be the

same as the duration of the same process in a similar object at rest, measured
with the original distortion free clock at rest. These and similar observations
lead Lorentz and Poincaré to conclude with the general validity of the relativity
principle.!* In his 1905 paper Einstein showed how to derive the same rules from
the assumption that relativity principle generally holds and (or consequently)

the ve/l:)\(ﬂy of a light signal is the same in all inertial reference frames. These
historic differences are, however, not important from the point of view of our
main concern. What is important is that in both ways one can derive exactly
the same laws of deformations, exactly the same rules for & and £, and exactly
the same rules for # and .

58 . The relativity principle together with the Lorentz transformation of space
and time provide the general description of the behaviour of moving physical
systems. Using similar notations we introduced in Point 8, let £ be a set of
differential equations describing the behaviour of the system in question in an
arbitrary reference frame K'. Let ¢ denote a set of (initial) conditions, such
that the solution determined by 4, describes the behaviour of the system when
it is, as a whole, at rest relative to K’. Let 9. be a set of conditions which
corresponds to the solution describing the same system in uniform motion at
velocity v relative to K’. To be more exact, 1% corresponds to a solution of
&’ that describes the same behaviour of the system as ¢ but in superposition

13PitzGerald and Lorentz also made an attempt to understand how these deformations
actually come about from the molecular forces. (See Bell 1992; Brown and Pooley 2001;
Brown 2001; 2003.)

14Whether or not relativity principle generally holds in relativistic physics is a more complex
question. See Szabo6 2004.
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with a collective translation at velocity v. Denote £ and ¢ the equations and
conditions obtained from £’ and v, by substituting every 75" with 7K" and &
with t5". Denote Ay (£'), Ay (¢%) the set of equations and conditions expressed
in terms of the double-primed variables, applying the Lorentz transformations.
Now, what the relativity principle (statement (j) in Section ?7?) states is that
the laws of physics describing the behaviour of moving objects are such that
they satisfy the following relationships:

Az (&) = ¢ (85)
Az (v5) = v (86)

To make more explicit how this principle provides a useful method in the
description of the deformations of physical systems when they are accelerated
from one inertial frame K’ into some other K", consider the following situation:
Assume we know the relevant physical equations and know the solution of the
equations describing the physical properties of the object in question when it is
at rest in K’: &')). We now inquire as to the same description of the object

when it is moving at a given constant velocity relative to K'. If (85)—(86) is true,
then we can solve the problem in the following way. Simply take ", {—by
putting one more prime on each variable and express ¢~ from (86) by means

of the inverse Lorentz transformation: ¢% = A" (1). Now, according to the
standard views, the solution belonging to condition 1 describes the same object

when it is moving at a given constant velocity relative to K’. This is the way
we usually solve problems such as the electromagnetic field of a moving point
charge, the Lorentz contraction of a rigid body, the loss of phase suffered by a
moving clock, the dilatation of the mean life of a cosmic ray pu-meson, etc. (As
we have seen in Points 10-11, the situation is, in fact, much more complex.
Whether or not the solution thus obtained is correct depends on the details of
the relaxation process after the acceleration of the system.)

The aether

59 . Many of those, like Einstein himself (see Point 49), who admit the
“empirical equivalence” of Lorentz’s theory and special relativity argue that
the latter is “incomparably more satisfactory” because it has no reference to
the aether. As it is obvious from the previous sections, we did not make any
reference to the aether in the logical reconstruction of Lorentz’s theory. It is
however a historic fact that Lorentz did. In this section, I want to clarify that
the concept of aether is merely a verbal decoration in Lorentz theory, which can
be interesting for the historians, but negligible from the point of view of recent
logical reconstructions.

60 . One can find various verbal formulations of the relativity principle and

Lorentz-covariance. In order to compare these formulations, let us introduce
the following notations:



A(K' K" =

B(K',K"):=

C(K',K") =
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The laws of physics in inertial frame K’ are such that the
laws describing a physical system co-moving with frame K" are
obtainable by solving the problem for the similar physical system
at rest relative to K’ and perform the following substitutions:

E{(, — Ozl:ff{(,
Eé(, — Ozg:ffé(,
~K’ K
7K ap= 13 _”fz (87)
v
Tz
G |
=

The laws of physics in K’ are such that the mathematically
introduced variables «j,a9, 3,7 in (87) are equal to
E{(/, 9?5” , E?N,ZKN7 that is, the “space” and “time” tags obtained
by means of measurements in K”, performed with the same
measuring-rods and clocks we used in K’ after that they
were transfered from K’ into K, ignoring the fact that the

equipments undergo deformations during the transmission.

The laws of physics in K’ are such that the laws of physics
empirically ascertained by an observer in K”, describing the
behaviour of physical objects co-moving with K”, expressed in
variables 5{(/ , Eé(,, , ’fé(”,fK”, have the same forms as the similar
empirically ascertained laws of physics in in K’, describing
the similar physical objects co-moving with K’, expressed in
variables Z1 K’ ZK' 1K' if the observer in K" performs the
same measurement operations as the observer in K’ with the
same measuring equipments transfered from K’ to K", ignoring
the fact that the equipments undergo deformations during the

transmission.

It is obvious that

A(K' K") & B(K',K") = C(K',K")

So, let us restrict our considerations on the more fundamental

A(K' K") & B(K',K")

Taking this statement, the usual Einsteinian formulation of the relativity
principle is the following:

Einstein’s

Relativity | = (VK') (VK")[A(K',K") & B (K', K")]

Principle
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Many believe that this version of relativity principle is essentially different
from the similar principle of Lorentz, since Lorentz’s principle makes explicit
reference to the motion relative to the aether. Using the above introduced
notations, it says the following:

Lorentz’s
Principle

] = (VK") [A (aether, K") & B (aether, K")]

It must be clearly seen, however, that Lorentz’s aether hypothesis is logically
independent from the actual physical content of his theory. In fact, as a
little reflection reveals, Lorentz’s principle and FEinstein’s relativity principle
are logically equivalent to each other. It is trivially true that

FEinstein’s
Relativity = (VK')(VK")[A(K',K") & B(K', K")]
Principle
= (VK")[A (aether, K") & B (aether, K"')]
_ Lorentz’s
a Principle

It follows from the meaning of A (K’, K”) and B (K’, K"") that

(3K") (VK")[A(K',K") & B(K',K")]
= (VK')(VK")[A(K',K") & B(K',K")]

Consequently,

{ Lorentz’s ]

Principle (VK") [A (aether, K") & B (aether, K"')]

= (3K')(VK")[A(K',K") & B (K',K")]
= (VK')(VK")[A(K',K") & B (K',K")]
Finstein’s
= Relativity
Principle

Thus, it is Lorentz’s principle itself the verbal formulation of which refers
to the aether that renders any claim about the aether a logically separated
hypothesis outside of the scope of the factual content of both Lorentz theory
and special relativity. The role of the aether could be played by anything else.
As both theories claim, it follows from the empirically confirmed laws of physics
that physical systems undergo deformations when they are transferred from one
inertial frame K’ to another frame K”. One could say, these deformations are
caused by the transmission of the system from K’ to K”. You could say they
are caused by the “wind of aether”. By the same token you could say, however,
that they are caused by “the wind of anything”, since if the physical system
is transfered from K’ to K" then its state of motion changes relative to an
arbitrary third frame of reference.
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61 . On the other hand, it must be mentioned that special relativity does
not exclude the existence of the aether.!® Neither does the Michelson-Morley
experiment. If special relativity/Lorentz theory is true then there must
be no indication of the motion of the interferometer relative to the aether.
Consequently, the fact that we do not observe indication of this motion is not
a challenge for the aether theorist. Thus, the hypothesis about the existence of
aether is logically independent of both Lorentz theory and special relativity.

Symmetry principle and heuristic value

62 . Finally, it worth while mentioning that Lorentz’s theory and special
relativity, as completely identical theories, offer the same symmetry principles
and heuristic power. As we have seen, both theories claim that quantities
EK/,%VK/ in an arbitrary K’ and the similar quantities EKN,ZKN in another
arbitrary K" are related through a suitable Lorentz transformation. This fact
in conjunction with the relativity principle (within the scope of validity of the
principle) implies that laws of physics are to be described by Lorentz covariant
equations, if they are expressed in terms of variables 7 and ¢, that is, in terms
of the results of measurements obtainable by means of the corresponding co-
moving equipments—which are distorted relative to the etalons. There is no
difference between the two theories that this space-time symmetry provides a
valuable heuristic aid in the search for new laws of nature.

63 . With these comments I have completed the argumentation for my basic
claim that special relativity and Lorentz theory are completely identical in both
senses, as theories about space-time and as theories about the behaviour of
moving physical objects. Consequently, in comparison with the classical Galileo-
invariant conceptions, special relativity theory does not tell us anything new
about space and time. As we have seen, the longstanding belief that it does is
the result of a simple but subversive terminological confusion.

15Not to mention that already in 1920 Einstein himself argues for the existence of some
kind of aether. (See Reignier 2000)
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64 . Definitions (D1)—(D8) in Point 33, faithfully reflecting how “space” and
“time” tags are understood in classical physics and relativity theory, answered
the purpose of demonstrating that Einstein’s special relativity has exactly the
same claims about space and time as classical physics and Lorentz’s theory.
However, neither the classical nor the relativistic definitions are trouble free.
They are based on several pre-assumptions about contingent facts of nature
which cannot be known or even formulated prior to the definitions of space and
time tags.

Let us focus on what is common to both the classical and relativistic
approaches, definitions (D1) (D4). The first difficulty is caused by the usage of
measuring rod for the definition of distance. The problem I mean is different
from the one proposed by Reichenbach (1958), namely that the length of the
rod may be altered by some universal forces when the rod is transported from
one place to the another. This is no problem from logical /operational point
of view, as long as this method provides an unambiguous definition of space
tags. In accordance with Reichenbach’s final conclusion, T believe that the
Newtonian concept of “absolute length” (see Point 67) of the rod, independent
of operational definition of “distance”, is meaningless or at least is outside of
the scope of physics. If space tags are defined according to (D2) then the
length of the measuring rod is by definition constant, no matter what is our
metaphysical pre-assumption about the length of the rod ansich. There are,
however, real circularities here that appear at the very operational level. The
operations described in (D2) and (D4) rest on the concept of a measuring rod
at rest relative to a given reference frame. However, we encounter the following
difficulties:

(a) We have seen in Point 19 that the concept of a rod “at rest” relative to a
reference frame is problematic in itself.

(b)  One might think that this is no problem if the measuring rod is always in
equilibrium state when we are measuring with it. It must be clear however
that the equilibrium state of the rod cannot be ascertained prior to the
definition of its length, that is, prior to the definition of distance.

(¢) The concept of rest relative to a reference frame is problematic not only
for the measuring rod, as a whole, but even for one single particle of the
rod. The reason is that we are missing a prior definition of velocity relative
to a given reference frame.

(d) Throughout definitions (D1)—(D9) we nonchalantly used the term
“reference frame”. Of course, it is no problem to give the usual meaning
to this term after having defined space and time tags of events; when we
already have the concepts of simultaneity, the distance of simultaneous
events, dimensions, straight lines, etc. But the term “reference frame”
has no meaning prior to the space and time tags. We encounter this
wrong circularity in definitions (D2) and (D4): we ought to superpose the
measuring-rod along a straight line, such that the rod is always at rest
relative to the reference frame.
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Figure 13. Velocity may vary such that the clock’s journey takes very long time,
nevertheless the integral in (88) is less than ¢

(e)  We also used the term “inertial” frame of reference. This is another term
that has no meaning without a previous definition of space and time tags.

65 . Another source of circularities is the “slow transportation” of the standard
clock in definitions (D1) and (D3). The reason why the transportation must be
slow is that the clock may accumulate a loss of phase during its journey. From
(56) we can express this phase shift:

AT =t [ 1o (88)
[

where w(t) is the clock’s velocity during its journey. Of course, AT — 0 if
w(t) tends to zero in some uniform sense, for instance if maz |w(t)] — 0. One
might think that this condition can be provided without any vicious circularity
by moving the standard clock from its original place to the locus of the event
in question over a very long period of time, according to the reading of the
clock itself. This is however not the case. If function w(t) is something like as
shown in Fig. 13 then the clock’s journey takes very long time, nevertheless
the loss of phase in (88) does not vanish. Yet one might also think that
this does not cause a vicious circularity in the operational definition of time
tags, because we can include the loss of phase into the definition, just like in
the relativistic definition (D6).!® However, this operation could not provide
an unambiguous definition of time tags. The reason is that the phase shift
(consequently, the reading) of the clock depends on the concrete shape of
function w(t). To keep w(t) controlled either in order to avoid ambiguity, or
in order to provide the condition maz |w(t)| — 0—we must be able to ascertain
the clock’s instantaneous velocity relative to reference frame K, throughout

161n definition (D6), the time tag is simply defined by the reading of the clock, disregarding
the loss of phase accumulated during its journey. This phase shift—c:ﬂculated in Point 37—is,
for example, the origin of the difference between t-simultaneity and ¢-simultaneity.
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its journey. And this leads to the same vicious circularities we mentioned in
Point 64 (c) and (d).
66 . The upshot of these considerations is that, in order to avoid the
circularities mentioned above and to minimise the conventional elements in
the empirical foundation of our physical theory of space and time, we must
avoid using standard measuring rod in the definition of distance and using slow
transportation of the standard clock in the definition of time tags. We must
also abstain from relying on the concept of reference frame and inertial motion.
Instead, we will use one standard clock and light signals. A light signal
should not be understood as a “light ray” or a “light beam”, that is, we should
not assume in advance that the light signal propagates along a “straight line”.
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Empirical Definition of Space and Time Tags

67 . First we chose an etalon clock. That is to say, we chose a system (a
sequence of phenomena) floating somewhere in the universe. Let the etalon
clock be the clock in the Paris International Bureau of Weights and Measures.
We do not assume that this is a clock measuring “proper time”. We do not
assume that it is “running uniformly”. Neither we assume that it is “at rest”
relative to anything, nor that it is of “inertial motion”. None of these concepts
is defined yet.

standard clock

Figure 14. Operational definition of time tags

Consider the experimental arrangement in Fig. 14. The standard clock emits
a radio signal at clock-reading t; (event A). The signal is received by another
equipment which, immediately, emits another signal (event B). This “reflected”
signal is detected by the standard clock at t2 (event C).

Definition (A1) The absolute time tag of event B is the following:
1
T(B) =t + B (t2 —t1) (89)

The definition is about event B consisting in the “reflection” of the radio signal
emitted by the standard clock. That is to say, we assigned an absolute time
tag to a definite physical phenomenon which we called “event”. It is far from
obvious, however, what must be regarded as an event in general prior to the
concepts of time and distance , and how one can extend the definition for
the physical events of other kinds. (See Brown 2005, pp. 11-14.) We do not
dwell on this problem here. The reader can easily imagine various operational
solutions of how to use the B-type “reflection” events for marking other physical
events/phenomena. So we will assume that definition (A1) is extended for all
physical events.
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standard clock gt

Figure 15. Clock-like time sequence

68 . At this point, one might think that we are ready to define the distance
between simultaneous events in the usual way. Surely, we can define the distance
between the simultaneous events D and B as % (ta — t1) ¢, where the value of ¢ is
taken as a convention. However, as a little reflection reveals, in this way we can
define only the distance from the standard clock. But there is no way to extend
this definition for arbitrary pair of simultaneous events. In order to define the
distance between arbitrary simultaneous evens we need further preparations.
Denote S, the set of simultaneous events with time tag 7.

Definition (A2) A one-parameter family of events v(7) is called time sequence
if v(r) € S; for all 7.

One has to recognise that a time sequence is a clock-like process. For every
event, one can define a time-like tag in the same way as (A1): Event A (Fig. 15)
is marked with the emission of a radio signal at time 7(A). The signal is reflected
at event B. Event C is the detection of the reflected signal at time 7(C). We
define the following time-like tag for event B:

7(B) = (4) + 5 (r(C) — 7(4)

It is an empirical fact that 77(B) # 7(B) in general. It is another empirical
observation however that for some particular cases 77(B) = 7(B).
Definition (A3) A time sequence (1) is a synchronised copy of the standard
clock if for every event B 77(B) = 7(B).
Whether or not there exist synchronised copies of the standard clock is an
empirical question. Observations confirm the following statement:

Empirical fact (E1) For any event A there exists a unique synchronised copy
of the standard clock (7) such that

A=~(r(4))
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standard clock

X v(‘;)

Figure 16. The distance between two simultaneous events

69 . Now we are ready to define the distance between simultaneous events.

Definition (A4) The absolute distance between two simultaneous evens A, B €
S is operationally defined in the following way. Take a synchronised copy of the
standard clock v such that A = v(7). (See Fig. 16) Let U = v (7(U)) is an event
marked with the emission of a radio signal at absolute time 7(U), such that the
signal is received and reflected at event B. The detection of the reflected signal
marks event V = v (7(V)) of time tag 7(V'). The absolute distance is

4,(A, B) i= 5 (r(V) ~ () ¢ (90)

where ¢ = 300000 000~ by convention.

70 . Although they seem to be evident, the following facts cannot be known a
priori:
Empirical fact (E2) For all A, B,C € S,

d.(A,B) > 0 (91)
d.(A,A) = 0 (92)
d-(A,B) +d-(B,C) = d-(A,C) (93)

The following propositions are however derivable from the definitions.
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Figure 17. Synchronised copies of the standard clock keep the distance between
each other

Lemma 1 Consider two synchronised copies of the standard clock v; and v,
(Fig. 17). For any moment of absolute time 7

dro (71(70),72(70)) = dry (72(70),71(70)) (94)

and
dry (71(70),72(70)) = drg7 (71(70 + 1), 72(70 + T)) (95)
where

T — d"’o (71(7-0)572(7-0))

Proof Let () be event As. Consider the following events: a radio
signal is emitted at Ay, then reflected at By, then it is reflected again at A, and
reflected again at Bs, and so on. Let 7(E) = 7 (Bz) and 7(C) = 7 (B). Taking
into account that both ~; and 7, are synchronised copies of the standard clock,
we have the following equations:

7 (B2) + 7 (B1)

T(A2) = 5
7(By) = w
7(By) = T(A2) +7 (A1)

2
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From the above three equations we have
T(A3) =7 (A2) = 7(A2)—7(A) (96)
and
T(B2)—7(B1) = 7(A3)—7(41) (97)
Therefore,
T(E) =7 (C) =7 (A2) =7 (A1) =7 (B2) — 7 (B1)

Imagine now a radio signal emitted from C, reflected at D and detected at E.
Taking into account that

T(E)+71(C) (D)= = 7(B2) + 7 (B1)
2 2
we have
Iy (r(r) () = LT,
_ 1B —7(By
2

= dT() (72 (7—0)7 a! (TO))

Taking into account this symmetry, (95) immediately follows from (96).

In other words, as it follows from (94), for any A, B € S,
d- (A, B) = d-(B, A) (98)

One has to recognise that a function S, x S; — R with properties (91)—(93)
and (98) is what the mathematician calls metric on S,. Thus, we can stipulate
that (S;,d,) is a metric space for every moment of absolute time 7.

71 . Having metric defined on S;, we can define the concept of a straight line
in S, (Fig. 18).

Definition (A5) A subset ¢ C S; is called (straight) line if satisfies the
following conditions:

1. for any A,B,C € o d.(A,C) + d.(C,B) = d;(A,B) or d-(A,B) +
d,(B,C) = d.(A,C) or dr(B, A) + d.(A,C) = d, (B, C).

2. ¢ is maximal for property 1.

Empirical fact (E3) For every A, B € S there exists a unique line containing
A and B.
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Figure 19. Orthogonal line segments

Definition (A6) Let o1 and o3 two lines in S; such that o1 Noy = {O} (see
Fig. 19). o9 is orthogonal to oy if for every Z € o4 and for every X,Y € o3

d.,.(X, 0) = dT(O7Y) e d'r(X7 Z) = dT(Ya Z)

Empirical fact (E4) If 0y is orthogonal to o2 then o9 is orthogonal to oy.

Empirical fact (E5) For every O € S, there exist three lines 01,00 and o3
such that they are pairwise orthogonal and o1 N o2 No3 = {O}.

Empirical fact (E6) Let O € S, an arbitrary event and three lines 01,09 and
o3 such that they are pairwise orthogonal and o1 N2 N o3 = {O}. There is no
line o C S; orthogonal to each of 01,09 and o3, such that o1 NoaNozNo = {O}.

We usually express this fact by saying that space is three dimensional.

Empirical fact (E7) Let A € S, be an arbitrary event and o7 C S; and
arbitrary line. There always exists a line o9 orthogonal to o;.

Definition (A7) Using the notations in (E7), let o1 Noy = {O}. Distance of

3

d,(A,O) is called the distance of A from oy.
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Figure 20. Cartesian coordinates in S,

Definition (A8) Let o1 C S; be a line. A line oy is parallel to oy if for all
X € o9 the distance of X from o is the same.

Empirical fact (E8) Let 01 C S; be a line and let C' € S, an arbitrary event.
There exists exactly one line oo such that C' € o2 and o5 is parallel to o;.

Definition (A9) Let A, B € o two events on line 0. Line segment between
events A, B € S; is the following subset of o:

0(A,B) ={X €0|d-(A,X)+d-(X,B) =d,(A, B)} (99)

72 . Now, we have everything at hand to define the usual Cartesian coordinates
in S;. First we need a 3-frame.

Definition (A10) A 3-frame in S; consists of three pairwise orthogonal line
segments , o (Y1,Y2), 0 (Z1, Z3), such that

U(Xl,Xz) ﬂU(le,sz) mO'(Z]_,ZQ) = {O}

where O is the origin of the frame (Fig. 20).

The end points play marginal role, but we do not assume that these segments
have “infinite” length. The segments are supposed to be long enough for the
purposes of the empirical coordination of the physical events in question. The
origin of the 3-frame is arbitrary, although it could be a nature choice to take
the “7-event” of the standard clock as origin.

In the following definition we give the operational definition of the three
absolute space tags of an event A € 5.
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Definition (A11) Take a line segment o (B, C) 5 A parallel to o (Z1, Z3). Take
another line segment (A, D) orthogonal to o (Z1, Z3) such that D € o (Z1, Z3).
Let 0(O, E) be a line segment parallel to o(A4, D) such that E € o(B,C).
Finally, take the line segments o(F, F') and o(E, G) such that o(E, F) is parallel
to 0 (X1, X2) and F € 0 (Y1,Y2), and o(E, G) is parallel to o (Y1,Y2) and G €
o (X1, X5). Now, the space tags are defined as follows:

B d.(G,0) if Gea(0,X,)
. (A) = { —d.(G,0) if GEU(O,X?)
B d,(F,0) if Feo(0,Ys)
yr (A) = { —d,(F,0) if Feo(0,Y))
B d,(D,0) if Deo(0,2Z)
zr (A) = { —d.(D,0) if Dea(O,Zi)

73 . It must be emphasised that with the above definitions we only defined the
space tags in a given set of simultaneous events S;. Yet, we have no connection
whatsoever between two S, and S, if 7 # 7. In principle, there exist infinitely
many possible bijections between the different S.’s, but without any natural
physical meaning. This is true, even if we prescribe that the bijection must be
an isomorphism preserving distances.

According to some vague intuition, a time sequence v(7) satisfying that

27 (y(1)) = const. (100)
yr (y(1)) = const. (101)
zr (y(7)) = const. (102)

corresponds to a localised physical object being at rest. “At rest” relative to
what? The actual behaviour described by these equations very much depends on
how the different 3-frames are chosen in the different S;’s. One might think that
an object is at rest if equations (100)—(102) hold in one and the same 3-frame
in all S,. But, what does it mean that “one and the same 3-frame in all S,.”?
When can we say that a line segment o (X{, X)) in S, is the same 3-frame axis
as 0 (X1,Xs) in S;? When can we say that an event A’ is in the same place in
S, as event A in S;7 In asking these questions, it is necessary to be careful of a
possible misunderstanding. Although they are close to each other, the problem
we are addressing here is different from the problem of persistence of physical
objects. What we would like to define is the identity of two locuses of space at
two different times, and not the genidentity of the physical objects occupying
them. One might think that some definition of genidentity of physical objects
must be prior to our operational definition of space and time tags, at least in
the case of the standard clock. This is, however, not necessarily the case. The
standard clock is just an ordered (ordered by the clock readings) sequence of
physical events, but without any further metaphysical assumption that these
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Figure 21. Proof of Lemma 2

events belong to the same physical object. (We definitely do not have such an
assumption in the case of a synchronised copy of the standard clock.)

74 . Inorder to establish connection between arbitrary two sets of simultaneous
events we need some preparations.

Lemma 2 Let y; and 72 be arbitrary two synchronised copies of the standard
clock. For any two moments of absolute time 7 and 7/

dr (71 (7),72 (7)) = dpr (71 (7') ;72 (7)) (103)

Proof The proof will be based on (95). Let us assume that 7 < 7/. Denote
T the period in (95), that is

dr (11(7) 72 (7))

T =

First we will prove that

dr (y1(7),72 (7)) 2 drr (72 (77) 72 (7))

Let n be the smallest integer such that 7/ < 7 +nT =: 7y (Fig. 21). It follows
from (95) that
dr (71 (7),72 (7)) = dry (11 (11) 72 (12))
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T1+7T

Let » := . Consider the synchronised copy of the standard clock I's that
goes through the middle point of line segment o (y1 (7),72 (7)). Taking into
account that 7 = 7 + mao L 5 for some integer my (namely, my = n), and also
that %c = M= one can apply (95) for the synchronised copies of the
standard clock 7; and I's. Therefore,

dr (11 (1) 72 (7))
2

dry (71 (72) , T2 (72)) = dr (71 (7) , T2 (7)) =
The same argument can be repeated for v and I'y. Therefore,

dr (11 (1) 72 (7))
2

dr, (U2 (12) ;72 (72)) = dr (T2 (7) 172 (7)) =
It follows from (93) that

dr (71 (7) 72 (7)) = dry (71 (2) ;72 (72))

Assume that 7/ > 75. Therefore, take 73 := 227 Again, consider the

synchronised copies of the standard clock '}, T'%, ' dividing line segment

(*yl( )2 (T )) into 4 pieces of equal length. Taking into account that
™3 =T+ m3z for some integer ms3 and also that % = M, one
can apply (95) for the synchronised copies of the standard clock ; and T'i.
Therefore,

s (1 (1), T (1) = e (31 () T () = P02 7))

Similarly,

dry (T3 (73), T3 (3)) = 4
dr, (T3 (r3), T3 (13)) =

de (Fg (T3) » V2 (T3)) =

Consequently, from (93),

dr (71 (7),72 (7)) = dry (71 (73) ;72 (73))

Assume 7/ < 73. Therefore, take 7, := 1™ Again, consider the

synchronised copies of the standard clock I'}, '3, T3, ... T'} dividing line segment

(71( )y y2 (T )) into 8 pieces of equal length. Taking into account that
T, = T+ m4§ for some integer my4 and also that % = M, one
can apply (95) for the synchronised copies of the standard clock v and T}.
Therefore,

dry (1 (72) T} (72)) = dy (1 (), TS (7)) = &= (Mg 72 (7))
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Similarly,

d7'4 (lel (7-4) 7P421 (7_4)) =

d7'4 (Fi (7-4) 7FZ (7-4)) =

d7'4 (FZ (7—4) y V2 (7-4))

Consequently, from (93)

dr (1 (7),72(7)) = dry (71 (T4) 72 (74))

And so on and so forth,

dr (71 (7) 72 (7)) 2 dey (71 (1) 572 (73))

On the other hand,

. /
lim 7, =71
1—00

therefore
dr (71 (7),72 (7)) = drr (11 (77) ;72 (7))
Exactly in the same way one can prove that

dr (71 (7),72 (7)) < dpr (71 (71) ;72 (7))

One simply has to change the roles of 7 and 7/. Denote T”, this time, the period

dr (11 (7) 72 (7))

T =

Let n' be the smallest integer such that 7 > 7/ — n'T" =: 7{ Then, it follows
from (95) that

der (11 (7') 72 (7)) = dry (1 (71) 172 (7))

Let 74 := % Consider the synchronised copy of the standard clock T
that goes through the middle point of line segment o (71 (7/),v2 (7). Taking
into account that 75 = 7/ — m4Z for some integer mo, and also that Zc =

2
w, one can apply (95) for the synchronised copies of the standard
clock 1 and T%. Therefore,

dey (11 (73), T3 (13)) = der (11 (1), T2 (7))
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Similarly,

drr (n (1) 72 (7))
2

dry (T3 (12) 72 (13)) =
Therefore,
dry (71 (72) 72 (12)) < dor (1 (77) ;72 (7))

And so on and so forth,

der (11 (1) 72 (7)) < de (1 (77) 72 (7))

At the same time,
lim 7/ =7
Consequently,
dr (71 (7),72 (7)) < dvr (11 (7) 72 (7))

75 . The following isomorphism can be regarded as a natural one.
Definition (A12)

T2 : S, — Sy
A~ TT(A) =(7)
where + is a synchronised copy of the standard clock such that A = (7). Let
us call TT the time shift between S; and S;.

It follows from (E1) and Lemma 2 that this definition is sound and T7 is a
bijection preserving distances.

76 . Now we have everything at hand to define the space tags of events.

Definition (A13) Let A be an arbitrary event. The absolute space tags of A
are defined as follows:

&(4) = o (TE(A) (A))
&(4) = yo (T ()
§(4) = 20 (T?—(A) (A))

Thus we have defined four absolute space-time tags for every event:

T(A)a 51 (A)a 52 (A)v §B(A)
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Comments

77 . I call 7(A) “absolute time” not in the sense of what Newton called
“absolute, true and mathematical time”, that is independent of any empirical
definition (see Scholium II in chapter “Definitions” of the Principia.), but in the
sense of what the 20th century physics calls absolute time, that is “independent
of the position and the condition of motion of the system of co-ordinates”
(Einstein 1920, p. 51). The space-time tags 7(A),&1(A4),&(A),&5(A) are
absolute in the sense that they are not relative to a reference frame but prior
to any reference frame (actually the concept of “reference frame” is still not
defined).

Our concepts of absolute time and space tags are, of course, “relative” to

the trivial semantical convention by which we define the meaning of the terms.
Namely, they are “relative” to the etalon clock-like process we have chosen in the
universe. This kind of “relativism” is however common to all physical quantities
having empirical meaning. (Beyond the choice of the etalon clock, the space
tags &1(A),&2(A),E3(A) have some additional conventional element; they also
are relative to the chosen 3-frame in Sy. This additional conventionality is,
however, of marginal importance; it is nothing more than what we would call
in our usual language “the choice of a 3-coordinate basis in a given reference
frame”.)
78 . As it was already mentioned in Point 33 (Footnote 5), there has been
a long discussion in the literature about the conventionality of simultaneity.
(See, for example, Reichenbach 1956; Bridgeman 1965; Griinbaum 1974; Salmon
1977; Malament 1977; Friedman 1983; Ben-Yami 2006.) Without entering in
the details of the various arguments, the following facts must be pointed out
here.

As it is obvious from (89), we chose the standard “e = %—synchronisation”.
(Of course, it could be a contingent fact of nature that to = ¢; in Fig. 14. In
that case the choice of the value of € would not matter.) This choice was entirely
conventional; it was a part of the trivial semantical convention defining the term
“absolute time tag”. This choice is prior to any claims about the one-way or even
round-trip speed of electromagnetic signals, because there is no such a concept
as “speed” prior to the definition of time and space tags; it is, of course, prior to
“the metric of Minkowski space-time”, in particular to the “light-cone structure
of the Minkowski space-time”, because we have no words to tell this structure
prior to the space-time tags; and it is prior to the causal order of physical
events, because—even if we could know this causal order prior to temporality—
we cannot, know in advance how causal order is related with temporal order
(which we have defined here). It is actually prior to any discourse about two
locuses in space, because there is no “space” prior to definiton (A1) and there is
no concept of a “persistent space locus” prior to definiton (A12).

79 . A remark is in order on the empirical facts (E1) (E8) to which we refer
in constructing space-time tags. In claiming these statements as empirical
facts I mean that they ought to be true according to our ordinary physical
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theories. The ordinary physical theories are however based on the ordinary,
problematic, space-time conceptions, relaying on “reference frames realised by
rigid bodies” and the like, without proper, non-circular, empirical definitons.
Thus, especially in the context of defining the two most fundamental physical
quantities, distance and time, we must not regard our ordinary physical theories
as empirically meaningful and empirically confirmed claims about the world.
Whether these statements are true or not is, therefore, an empirical question,
and it is far from obvious whether they would be completely confirmed if the
corresponding experiments were performed with higher precision, similar to the
recent GPS measurements, especially for larger distances. Strangely enough,
according to my knowledge, these very fundamental facts have never been tested
experimentally; no textbook or monograph on space-time physics refers to such
experimental results; actually, they do not even attempt to provide a clear,
non-circular empirical definition of “time” and “distance”.

So, the best we can do is to believe that our physical theories based on the
usual sloppy formulation of space-time concepts are true (in some sense) and
to consider the predictions of these theories as empirical facts. However, as the
following analysis reveals, it is far from obvious whether the predictions of the
believed theories really imply (E1) (ES8).

80 . Throughout the definition of space-time tags, we avoided the term
“inertial”, and because of a good reason. First of all, if “inertial” is regarded
as a kinematical notion based on the concept of straight line and constancy of
velocity, then it cannot be antecedent to the concept of space-time tags. If, on
the other hand, it is understood as a manner of existence of a physical object in
the universe, when the object is undergoing a free floating, in other words, when
it is “free from forces”, then the concept is even more problematic. The reason
is that “force” is a concept defined through the deviation from the trajectory
of inertial motion (first circularity), and neither the inertial trajectory nor the
measure of deviation from it can be expressed without spatiotemporal concepts,
that is, they cannot be antecedent to the definition of space-time tags (second
circularity). So there is no precise, non-circular definition of inertial motion.

81 . According to our believed special relativistic physical theory, space-time
is a 4-dimensional Minkowski space and inertial trajectory is a time-like straight
line in the Minkowski space. Since we are prior to the empirical definitions of the
basic spatiotemporal quantities, we cannot regard this claim as an empirically
confirmed physical theory. Nevertheless, let us assume for a moment that our
special relativistic theory is the true description of the world “from God’s point
of view”. It is straightforward to check that all the facts (E1)-(E8) are true if
1) the standard clock moves along an inertial world line in the Minkowski space-
time and 2) it reads the proper time, that is, it measures the length of its own
word line, according to the Minkowski metric. However, we human beings can
know neither whether the standard clock (chosen by us) is of inertial motion in
God’s Minkowskian space-time nor whether it reads the proper time. What if
these conditions fail? What does special relativistic kinematics say about (E1)-
(E8) if the standard clock is accelerated and/or it does not read the proper
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time?

In order to answer this question, we have to follow up the operational
definitions (D1), (D2),... and calculate whether statements (E1), (E2),... are
true or not if the standard clock moves along a given world line v and the
“time” it reads is, say, a given function of the Minkowskian coordinate time,
x(t). Although the task is straightforward, the calculation is too complex to
give a general answer by analytic means. But the problem can be efficiently
solved by computer. One finds the following perhaps surprising results.

For the sake of the contrast, let me first mention that one obtains a very
misguiding result if, for the sake of simplicity, the calculation is made in a
2-dimensional Minkowski space-time: No matter if the standard clock moves

along a non-inertial world line v, no matter if it reads a time x(t) which is
an arbitrary monotonic function of the Minkowskian coordinate time, different
from the proper time along its world line, facts (E1) (E8) are always true.

If this 2-dimensional result were the final truth one would conclude that no
spatiotemporal measurement can ascertain whether the standard clock moves
inertially or not; the very concept of “inertial” motion would remain a purely
conventional one; facts (E1) (E8) would always be true, independently of the
“objective” fact of how the standard clock moves in God’s Minkowski space-time.

In contrast, the real 4-dimensional calculation leads to the following results:

(A) Facts (E1) (E8) are always true if the standard clock moves along an
inertial world line, no matter if the clock reads a time x(t) which is an arbitrary
monotonic function of the Minkowskian coordinate time, different from the
proper time along its world line.

(B) If the standard clock moves along a non-inertial world line v, facts (E1)
(E8) are never true, no matter if the clock reads the proper time or not.

The whole thing hinges on (E1); there are no synchronised copies of the standard
clock if the standard clock moves non-inertially.

82 . There are remarkable consequences of the above results:

1. Result (A) implies that no objective meaning can be assigned to the
concept of “proper time”. “Time” is what the etalon clock reads, by
definition.

2. Contrary to the misguiding 2-dimensional result, (B) shows that the notion
of “inertial motion” is not entirely conventional. In accord with our
intuition based on the believed physical theories, we can give an objective
meaning to “inertial motion” by means of correct neither logically nor
operationally circular experiments: the standard clock is of inertial
motion if statements (E1)-(E8) are true. Assuming that the standard
clock is inertial, one can extend the concept for an arbitrary time sequence
~(7) of events: v(7) corresponds to an inertial motion if the absolute space
tags &1 (v (7)), & (v (7)), &3 (v (7)) are linear functions of the absolute time
tag 7.
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3.

83.

Standard clock

Figure 22. The test of inertiality

On the basis of our believed physical theories, one cannot, however, predict
whether (E1) (E8) are true or false. It is still an open empirical question.

. Imagine that (E1) (E8) are not satisfied. It not only means that the

standard clock we have chosen is non-inertial but it also means that the
chosen clock is inappropriate for the definition of space-time tags. More
exactly, one has to stop at definition (D1). One can define the time tags
but cannot define the spatial notions, in particular the distances between
simultaneous evens.

Consequently, it is meaningless to talk about “non-inertial reference
frame”, “space-time coordinates (tags) defined /measured by an accelerated

observer”, and the likes.

In the light of these consequences, it is an intriguing question whether

the standard clock contemporary physical laboratories use for coordination of
physical events satisfies conditions (E1)—(ES8), in particular (E1). It is quite

implausible that it does—taking into account the Earth’s rotation, the Earth’s
motion around the Sun, the Solar System’s motion in our Galaxy, etc.
Counsider first what in fact has to be tested (Fig. 22). (E1) would require
the existence of a unique synchronised copy of the standard clock through every
event. Let therefore A be an arbitrary event with absolute time tag 7(A).
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Introduce the following notations:

o Radio signal from A
Va= {X ‘ is received at X. }
A Radio signal from X
N {X ‘ is received at A.

Qﬁ = VanAP

Consider the following quantity:

min max ‘T(Y) — W‘ t>71(A)
XevansS,  yeoX
N := max
t,A min max }T(Y) - M‘ t < 7(A)

XeA*ns: Yeox

N =0 is a necessary condition of inertiality of the standard clock. In this case,
for every event A there exists a unique synchronised copy of the standard clock.
That is, for every time ¢t > 7(A) there is a unique event X € V4 N S; such that
T(Y) = w for all Y € {% and for every time ¢ < 7(A) there is a unique
event X € AN S, such that 7(Y) = M for all Y € %

84 . Let us outline how the experimental test could be realised. Our standard
clock is transmitting, say in every few nanoseconds, a radio signal encoding
the actual clock reading (Fig. 23). We need a huge number of little devices
€1, €2, ...¢6, ... with the following functions:

1. They continuously receive the regular time signals from the standard clock.

2. They can transmit radio signals containing the following information:
a) an ID code of the device and information about the standard clock
reading, so from the signal they send it always can be known which
device was the transmitter and what was the standard clock reading
received by the transmitter at the moment of the emission of the signal,
b) information about the type of event on the occasion of which the signal
was transmitted.

3. They can receive the signals transmitted by the others.

We install these devices everywhere in a certain region of the universe. Now,
the following events will happen.

1. Assume that eg is programed such that it transmits a radio signal (event
A) when receives the time signal of ¢; from the standard clock. Let us call
it. A-signal. The A-signal will arrive back to the standard clock at time t5.

2. The A-signal sweeps through the whole region and triggers the other
devices to transmit a B-signal. For example, event B; consists in that e;
receives the A-signal from e3 and emits its own B;-signal with the needed
information. B; is a similar event for e;, etc.
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Standard clock

Figure 23. The sketch of a realistic measurement to decide whether the standard

clock is inertial or not
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3. The B-signals will be received by some other devices. For example, Cy;
is the event when e; receives the B;-signal transmitted by e; and sends
out his own signal (Cy;-signal) with the corresponding information. This
information arrives back to the standard clock at time ¢y;.

In this way, a huge amount of data is recorded, from which we can ascertain
the absolute time tags of all events in question. We can determine Oglm for
every Cjy,. For example, say, it turns out that Cj; = Cj; and, therefore,
B;,B; € Oi’”, etc. One also can determine the sets of simultaneous events.
Now, the standard clock is inertial only if in every S; there is a unique Cj,,, € St

such that for every event B; € Oglm

7(A) 4+ 7 (Cin)

7(Bi) = 5
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A matematikai elméletek — fizikai elméletek

The metaphysical basis of logic and mathematics
(A physicalist approach)

“after sufficient clarification of the concepts in question it will be possible to
conduct these discussions with mathematical rigor and that the result then will
be that (under certain assumptions which can hardly be denied [in particular
the assumption that there exists at all something like mathematical knowledge]
the platonistic view is the only one tenable” (Godel: Some basic theorems
on the foundations of mathematics and their implications, 1951)

Question:What if I am not a Platonist but I am a physicalist?

Physicalism:

Empiricism: Genuine information about the world must be
acquired by a posteriori means.

_|_

Physicalist account of the mental: Experiencing itself, as
any other mental phenomena, including the mental processing
the experiences, can be wholly explained in terms of physical
properties, states, and events in the physical world.

Standard schools in philosophy of mathematics

Physical realism
Platonism Mathematical objects
IS have meanings
Intuitionism
: Mathematical objects
Formalism .
have NO meanings




Comments 77

uitionism

Mathematical objects

Formalism _
have NO meanings

Mathematical objects have no meanings

ThesisMathematical “statements” are formulas of a formal language.

They are not linguistic objects, consequently they carry no meanings
and Tarskian truths.

The argumentwill be based on the Truth-Condition Theory of Meaning;:

A meaning for a sentence is something that determines the conditions
under which the sentence is true or false.(David Lewis: General
Semantics, 1972)

In order to determine this “something” one has to follow up how the sentence
can be confirmed or refuted.

Consider electrodynamics. What will the physicist answer to the following
questions:

Why is F' = k% (Coulomb law) true?

How do we know that F = kQ12QQ is true?

T

How could you convince me that F = k% is true?
How do you mean that F = k% is true?

How can we verify that F' = k% is true?
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Answer:F' = inQ% is true in the sense that the force measured between small

charged particles is indeed equal to kQ;Q 2. We can test/confirm this fact by
means of laboratory experiments.

Consider group theory:

Aphabet
variables TyY, 2y
individual constant e (identity)
function symbols i, p (inverse, product)
predicate symbol =
punctuation () s
logical symbols V,m —

Axioms
(G1)  p(p(z,y),2) = p(x,p(y,2)) (associative law)
(G2) ple,z) == (left identity)
(G3) pli(x),z) =c¢ (left inverse)

What will the mathematician answer to the following questions:

Why is p(e,p(e,e)) = e is true?
How do we know that p(e,p(e,e)) = e is true?
How could you convince me that p(e, p(e,e)) = e is true?
How do you mean hat p(e,p(e,e)) = e is true?

How can we verify that p(e, p(e,e)) = e is true?

Answer:

The mathematician never refers to the physical/platonic/mental realm and the
corresponding epistemic faculties! The mathematician’s final argument always
is that p(e,p(e,e)) = e is proved from the axioms of group theory:

(1) ple,z) == (G2)

(2)  (Va)(p(e,x) = x) Gen.

(3)  (Vo)(p(e,z) =x) — ple,e) =e PC

(4) plee)=e (2), (3), MP
(5)  (Vz)(p(e,z) = =) — p(e,p(e, e)) = ple,e) PC

(6) p(e,p(e, 6)) = p(e, 6) (2): (5)7 MP
(7) ple,e) =e— ple,ple,e)) = ple,e) — ple,ple,e)) =e  PC(=)

(8) ple;ple,e)) =ple,e) — ple,ple,e)) =e (4), (7), MP
9) ple,plee))=e (6), (8), MP
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In Dummett’s words:

Like the empiricist view, the platonist one fails to do justice to
the role of proof in mathematics. For, presumably, the supra-
sensible realm is as much God’s creature as is the sensible one; if so,
conditions in it must be as contingent as in the latter. [...] [W]e do
not seek, in order to refute or confirm a [mathematical] hypothesis,
a means of refining our intuitive faculties, as astronomers seek to
improve their instruments. Rather, if we suppose the hypothesis
true, we seek for a proof of it, and it remains a mere hypothesis,
whose assertion would therefore be unwarranted, until we find one.
(Dummett: What Is Mathematics About? (1994), p. 13.)

Partial conclusion:

p(e,p(e, e)) = e does not have meaning; it does not refer to anything and cannot
be true or false in the ordinary semantical sense. It is actually not a linguistic
object, it is just a brick in a formal system.

The meaningful sentences are like “{Group} F p(e,p(e,e)) = €” instead of
“p(e,p(e,e)) = €”. The “X F X sentences do have meanings and can be true or
false—in what sense, it will be clear later on.

RemarkA typical misinterpretation of the formalist “3 F X

“If 3 (is true) then X (is true)”

The essential difference between mathematical truth and
semantical truth in a scientific theory describing something
in the world

A physical theory P is a formal system L + a semantics S pointing to the
empirical world. Normally, L is a (first-order) system with

e some logical azioms and the derivation rules (usually the first-order
predicate calculus with identity)

e the axioms of certain mathematical theories
e some physical axioms.
A sentence A in physical theory P can be true in two different senses:

Truth;: A is a theorem of L, that is, F;, A (which is a mathematical truth
within the formal system L, a fact of the formal system L).

Truths:  According to the semantics S, A refers to an empirical fact (about
the physical system described by P).
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Example:“The electric field strength of a point charge is ]fq—?” is a theorem

of Maxwell’s electrodynamics. On the other hand, according to the semantics
relating the symbols of the Maxwell theory to the empirical terms, this sentence
corresponds to an empirical fact (about the point charges).

Truth; and Truth, are independent concepts — one does not
automatically imply the otherAssume that

e I'is a set of truey sentences in L

eand ', A

It does not automatically follow that A is trueo. Whether A is true, is again
an empirical question:

If so, then it is new empirically obtained information about the world,
confirming the validity of the whole physical theory P = L + S.

If not, then this information disconfirms the physical theory, as a whole.
That is to say, one has to think about revising one of the
constituents of P.

The physicalist ontology of formal systems

[N]o philosophy can possibly be sympathetic to a mathematician
which does not admit, in one manner or the other, the immutable
and unconditional validity of mathematical truth. Mathematical
theorems are true or false; their truth or falsity is absolute and
independent of our knowledge of them. In some sense, mathematical
truth is a part of objective reality. (Hardy: Mathematical Proof,
1929)

Now we determine what this objective reality actually is.

Thesis:

The objective fact expressed by a mathematical proposition is a fact
of a particular part of the physical world: it is a fact of the formal
system itself, that is, a fact about the physical system consisting of
the signs and the mechanical rules according to which the signs can
be combined.
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Arguments

All mathematical truths are determined by the

physical facts within this part of the phys} al world

Taking into account that the
only means of obtaining reliable
knowledge about this fact is
mathematical proof, it must be
a fact of the realm inside
of the scope of formal
; derivations.

Of course, from physicalist point of view it does not matter whether
the formal system is embodied in a computer, in a human brain, in
brain+paper+hand+pen, etc.

‘ “ple,ple,e)) =¢€” ‘ This is not a linguistic object!
actually means that the usual formalist step

‘ “{Group} F p(e,p(e,e)) =¢” ‘ This is a linguistic object!
which is nothing but the physicalist step

The assertion that there exists a
proof-process, the result of which is This is a usual scientific assertion,
p(e,p(e,e)) —e just like 2Hs + Oy — 2H50

In this way, a mathematical truth has contingent factual content, as
any similar scientific assertion. It is

e expressing objective fact of the physical world
e synthetic

e a posteriori

e not necessary and not certain

e true before anybody can prove it
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Abstraction is a move from the concrete to the concrete

Many from the formalist school admit that

. in order to think of a formal system at all we must think of it as
represented somehow.

(Haskell Curry: Qutlines of a Formalist Philosophy of
Mathematics, 1951)

But, Curry continues this passage as follows:

in order to think of a formal system at all we must think
of it as represented somehow. But when we think of it as
formal system we abstract from all properties peculiar to
the representation.

(Haskell Curry: Outlines of a Formalist Philosophy of
Mathematics, 1951)

What does such an “abstraction” actually mean?

What do we obtain if we abstract from some unimportant, peculiar properties
of a physical system L; (which is a “representation of a formal system”) 7 We
obtain a theory P = Ly + S about L;, that is, a formal system L, with a
semantics S relating the elements of Lo to the important empirical facts of L.
That is, instead of an “abstract structure” we obtain another flesh and
blood formal system Ls.

By the same token, one cannot obtain an “abstract structure” as
an ‘“equivalence class of isomorphic formal systems”. Such things as
“isomorphism”, “equivalence”, “equivalence class” are living in a formal
system “represented somehow”, that is, in a flesh and blood formal

system:
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theoretical model
- of L1

theoretical model
---of Ly

-f > isomorphisms

theoretical model
“of L,

-equivalence class

prStotype
“abstract formal system”

This is no attack on scientific realismWhen a physical theory claims that
a physical object has a certain property adequately described by means of a
formal system, then this reflects a real feature of physical reality.

This is not nominalismWhen many different physical objects display a similar
property that is describable by means of the same (equivalent) elements of one
common formal system, this will be a true general feature of the group.

But, this realist commitment does not entitle us to claim that
“abstract structures” exist over and above the real formal systems
of physical existence.

Epistemological status of meta-mathematical theories

We follow Hilbert’s careful distinction:

mathematics — a system of meaningless signs

meta-mathematics — meaningful statements about mathematics
+ physicalism:
formal system a physical system L

meta-mathematical theory  a physical theory (M, S)
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All the truths that a meta-mathematical theory can tell us about its
object are of the type Truth,. This means that no feature of a formal
system can be “proved” mathematically: Genuine information about
a formal system must be acquired by a posteriori means, that is, by
observation of the formal system and, as in physics in general, by
inductive generalisation.

M

;
L is consistent| { ()
L

Consequently, all meta-mathematical “proofs” are questionable!

e When I say “questionable” T do not mean that I don’t believe that, for
example, the sentence calculus is consistent. I only mean that I believe
in it just as I believe in the Coulomb law or in the conservation
of energy, or any other physical laws, which are acquired by a
posteriori means.

e To be sure, both truth; and truths of a formula of M, like L is consistent
are known by a posteriori means. But,

— kL is consistent is known by observation of the formal system M

— L is consistent (is trueg) is confirmed by observations of the formal
system L.

ExampleConsider the following meta-mathematical statements:

PfM(z,y) x is the Godel number of a sequence of formulas constituting a
proof of the formula of Gédel number y.

PfM(xz,y,z) xis the Godel number of a proof of the formula obtained from the
formula of Gédel number y by substituting its only free variable
with number z.
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Representation:

{arithmetic} + Pf(z,y,z2) if PfM(x,y,2) is truey
{arithmetic} + —Pf(z,y,z2)if PfM(z,y,z) is falses

Problem:(104) is not “formally proved”. It is known by a posteriori means!

L (arithmetic)

M

P fM(z,y,2)

Hogyan lehet megragadni két formalis rendszer kozotti struktialais

hasonlésagot?

I
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