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2Hogyan is kell érteni a relativitás elvét a klasszikusés a relativisztikus �zikában?1 . It is a widely aepted view that speial relativity, beyond its laim aboutspae and time, is a theory providing a powerful method for the physis ofobjets moving at onstant veloities. The basi idea is the following: Considera physial objet at rest in an arbitrary inertial frame K. Assume we know therelevant physial equations and know the solution of the equations desribingthe physial properties of the objet in question when it is at rest. All thesethings are expressed in the terms of the spae and time oordinates x1, x2, x3, tand some other quantities de�ned in K on the basis of x1, x2, x3, t. We nowinquire as to the same physial properties of the same objet when it is, asa whole, moving at a given onstant veloity relative to K. In other words,the issue is how these physial properties are modi�ed when the objet is inmotion. The standard method for solving this problem is based on the relativitypriniple/Lorentz ovariane. It follows from the ovariane of the laws of naturerelative to Lorentz transformations that the same equations hold for the primedvariables x′1, x′2, x′3, t′, . . . de�ned in the o-moving inertial frame K ′. Moreover,sine the moving objet is at rest in the o-moving referene frame K ′, it followsfrom the relativity priniple that the same rest-solution holds for the primedvariables. Finally, we obtain the solution desribing the system moving asa whole at onstant veloity by expressing the primed variables through theoriginal x1, x2, x3, t, . . . of K, applying the Lorentz transformation.This is the way we usually solve problems suh as the eletromagneti �eldof a moving point harge, the Lorentz deformation of a rigid body, the loss ofphase su�ered by a moving lok, the dilatation of the mean life of a osmi ray
µ-meson, et.I would like to show that this method, in general, is not orret; the systemdesribed by the solution so obtained is not neessarily idential with the originalsystem set in olletive motion. The reason is, as will be shown, that Lorentzovariane in itself does not guarantee that the physial laws in question satisfythe relativity priniple in general. The priniple of relativity atually only holdsfor the equilibrium quantities haraterising the equilibrium state of dissipativesystems.



3The relativity priniple2 . The �rst formulation of the relativity priniple appeared in the followingpassage of Galilei's Dialogue:... the butter�ies and �ies will ontinue their �ights indi�erentlytoward every side, nor will it ever happen that they are onentratedtoward the stern, as if tired out from keeping up with the ourseof the ship, from whih they will have been separated during longintervals by keeping themselves in the air. And if smoke is made byburning some inense, it will be seen going up in the form of a littleloud, remaining still and moving no more toward one side than theother. The ause of all these orrespondenes of e�ets is the fatthat the ship's motion is ommon to all the things ontained in it,and to the air also. (Galilei 1953, p. 187)In Einstein's formulation it is the following:If, relative toK,K ′ is a uniformly moving o-ordinate system devoidof rotation, then natural phenomena run their ourse with respetto K ′ aording to exatly the same general laws as with respet to
K. (Einstein 1920, p. 16)Finally, in a typial text book formulation, relativity priniple is the followingassertion:All the laws of physis take the same form in any inertial frame.Let us try to unpak what this priniple atually asserts. First of all it must belear that the same law of physis must take the same form in all inertial frames.What are the same laws of physis in di�erent inertial frames? Of ourse, thelaws of physis an be identi�ed by means of the physial phenomena theydesribe. If so, then one an think that the same physial phenomenon mustbe desribed by the same solution of the same equations in all frames. Thisis however obviously not the ase. For example, the motion of the plasma ofthe same solar �are is desribed di�erently by two observers in two di�erentinertial frames. Thus, the opposite must be true: di�erent physial phenomenaare desribed by the same solutions of the same equations in di�erent inertialframes. So, our �rst task will be to larify what are those di�erent physialphenomena the desription of whih must have the same form in all inertialframe.3 . The seond problem is how the phrase �same form� should be understood.For, in terms of di�erent variables, one and the same physial law in oneand the same inertial frame of referene an be expressed in di�erent forms.Therefore we have to add to the priniple that the physial laws must beexpressed in terms of the same physial quantities. This immediately raisesthe next question of how the physial quantities de�ned in di�erent inertial



4frames are identi�ed. Obviously, we identify those physial quantities that haveidential empirial de�nitions. It is however far from obvious how these identialempirial de�nitions are atually understood.The empirial/operational de�nitions require etalon measuring equipments.But how do the observers in di�erent referene frames share these etalonmeasuring equipments? Do they all base their de�nitions on the same etalonmeasuring equipments? They must do something like that, otherwise anyomparison between their observations would be meaningless. But, is prinipleof relativity really understood in this way? Is it true that the laws of physisin K and K ′, whih ought to take the same form, are expressed in terms ofphysial quantities de�ned/measured with one and the same standard measuringequipments? Not exatly! �The ause of all these orrespondenes of e�etsis the fat that the ship's motion is ommon to all the things [italis mine℄ontained in it��Galilei writes in the above quoted passage. Or, onsider howEinstein applies the priniple:Let there be given a stationary rigid rod; and let its length be
l as measured by a measuring-rod whih is also stationary. Wenow imagine the axis of the rod lying along the axis of x of thestationary system of o-ordinates, and that a uniform motion ofparallel translation with veloity v along the axis of x in the diretionof inreasing x is then imparted to the rod. We now inquire as to thelength of the moving rod, and imagine its length to be asertainedby the following two operations:(a) The observer moves together with the given measuring-rod andthe rod to be measured, and measures the length of the roddiretly by superposing the measuring-rod, in just the sameway as if all three were at rest [italis mine℄.(b) ...In aordane with the priniple of relativity the length to bedisovered by the operation (a)�we will all it �the length of therod in the moving system��must be equal to the length l of thestationary rod. (Einstein 1905)That is to say, if the standard measuring equipment de�ning a physial quantity

XK is, for example, at rest in K and, therefore, moving in K ′, then the observerinK ′ does not de�ne the orrespondingXK′ as the physial quantity obtainableby means of the original standard equipment�being at rest in K and moving in
K ′�but rather as the one obtainable by means of the same standard equipmentin another state of motion, namely when it is at rest in K ′ and moving in K.4 . Let us return to the �rst problem posed at the end of Point 2. Now wean speify those di�erent physial phenomena the desription of whih musthave the same form in all inertial frame. For, what we told about the measuringequipments, also holds for the physial systems to be measured. That is to say,



5the priniple says that the desription of the behaviour of a system when it iso-moving with inertial frame K takes the same form as the desription of thesame system when it is o-moving with inertial frame K ′.5 . Putting all these details together, now we are ready to give a more aurateformulation of the relativity priniple:Relativity Priniple The laws of physis desribing the behaviour of asystem o-moving as a whole with inertial frame K, expressed in terms of theresults of measurements obtainable by means of measuring-rods, loks, et.,o-moving with K takes the same form as the laws of physis desribing thesimilar behaviour of the same system when it is o-moving with inertial frame
K ′, expressed in terms of the measurements with the same equipments whenthey are o-moving with K ′.Whether or not the relativity priniple holds is, it must be lear, a ontingentfat of nature. If the laws of physis known in any one inertial frame of referene,say K, aount for all physial phenomena then these laws unambiguouslypredetermine whether the priniple holds or not. The reason is that these lawsalso desribe the behaviour of moving (relative toK) physial systems inludingboth the measuring equipments o-moving with another inertial frame K ′ andthe system to be measured o-moving with K ′.Nevertheless, there are still vague points here. But before entering in thedisussion of these further problems, let us reall how the relativity prinipleimplies Galilean/Lorentz ovariane.



6Galilean and Lorentz ovariane6 . Consider two inertial frames of referene K and K ′. Assume that K ′ ismoving at onstant veloity v relative toK along the axis of x. Assume that lawsof physis are known and empirially on�rmed in inertial frame K, inludingthe laws desribing the behaviour of physial objets in motion relative to K.Denote x(A), y(A), z(A), t(A) the spae and time tags of an event A, obtainableby means of measuring-rods and loks at rest relative to K, and denote
x′(A), y′(A), z′(A), t′(A) the similar data of the same event, obtainable by meansof measuring-rods and loks o-moving with K ′. In the approximation oflassial physis (v ≪ c), the relationship between x′(A), y′(A), z′(A), t′(A) and
x(A), y(A), z(A), t(A) an be desribed by the Galilean transformation:

t′(A) = t(A) (1)
x′(A) = x(A) − v t(A) (2)
y′(A) = y(A) (3)
z′(A) = z(A) (4)Due to the relativisti deformations of measuring-rods and loks, the exatrelationship is desribed by the Lorentz transformation:
t′(A) =

t(A) − v x(A)
c2√

1 − v2

c2

(5)
x′(A) =

x(A) − v t(A)√
1 − v2

c2

(6)
y′(A) = y(A) (7)
z′(A) = z(A) (8)Sine physial quantities are de�ned by the same operational proedure inall inertial frames, the transformation rules of the spae and time oordinates(usually) predetermine the transformations rules of the other physial variables.So, depending on the ontext, we will mean by Galilean/Lorentz transformationnot only the transformation of the spae and time tags, but also theorresponding transformation of the other variables in question.Following Einstein's 1905 paper, the Lorentz transformation rules are usuallyderived from the relativity priniple�the general validity of whih we are goingto hallenge in this essay. As we will see, this derivation is not in ontraditionwith our �nal onlusions. Nevertheless, it is worth while to mention thatLorentz transformation an also be derived independently of the priniple ofrelativity, diretly from the fats that a lok slows down by fator √

1 − v2/c2when it is gently aelerated from K to K ′ and a measuring-rod su�ers aontration by fator √
1 − v2/c2 when it is gently aelerated from K to K ′(see Point 37).



77 . In lassial physis, the spae and time tags obtained by means ofmeasuring-rods and loks o-moving with di�erent inertial referene framesan be onneted through the Galilean transformation. Aording to speialrelativity, the spae and time tags obtained by means of measuring-rods andloks o-moving with di�erent inertial referene frames are onneted throughthe Lorentz transformation. Consequently, the laws of physis must preservetheir forms with respet of the Galilean/Lorentz transformation. Thus, it mustbe emphasised, the Galilean/Lorentz ovariane is a onsequene not only ofthe fat that the laws of physis satisfy the relativity priniple but also of theother physial fat that the spae and time tags in di�erent inertial frames areonneted through the Galilean/Lorentz transformation.8 . Let us now try to unpak the verbal formulations of the relativity priniplein a more mathematial way. Let E be a set of di�erential equations desribingthe behaviour of the system in question. Let us denote by ψ a typial set of(usually initial) onditions determining a unique solution of E . Let us denotethis solution by [ψ]. Denote E ′ and ψ′ the equations and onditions obtainedfrom E and ψ by substituting every xi with x′i, and t with t′, et. Denote
Gv (E) , Gv (ψ) and Λv (E) ,Λv (ψ) the set of equations and onditions expressedin the primed variables applying the Galilean and the Lorentz transformations,respetively (inluding, of ourse, the Galilean/Lorentz transformations of allother variables di�erent from the spae and time oordinates). Finally, in orderto give a strit mathematial formulation of relativity priniple, we have to �xtwo further onepts, the meaning of whih are vague: Let a solution [ψ0] isstipulated to desribe the behaviour of the system when it is, as a whole, atrest relative to K. Denote ψv the set of onditions and [ψv] the orrespondingsolution of E that are stipulated to desribe the similar behaviour of the systemas [ψ0] but, in addition, when the system was previously set, as a whole, into aolletive translation at veloity v.Now, what relativity priniple states is equivalent to the following:

Gv (E) = E ′ (9)
Gv (ψv) = ψ′

0 (10)in the ase of lassial mehanis, and
Λv (E) = E ′ (11)

Λv (ψv) = ψ′
0 (12)in the ase of speial relativity.9 . Although, in onjuntion with the Galilean/Lorentz transformation rules,relativity priniple implies Galilean/Lorentz ovariane, the relativity priniple,as we an see, is not equivalent to the Galilean ovariane (9) in itself or theLorentz ovariane (11) in itself. It is equivalent to the satisfation of (9) inonjuntion with ondition (10) in lassial physis, or (11) in onjuntion with(12) in relativisti physis.



810 . Note, that E , ψ0, and ψv as well as the transformations Gv and Λvare given by ontingent fats of nature. It is therefore a ontingent fat ofnature whether a ertain law of physis is Galilean or Lorentz ovariant, and,independently, whether it satis�es the priniple of relativity. The relativitypriniple and its onsequene the priniple of Lorentz ovariane are ertainlynormative priniples in ontemporary physis, providing a heuristi tool foronstruting new theories. We must emphasise however that these normativepriniples, as any other fundamental law of physis, are based on empirial fats;they are based on the observation that the behaviour of any moving physialobjet satis�es the priniple of relativity. I will show, however, that the laws ofrelativisti physis, in general, do not satisfy this ondition.11 . Before we begin analysing our examples, it must be noted that the majorsoure of onfusion is that there still exists some vagueness in the relativitypriniple (Point 5). Namely, the vagueness of the onepts like �a system o-moving as a whole with an inertial frame� and �the similar behaviour of thesame system when it is o-moving with a given inertial frame�. In other words,the vagueness of the de�nitions of onditions ψ0 and ψv. In priniple any [ψ0]an be onsidered as a �solution desribing the system's behaviour when it is, asa whole, at rest relative to K�. Given any one �xed ψ0, it is far from obvious,however, what is the orresponding ψv. When an we say that [ψv] desribes thesimilar behaviour of the same system when it was previously set into a olletivesmotion at veloity v? As we will see, there is an unambiguous answer to thisquestion in the Galileo ovariant lassial physis. But ψv is vaguely de�ned inrelativity theory. Note that Einstein himself uses this onept in a vague way,for example in the passage quoted in Point 3. (What exatly does �a uniformmotion of parallel translation with veloity v ... imparted to the rod� mean?)The following examples will illustrate that the vague nature of this oneptompliates matters. In all examples we will onsider a set of interatingpartiles. We assume that the relevant equations desribing the system areGalilean/Lorentz ovariant, that is (9) and (11) are satis�ed respetively. Asit follows from the ovariane of the orresponding equations, G−1
v (ψ′

0) and,respetively, Λ−1
v (ψ′

0) are onditions determining new solutions of E . Thequestion is whether these new solutions [
G−1

v (ψ′
0)

] and [
Λ−1

v (ψ′
0)

] are identialwith [ψv]�the one determined by ψv. If so then the relativity priniple issatis�ed.



9The relativity priniple in lassial mehanis12 . Let us start with an example illustrating how the relativity prinipleworks in lassial mehanis. Consider a system onsisting of two point massesonneted with a spring (Fig. 1). The equations of motion in K,
m
d2x1 (t)

dt2
= k (x2 (t) − x1 (t) − L) (13)

m
d2x2 (t)

dt2
= −k (x2 (t) − x1 (t) − L) (14)are indeed ovariant with respet to the Galilean transformation, that is,expressing (13)�(14) in terms of variables x′, t′ they have exatly the same formas before:

m
d2x′1 (t′)

dt′2
= k (x′2 (t′) − x′1 (t′) − L) (15)

m
d2x′2 (t′)

dt′2
= −k (x′2 (t′) − x′1 (t′) − L) (16)Consider the solution of the (13)�(14) belonging to an arbitrary initialondition ψ0:

x1(t = 0) = x10

x2(t = 0) = x20
dx1

dt

∣∣
t=0

= v10
dx2

dt

∣∣
t=0

= v20

(17)The orresponding �primed� initial ondition ψ′
0 is

x′1(t
′ = 0) = x10

x′2(t
′ = 0) = x20

dx′

1

dt′

∣∣∣
t′=0

= v10
dx′

2

dt′

∣∣∣
t′=0

= v20

(18)Applying the inverse Galilean transformation we obtain a set of onditions
G−1

v (ψ′
0) determining a new solution of the original equations:

x1(t = 0) = x10

x2(t = 0) = x20
dx1

dt

∣∣
t=0

= v10 + v
dx2

dt

∣∣
t=0

= v20 + v

(19)
x2

0 x

x1

k, L
m m

Figure 1. Two point masses are onneted with a spring of equilibrium length Land of spring onstant k



10One an reognise that this is nothing but ψv. It is the set of the originalinitial onditions in superposition with a uniform translation at veloity v.That is to say, the orresponding solution desribes the behaviour of the samesystem when it was (at t = 0) set into a olletive translation at veloity v, insuperposition with the original initial onditions.13 . In lassial mehanis, as we have seen from this example, the equationsof motion not only satisfy the Galilean ovariane, but also satisfy the ondition(10). The priniple of relativity holds for all details of the dynamis of thesystem. There is no exeption to this rule. In other words, if the world weregoverned by lassial mehanis, relativity priniple would be a universally validpriniple. With respet to later questions, it is worth noting that the Galileanpriniple of relativity therefore also holds for the equilibrium harateristis ofthe system, if the system has dissipations. Imagine for example that the springhas dissipations during its distortion. Then the system has a stable equilibriumstate in whih the equilibrium distane between the partiles is L. When weinitiate the system in olletive motion orresponding to (19), the system relaxesto another equilibrium state in whih the distane between the partiles is thesame L.



11Violation of relativity priniple in relativistiphysis14 . Let us turn now to the relativisti examples. It is widely held that thenew solution determined by Λ−1
v (ψ′

0), in analogy to the solution determined by
G−1

v (ψ′
0) in lassial mehanis, desribes a system idential with the originalone, but o-moving with the frame K ′, and that the behaviour of the movingsystem, expressed in terms of the results of measurements obtainable by meansof measuring-rods and loks o-moving with K ′ is, due to Lorentz ovariane,the same as the behaviour of the original system, expressed in terms of themeasurements with the equipments at rest in K�in aordane with thepriniple of relativity. However, the situation is in fat far more omplex, as Iwill now show.15 . Imagine a system onsisting of interating partiles (for example,relativisti partiles oupled to eletromagneti �eld). Consider the solutionof the Lorentz ovariant equations in question that belongs to the followinggeneral initial onditions:

ri(t = 0) = Ri (20)
dri(t)

dt

∣∣∣∣
t=0

= wi (21)(Sometimes the initial onditions for the partiles unambiguously determine theinitial onditions for the whole interating system. Anyhow, we are omittingthe initial onditions for other variables whih are not interesting now.) Itfollows from the Lorentz ovariane that there exists a solution of the �primed�equations, whih satis�es the same onditions,
r
′
i(t

′ = 0) = Ri (22)
dr′i(t

′)

dt′

∣∣∣∣
t′=0

= wi (23)Eliminating the primes by means of the Lorentz transformation we obtain
t⋆i =

v
c2Rxi√
1 − v2

c2

(24)
r

new
i (t = t⋆i ) =




Rxiq
1− v2

c2

Ryi

Rzi


 (25)and

drnew
i (t)

dt

∣∣∣∣
t⋆

i

=




wxi+v

1+
wxiv

c2

wyi

wzi


 (26)



12It is di�ult to tell what the solution deriving from suh a nondesript �initial�ondition is like, but it is not likely to desribe the original system in olletivemotion at veloity v. The reason for this is not di�ult to understand. Let meexplain it by means of a well known old example (Dewan and Beran 1959, Evettand Wangsness 1960, Dewan 1963, Evett 1972, Bell 1987, Nikoli 1999, Field2004).16 . In stead of two rokets onneted with a thread�as the original examplesays�onsider the system onsisting of two partiles onneted with a spring(Point 12). Let us �rst ignore the spring. Assume that the two partiles areat rest relative to K, one at the origin, the other at the point d, where d = L,the equilibrium length of the spring when it is at rest. It follows from (24)�(26) that the Lorentz boosted system orresponds to two partiles moving atonstant veloity v, suh that their motions satisfy the following onditions:
t⋆1 = 0

t⋆2 =
v
c2 d√
1 − v2

c2

rnew
1 (0) = 0

rnew
2




v
c2 d√
1 − v2

c2


 =

d√
1 − v2

c2

(27)However, the orresponding new solution of the equations of motion does not�know� about how the system was set into motion and/or how the state ofthe system orresponding to the above onditions omes about. Consider thefollowing possible senarios:Example 1The two partiles are at rest; the distane between them is d (see Fig. 2).Then, partile 1 starts its motion at onstant veloity v at t = 0 from thepoint of oordinate 0 (the last two dimensions are omitted); partile 2 startits motion at veloity v from the point of oordinate d with a delay at time
t′′. Meanwhile partile 1 moves loser to partile 2 and the distane betweenthem is d′′ = d

√
1 − v2/c2, in aordane with the Lorentz ontration. Now,one an say that the two partiles are in olletive motion at veloity v relativeto the original system K�or, equivalently, they are olletively at rest relativeto K ′�for times t > t⋆2 = vd/

(
c2

√
1 − v2/c2

). In this partiular ase theyhave atually been moving in this way sine t′′. Before that time, however, thepartiles moved relative to eah other, in other words, the system underwentdeformation.



13
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2

the original system

the Lorentz boosted systemFigure 2. Both partiles are at rest. Then partile 1 starts its motion at
t = 0. The motion of partile 2 is suh that it goes through the point (t⋆2, d

′),where d′ = d/
√

1 − v2/c2, onsequently it started from the point of oordinate
d at t′′ = d

(
v/

(
c2

√
1 − v2/c2

)
−

(
1 −

√
1 − v2/c2

)
/

(
v
√

1 − v2/c2
)). Thedistane between the partiles at t′′ is d′′ = d

√
1 − v2/c2, in aordane withthe Lorentz ontration.Example 2Both partiles started at t = 0, but partile 2 was previously moved to the pointof oordinate d√1 − v2/c2 and starts from there. (Fig. 3)Example 3Both partiles started at t = 0 from their original plaes. The distane betweenthem remains d (Fig. 4). They are in olletive motion at veloity v, althoughthis motion is not desribed by the Lorentz boost.Example 4If, however, they are onneted with the spring (Fig. 5), then the spring (whenmoving at veloity v) �rst �nds itself in a non-equilibrium state of length d, thenit relaxes to its equilibrium state (when moving at veloity v) and�assumingthat the equilibrium properties of the spring satisfy the relativity priniple,whih we will argue for later on�its length (the distane of the partiles) wouldrelax to d√1 − v2/c2, aording to the Lorentz boost.17 . We have seen from these examples that the relationship between theLorentz boost�the motion determined by the onditions Λ−1

v (ψ′
0)�and thesystems being in olletive motion�determined by ψv�is not so trivial. InExamples 1 and 2�although, at least for large t, the system is idential with theone obtained through the Lorentz boost�it would be entirely ounter intuitive
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Figure 3. Both partiles start at t = 0. Partile 2 is previously moved to thepoint of oordinate d′′ = d
√
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Figure 4. Both partiles start at t = 0 from the original plaes. The distanebetween the partiles does not hange.
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state
the spring in non−equilibrium
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the spring in equilibrium state

the original system

the Lorentz boosted system

d’’

Figure 5. The partiles are onneted with a spring (and, say, the mass ofpartile 1 is muh larger)to say that we simply set the system in olletive motion at veloity v, beausewe �rst distorted it: in Example 1 the partiles were set into motion at di�erentmoments of time; in Example 2, before we set them in motion, one of thepartiles was reloated relative to the other. In ontrast, in Examples 3 and 4we are entitled to say that the system was set into olletive motion at veloity v.But, in Example 3 the system in olletive motion is di�erent from the Lorentzboosted system (for all t), while in Example 4 the moving system is indeedidential with the Lorentz boosted one, at least for large t, after the relaxationproess.Thus, as Bell rightly pointed out:Lorentz invariane alone shows that for any state of a system at restthere is a orresponding `primed' state of that system in motion.But it does not tell us that if the system is set anyhow in motion, itwill atually go into the 'primed' of the original state, rather thaninto the `prime' of some other state of the original system. (Bell1987, p. 75)18 . However, neither Bell's paper nor the preeding disussion of the �tworokets problem� provide proper explanation of this fat. For instane, after theabove passage Bell ontinues:In fat, it will generally do the latter. A system set brutallyin motion may be bruised, or broken, or heated or burned. Forthe simple lassial atom similar things ould have happened ifthe nuleus, instead of being moved smoothly, had been jerked.The eletron ould be left behind ompletely. Moreover, a givenaeleration is or is not su�iently gentle depending on the orbit inquestion. An eletron in a small, high frequeny, tightly bound orbit,an follow losely a nuleus that an eletron in a more remote orbit



16� or in another atom � would not follow at all. Thus we an onlyassume the Fitzgerald ontration, et., for a oherent dynamialsystem whose on�guration is determined essentially by internalfores and only little perturbed by gentle external fores aeleratingthe system as a whole. (Ibid., p. 75)The possible �damage� of the system due to �brutal� aeleration is a ompletelydi�erent issue (to whih we will return in Point 26) whih obsures a moreessential problem. As the above examples show,1 gentle aeleration in itselfdoes not guarantee that the Lorentz boosted solution desribes the originalsystem gently aelerated from K to K ′.19 . Before I proeed to formulate my thesis about this question, let me giveone more example.Example 5Consider a rod at rest in K. The length of the rod is l. At a given moment oftime t0 we take a reord about the positions and veloities of all partiles of therod:
ri(t = t0) = Ri (28)
dri(t)

dt

∣∣∣∣
t=t0

= wi (29)Then, forget this system, and imagine another one whih is initiated at moment
t = t0 with the initial ondition (28)�(29). No doubt, the new system will beidential with a rod of length l, that ontinues to be at rest in K.Now, imagine that the new system is initiated at t = t0 with the initialondition

ri(t = t0) = Ri (30)
dri(t)

dt

∣∣∣∣
t=t0

= wi + v (31)instead of (28)�(29). No doubt, in a very short interval of time (t0, t0 + ∆t) thissystem is a rod of length l, moving at veloity v; the motion of eah partile isa superposition of its original motion, aording to (28)�(29), and the olletivetranslation at veloity v. In other words, it is a rod o-moving with the refereneframe K ′. Still, its length is l, ontrary to the priniple of relativity, aordingto whih the rod should be of length l√1 − v2/c2�as a onsequene of l′ = l.
1In our examples we omitted the aeleration period�symbolised by a blak point on the�gures�for the sake of simpliity.
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Region II

Region III

ct

c(t−t )0

t=0

Region I

t=t 0

Figure 6. Sheme of regions I, II and IIIThe restrited relativity priniple as a priniple ofthermodynamis20 . The resolution of this �ontradition� is that the system initiated in state(30)�(31) at time t0 �nds itself in a non-equilibrium state and then, due toertain dissipations, it relaxes to the new equilibrium state. What suh a newequilibrium state is like, depends on the details of the dissipation/relaxationproess. It is, in fat, a thermodynamial question. The onept of �gentleaeleration� not only means that the system does not go irreversibly far apartfrom its equilibrium state, but, more essentially, it inorporates the assumptionthat there is suh a dissipation/relaxation phenomenon.Without entering into the quantum mehanis of solid state systems, a goodway to piture it is imagine that the system is radiating during the relaxationperiod. This proess an be followed in details by looking at one single pointharge aelerated from K to K ′ (see Jánossy 1971, pp. 208-210). Suppose thepartile is at rest for t < 0, the aeleration starts at t = 0 and the partilemoves with onstant veloity v for t ≥ t0. Using the retarded potentials, wean alulate the �eld of the moving partile at some time t > t0. We �ndthree zones in the �eld (see Fig. 6). In Region I, surrounding the partile, we�nd the �Lorentz-transformed Coulomb �eld� of the point harge moving atonstant veloity (see (71)�(76) in Point 44). This is the solution we usually�nd in textbooks. In Region II, surrounding Region I, we �nd a radiation �eldtravelling outwards whih was emitted by the partile in the period 0 < t < t0of aeleration. Finally, outside Region II, the �eld is produed by the partileat times t < 0. The �eld in Region III is therefore the Coulomb �eld of theharge at rest (Point 44 eqs. (65)�(70)). Thus, the priniple of relativity neverholds exatly. Although, the region where �the priniple holds� (Region I) isblowing up at the speed of light. In this way the whole on�guration relaxes toa solution whih is idential with the one derived from the priniple of relativity.



1821 . Thus, we must draw the onlusion that, in spite of the Lorentz ovarianeof the equations, whether or not the solution determined by the ondition
Λ−1

v (ψ′
0) is idential with the solution belonging to the ondition ψv, in otherwords, whether or not the relativity priniple holds, depends on the details ofthe dissipation/relaxation proess in question, given that 1) there is dissipationin the system at all and, 2) the physial quantities in question, to whihthe relativity priniple applies, are equilibrium quantities haraterising theequilibrium properties of the system. For instane, in Example 5, the relativitypriniple does not hold for all dynamial details of all partiles of the rod.The reason is that many of these details are sensitive to the initial onditions.The priniple holds only for some marosopi equilibrium properties of thesystem, like the length of the rod. It is a typial feature of a dissipativesystem that it unlearns the initial onditions; some of the properties of thesystem in equilibrium state, after the relaxation, are independent from the initialonditions. The limiting (t → ∞) eletromagneti �eld of the moving hargeand the equilibrium length of a solid rod are good examples. These equilibriumproperties are ompletely determined by the equations themselves independentlyof the initial onditions. If so, the Lorentz ovariane of the equations in itselfguarantees the satisfation of the priniple of relativity with respet to theseproperties : Let X be the value of suh a physial quantity�haraterising theequilibrium state of the system in question, fully determined by the equationsindependently of the initial onditions�asertained by the measuring deviesat rest in K. Let X ′ be the value of the same quantity of the same systemwhen it is in equilibrium and at rest relative to the moving referene frame K ′,asertained by the measuring devies o-moving with K ′. If the equations areLorentz ovariant, thenX = X ′. We must reognise that whenever in relativistiphysis we derive orret results by applying the priniple of relativity, we applyit for suh partiular equilibrium quantities. But the relativity priniple, ingeneral, does not hold for the whole dynamis of the systems in relativity theory,in ontrast to lassial mehanis.22 . When laiming that relativity priniple, in general, does not hold for thewhole dynamis of the system, a lot depends on what we mean by the system setinto uniform motion. One has to admit that this onept is still vague. As wepointed out, it was not learly de�ned in Einstein's formulation of the prinipleeither. By leaving this onept vague, Einstein taitly assumes that these detailsare irrelevant. However, they an be irrelevant only if the system has dissipationsand the priniple is meant to be valid only for some equilibrium properties withrespet to whih the system unlearns the initial onditions. So the best thingwe an do is to keep the lassial de�nition of ψv: Consider a system of partilesthe motion of whih satis�es the following �initial� onditions:2

ri(t = t0) = Ri0
dr1

dt

∣∣
t=t0

= Vi0
(32)2A ondition like (32) does not neessarily mean either that t0 = 0 nor that the solution inquestion desribes the motion only for t ≥ t0, it just �xes a partiular solution by presribingthe state of the partile at a given moment of time.



19The system is set in olletive motion at veloity v at the moment of time t0 ifits motion satis�es
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + v
(33)I have basially two arguments for suh a hoie:(a) The �rst is a methodologial one. The usual Einsteinian derivationof Lorentz transformation, simultaneity in K ′, et., starts with thedelaration of the relativity priniple. In order to formulate the priniple,we need the onept of a physial system in uniform motion relative to

K. This onept, therefore, must logially preede relativity theory. (Seealso Point ??)(b) The seond support omes from what Bell alls �Lorentzian pedagogy�.Its speial merit is to drive home the lesson that the lawsof physis in any one referene frame aount for all physialphenomena, inluding the observations of moving observers.And it is often simpler to work in a single frame, rather than tohurry after eah moving objets in turn. (Bell 1987, p. 77.)In referene frame K, the onept of setting a system of state (32) inolletive motion at veloity v in turn means nothing but setting it instate (33).23 . Thus, we have seen that in lassial mehanis the priniple of relativity is,indeed, a universal priniple. It holds, without any restrition, for all dynamialdetails of all possible systems desribed by lassial mehanis. In ontrast, inrelativisti physis this is not the ase:1. The priniple of relativity is not a universal priniple. It does nothold for the whole range of validity of the Lorentz ovariant laws ofrelativisti physis, but only for the equilibrium quantities haraterisingthe equilibrium states of dissipative systems. Sine dissipation, relaxationand equilibrium are thermodynamial oneptions par exellene, thespeial relativisti priniple of relativity is atually a thermodynamialpriniple, rather than a general priniple satis�ed by all dynamial laws ofphysis desribing all physial proesses in details. One has to reognisethat the speial relativisti priniple of relativity is experimentallyon�rmed only in suh restrited sense.2. The satisfation of the priniple of relativity in suh restrited sense isindeed guaranteed by the Lorentz ovariane of those physial equationsthat determine, independently of the initial onditions, the equilibriumquantities for whih the priniple of relativity holds. In general,however, Lorentz ovariane of the laws of physis does not guaranteethe satisfation of the relativity priniple.



203. It is an experimentally on�rmed fat of nature that some laws of physisare ab ovo Lorentz ovariant. However, sine relativity priniple is not auniversal priniple, it does not entitle us to infer that Lorentz ovarianeis a fundamental symmetry of physis.4. The fat that the spae and time tags obtained by means of measuring-rods and loks o-moving with di�erent inertial referene frames an beonneted through the Lorentz transformation is ompatible with ourgeneral observation that the priniple of relativity only holds for suhequilibrium quantities as the length of a solid rod or the harateristiperiods of a lok-like system.The fat that relativity priniple is not a universal priniple throws new lightupon the disussion of how far the Einsteinian speial relativity an be regardedas a priniple theory relative to the other (onstrutive) approahes (f. Einstein1969, p. 57; Bell 1992; Brown and Pooley 2001; Brown 2001; 2003). It an alsobe interesting from the point of view of other re�etions on possible violationsof Lorentz ovariane (see, for example, Kosteleký and Samuel 1989).It must be emphasised that the physial explanation of this more omplexpiture is rooted in the physial deformations of moving measuring-rods andmoving loks by whih the spae and time tags are de�ned in moving refereneframes. In Einstein's words:A Priori it is quite lear that we must be able to learn somethingabout the physial behaviour of measuring-rods and loks from theequations of transformation, for the magnitudes z, y, x, t are nothingmore nor less than the results of measurements obtainable by meansof measuring-rods and loks. (Einstein 1920, p. 35)Sine therefore Lorentz transformation itself is not merely a mathematialonept without ontingent physial ontent, we must not forget the realphysial ontent of Lorentz ovariane and relativity priniple.Comments24 . It is sometimes thought that the Lorentz transformations, and therelativity priniple, say nothing about what happens when a physial systemthat is at rest in referene frame K is aelerated in suh a way that it beomesat rest in another referene frameK ′. They are only about the relations betweensystems that already were at rest in K and K ′, respetively; and that are in thesame onditions as judged from their respetive rest frames.In this view, however, beyond the vagueness of the onept of �a systembeing at rest in a given referene frame� whih has been our main onernso far, there also appears a methodologial nonsense. How an our physialtheories, inluding the Lorentz transformation rules and the relativity priniple,be empirially on�rmed sienti� theories, if we have no empirial knowledge



21about the systems' behaviours when they are aelerated from one refereneframe into the other? How an we identify systems of the same kind, �living� indi�erent referene frames K and K ′, without having experiene about a system,say, in K aelerated in suh a way that it beomes a system moving togetherwith the other referene frame K ′? How an we asertain they idential states?How an we transfer the standard measuring equipments from one frame to theother, if we have no empirial information about their behaviours when theyare moving? Or, if it is taken that we have independent standard equipments inevery referene frames, existing there from eternity, how an we identify thesedi�erent standard measuring equipments and how an we identify the di�erentphysial quantities de�ned in terms of these independent etalons? How anour physial world view be onsistent if a �system already moving at onstantveloity v relative to K� has nothing to do with the �same system having been(gently) aelerated to veloity v relative to K� and if the latter has nothing todo with the �same system being at rest in the frame K ′ moving at veloity vrelative to K��whatever these phrases mean.On the ontrary, as we pointed out in Point 5, the empirially on�rmedlaws of physis in any one referene frame K must desribe�and, atually, dodesribe�the behaviour of all physial systems performing arbitrary motions,inluding aeleration relative to K. Applying these laws, we an determinethe results of measurements obtainable by means of measuring equipments o-moving with K ′ on various systems inluding those whih are o-moving with
K ′. Whether or not these results, in omparison with the similar results ofmeasurements obtainable by means of measuring equipments at rest relative to
K, satisfy the Lorentz transformation rules and/or the relativity priniple is aontingent fat of nature insribed in the physial laws in question in K. If so,then the Lorentz transformation rules and/or the relativity priniple desribenothing but the physial behaviours of the (measuring and measured) systemsin question performing various motions relative to K.25 . Another soure of onfusion is the widespread view that aeleratedsystems, espeially aelerated observers, are always problemati within theontext of the priniple of speial relativity; by de�nition, suh things fall outsideof the sope of the relativity priniple. It must be lear, however, that onlyaelerated referene frames fall outside the sope of the relativity priniple�inthe sense that the priniple asserts that the orresponding physial laws takethe same form in all inertial frames�but not aelerated physial objets.Moreover, note that an aelerated referene frame falls outside of the sopeof the relativity priniple only as the subjet of the priniple, but not as itsobjet. For, in any inertial referene frame K the speial relativisti laws ofphysis must aount for the behaviour of all physial objets, inluding bothaelerated measuring equipments and the other physial objets (of arbitrarymotion) to be measured. Therefore the Lorentz ovariant speial relativistilaws must aount for how the things look like even in an arbitrary aeleratedframe K. For example, if the desription is orret, it must re�et the fat thatrelativity priniple does not hold for the referene frames of relative aeleration.



22Moreover, relativity priniple also holds�in the usual restrited sense�for thesedesriptions. For imagine another inertial frameK ′ moving at veloity v relativeto K. The laws of physis in K ′ also aount for what an observer observesin K. The relativity priniple relates two suh desriptions in the followingsense: Let the desribed phenomenon be <how the things look like in K>. Letthingsv symbolially denote the same things when they are in olletive motionat veloity v relative to K, and similarly let Kv be a frame whih performs thesame aelerating motion as G in superposition with a translation at veloity vrelative toK. (Of ourse, these all are vague onepts, as usual.) Now, aordingto the relativity priniple the <how the thingsv look like in Kv> expressed inthe terms of the results of measurements obtained by means of measuring-rods,loks, et. o-moving with K ′ takes the same form as the <how the things looklike in K>, expressed in terms of the measurements with the devies at rest in
K.26 . Another reason why aelerated systems are eyed with suspiion is thatbrutal aeleration may damage the physial objet in question. As I pointed outin Point 18, this problem is di�erent from what has been our main onern thatthe relativity priniple has only limited validity in relativisti physis, simplybeause the priniple an fail even if the system is gently aelerated. Let usnow examine this di�erene in more details.Reall �rst what the relativity priniple says in lassial physis. It assertsthat equations (9)�(10) hold for initial onditions like (32)�(33):

ψ0 =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0
(34)

ψv =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + v
(35)That is, Gv (ψv) = ψ′

0, no matter how brutally the system is set in state
ψv. The point is that the priniple is about the omparison of the system'sbehaviour initiated from the sate (34) with the system's behaviour initiatedfrom state (35). The only di�erene between the two states is that the latterontains a olletive motion of all partiles at veloity v. In other words, if(35) desribes the sate of the system right after it was brutally aelerated too-moving with K ′, then (34) desribes the sate of the system right after it wasbrutally aelerated to o-moving with K. The priniple has nothing to do withthe di�erene between the states before and after the brutal aeleration.Let me illustrate this with an example. Imagine a system of interatingpartiles in state

ψ− =

{
ri(t = t−) = Ri−

dr1

dt

∣∣
t=t−

= Vi−at time t−. Then at time t0 − ∆t the system is exploded, and right after the



23explosion its state is
ψ0 =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0Now, imagine that the system is exploded in a slightly di�erent way, suhthat a very strong but homogeneous gravitational �eld is turned on during theexplosion, so all partiles obtain an additional veloity v = a · ∆t. Thereforethe system's state at t0 will be
ψv =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + vAs a result, the system of state ψ− is set in olletive motion at veloity vrelative to K in the most brutal way. Of ourse, the priniple tells nothingabout the di�erenes either between the states ψ0 and ψ− or between ψv and
ψ−. But, in spite of the brutality of the state preparation, in lassial physis,the relativity priniple always holds: Gv (ψv) = ψ′

0.Now, as we have seen, the same is not true in relativisti physis. Namely,even if the laws of physis satisfy ondition (11), Λv (ψv) 6= ψ′
0 in general�nomatter how brutal or gentle was the hange from ψ− to ψ0/ψv.



24Does Speial Relativity Theory Tell Us AnythingNew About Spae and Time?Prolog27 . Consider the following de�nitions of eletrodynamial quantities:
r

FQ

X = F

Q

Figure 7. X is de�ned as the fore felt by the unit test harge
X (r) Loate a test harge Q at point r and measure the fore F felt by theharge. X (r) = F

Q
(Fig 7).

Y (r) Loate two ontating metal plates of area A at point r. Separate themand measure the in�uene harge Q on one of the plates. Y (r) = Q
A
.The diretion of Y(r) is determined by the normal vetor of the plates,when the harge separation is maximal (Fig 8).

r

+-

Q

YA

Y = Q
AFigure 8. Y is de�ned by means of the in�uene harge divided by the surfaeIt is a well known empirial fat that these quantities are not independent ofeah other. For the sake of simpliity, assume the simplest material equation

Y = εX (36)



25where ε, alled dieletri onstant, is a salar �eld haraterising the medium.Traditionally, in phenomenologial eletrodynamis, physial quantity Xis alled `eletri �eld strength' and denoted by E, and Y is alled `eletridisplaement' and denoted by D. Due to the material equation (36) one aneliminate one of the �eld variables.28 . Imagine a text book (I shall refer to it as the �old� one), whih only uses
E. The equations of eletrostatis are written as follows:div εE = ρ (37)rot E = 0 (38)For example, the book ontains the following exerise and solution:Exerise Consider the stati eletri �eld around a point harge qloated at the border of two materials of dieletri onstant ε1 and

ε2. Is the eletri �eld strength spherially symmetri, or not?Solution (see Fig 9)
E1 =

1

2π (ε1 + ε2)

q

r3
r (39)

E2 =
1

2π (ε1 + ε2)

q

r3
r (40)Consequently,(S1) The eletri �eld strength is spherially symmetri.29 . Now, imagine a new eletrodynamis text book whih is non-traditionalin the following sense: it uses only �eld variable Y (traditionally alled `eletridisplaement' and denoted by D), but it systematially alls Y `eletri �eldstrength' and denotes it by E. Aordingly, the equations of eletrostatis arewritten as follows: div E = ρ (41)rot E

ε
= 0 (42)This new book also ontains the above exerise, but with the following solution:Solution (see Fig 10)

E1 =
ε1

2π (ε1 + ε2)

q

r3
r (43)

E2 =
ε2

2π (ε1 + ε2)

q

r3
r (44)Consequently,



26(S2) The eletri �eld strength is not spherially symmetri.
ε2

ε1

q

Figure 9. The `eletri �eld strength' of the stati eletri �eld around a pointharge q loated at the border of two materials of dieletri onstants ε1 and ε2
ε2

ε1

q

Figure 10. The `eletri �eld strength' of the stati eletri �eld around a pointharge q loated at the border of two materials of dieletri onstants ε1 and ε2Now, does sentene (S2) of the new book ontradit to sentene (S1) of theold book? Is it true that the theory desribed in the new book is a new theoryof eletromagnetism? Of ourse, not. Seemingly the two sentenes ontradit toeah other, on the level of the words. However, in order to larify the meaning ofsentene (S1) and (S2), one has to go bak to the �rst pages of the orrespondingbook and larify the de�nition of the physial quantity alled `eletri �eldstrength'. And it will be lear that the term `eletri �eld strength' standsfor two di�erent physial quantities in the two books. Moreover, both textbooks provide omplete desriptions of eletromagneti phenomena. Therefore,although the theory in the old book does not use the �eld variable Y, it isapable to aount for the physial phenomena by whih physial quantity Yis empirially de�ned. It is apable to determine the in�uene harge on theseparated plates (by alulating εEA). In other words, it is apable to determinethe value of Y, that is, the value of what the new book alls `eletri �eldstrength'. And vie versa, on the basis of the theory desribed in the new bookone an alulate the fore felt by a unit test harge (by alulating E

ε
), that is,one an predit the value of X, what the old book alls `eletri �eld strength'.And both, the theory in the old book and the theory in the new book have thesame preditions for both, X and Y. That is to say, although they use di�erent



27terminology, the two text books ontain the same eletrodynamis, they providethe same desription of physial reality.



28What will be hallenged30 . It is widely believed that the prinipal di�erene between Einstein'sspeial relativity and its ontemporary rival Lorentz theory was that whilethe Lorentz theory3 was also apable of �explaining away� the null result ofthe Mihelson�Morley experiment and other experimental �ndings by means ofthe distortions of moving measuring-rods and moving loks, speial relativityrevealed more fundamental new fats about the geometry of spae-time behindthese phenomena. Aording to this widespread view, speial relativity theoryhas radially hanged our oneptions about spae and time by laiming thatspae-time is not like an E3 ×E1 spae, as was believed in lassial physis, butit is a four dimensional Minkowski spae M4. One an express this revolutionaryhange by the following logial shema: Earlier we believed in G1 (M), whereMstands for spae-time and G1 denotes some prediate (like E3 × E1). Then wedisovered that ¬G1 (M) but G2 (M), where G2 denotes a prediate di�erentfrom G1 (something like M4).Contrary to this ommon view, our �rst thesis will be the following:Thesis 1. In omparison with the pre-relativisti Galileo-invariant oneptions,speial relativity tells us nothing new about the geometry of spae-time. Itsimply alls something else �spae-time�, and this something else has di�erentproperties. All statements of speial relativity about those features of reality thatorrespond to the original meaning of the terms �spae� and �time� are identialwith the orresponding traditional pre-relativisti statements.Thus the only new fator in the speial relativisti aount of spae-time is thedeision to designate something else �spae-time�. In other words: Earlier webelieved in G1 (M). Then we disovered for some M̃ 6= M that ¬G1

(
M̃

) but
G2

(
M̃

). Consequently, it still holds that G1 (M).31 . So the real novelty in speial relativity is some G2

(
M̃

). As we willsee, this is nothing but the desription of the physial behaviour of movingmeasuring-rods and loks. It will be also argued, however, that G2

(
M̃

) doesnot ontradit to what Lorentz theory laims. More exatly, as our seond thesisasserts, both theories laim that G1 (M)&G2

(
M̃

):Thesis 2. Speial relativity and Lorentz theory are ompletely idential inboth senses, as theories about spae-time and as theories about the behaviour of3I use the term �Lorentz theory� as lassi�ation to refer to the similar approahes ofLorentz, FitzGerald, and Poinaré, that save the lassial Galilei ovariant oneptions ofspae and time by explaining the null result of the Mihelson�Morley experiment and othersimilar experimental �ndings through the physial distortions of moving objets (�rst of all ofmoving measuring-rods and loks), no matter whether these physial distortions are simplyhypothesised in the theory, or presribed by some �priniple� like Lorentz's priniple, or theyare onstrutively derived from the behaviour of the moleular fores. From the point of viewof my reent onerns what is important is the logial possibility of suh an alternative theory.Although, Lorentz's 1904 paper is very lose to be a good histori example.



29moving physial objets.On the meaning of the question �What is spae-time like?�32 . A theory about spae-time desribes a ertain group of objetive featuresof physial reality, whih we all (the struture of) spae-time. Aording tolassial physis, the geometry of spae-time E3 × E1, where E3 is a three-dimensional Eulidean spae for spae, and E1 is a one-dimensional Eulideanspae for time, with two independent invariant metris orresponding to thespae and time intervals. In ontrast, speial relativity laims that the geometryof spae-time�understood as the same objetive features of physial reality�isdi�erent: it is a Minkowski geometry.Physis desribes objetive features of reality by means of physial quantities.Our srutiny will therefore start by larifying how lassial physis and relativitytheory de�ne the spae and time tags assigned to an arbitrary event. It will beseen that these empirial de�nitions are di�erent.The empirial de�nition of a physial quantity requires an etalon measuringequipment and a preise desription of the operation how the quantity to bede�ned is measured. For example, assume we hoose, as the etalon measuring-rod, the meter stik that is lying in the International Bureau of Weights andMeasures (BIPM) in Paris. Also assume�this is another onvention�that�time� is de�ned as a physial quantity measured by the standard lok alsositting in the BIPM. When I use the word �onvention� here, I mean thesemantial freedom we have in the use of the unommitted signs �distane�and �time��a freedom what Grünbaum (1974, p. 27) alls �trivial semantialonventionalism�.33 . Now we are going to desribe the empirial de�nitions of the spae andtime tags of an arbitrary event A, relative to the referene frame K in whih thethe etalons are at rest, and to another referene fame K ′ whih is moving (atonstant veloity v) relative to K. For the sake of simpliity onsider only onespae dimension and assume that the origin of both K and K ′ is at the BIPMat the initial moment of time.(D1) Time tag in K aording to lassial physisTake a synhronised opy of the standard lok at rest in the BIPM,and slowly4 move it to the lous of event A. The time tag t̂K (A) isthe reading of the transfered lok when A ours.54�Slowly� means that we move the lok from one plae to the other over a long periodof time, aording to the reading of the lok itself. The reason is to avoid the loss of phaseaumulated by the lok during its journey.5With this de�nition we atually use the standard �ε =
1

2
-synhronisation�. I do not wantto enter now into the question of the onventionality of simultaneity, whih is a hotly debatedproblem, in itself. (See Point 67.)



30(D2) Spae tag in K aording to lassial physisThe spae tag x̂K(A) of event A is is the distane from the origin of
K of the lous of A along the x-axis6 measured by superposing thestandard measuring-rod, being always at rest relative to K.(D3) Time tag in K aording to speial relativityTake a synhronised opy of the standard lok at rest in the BIPM,and slowly move it to the lous of event A. The time tag t̃K (A) isthe reading of the transfered lok when A ours.(D4) Spae tag in K aording to speial relativityThe spae tag x̃K(A) of event A is the distane from the origin of
K of the lous of A along the x-axis measured by superposing thestandard measuring-rod, being always at rest relative to K.(D5) Time tag of an event in K ′ aording to lassial physisThe time tag of event A relative to the frame K ′ is

t̂K
′

(A) := t̂K(A) (45)(D6) Spae tag of an event in K ′ aording to lassial physisThe spae tag of event A relative to the frame K ′ is
x̂K′

(A) := x̂K(A) − vt̂K(A) (46)where v = v̂K(K ′) is the veloity of K ′ relative to K in the sense ofde�nition (D9).(D7) Time tag in K ′ aording to speial relativityTake a synhronised opy of the standard lok at rest in the BIPM,gently aelerate it from K to K ′ and set it to show 0 when theorigins of K and K ′ oinide. Then slowly (relative to K ′) move itto the lous of event A. The time tag t̃K′

(A) is the reading of thetransfered lok when A ours.(D8) Spae tag in K ′ aording to speial relativityThe spae tag x̃K′

(A) of event A is the distane from the origin of
K ′ of the lous of A along the x-axis measured by superposing thestandard measuring-rod, being always at rest relative to K ′, in justthe same way as if all were at rest.6The straight line is de�ned by a light beam.



31(D9) Veloities in the di�erent asesVeloity is a quantity derived from the above de�ned spae and timetags:
v̂K =

∆x̂K

∆t̂K

ṽK =
∆x̃K

∆t̃K

v̂K′

=
∆x̂K′

∆t̂K′

ṽK′

=
∆x̃K′

∆t̃K′34 . With these empirial de�nitions, in every inertial frame we de�ne fourdi�erent quantities for eah event, suh that:
x̂K(A) ≡ x̃K(A) (47)
t̂K(A) ≡ t̃K(A) (48)
x̂K′

(A) 6≡ x̃K′

(A) (49)
t̂K

′

(A) 6≡ t̃K
′

(A) (50)where ≡ denotes the idential empirial de�nition.In spite of the di�erent empirial de�nitions, it ould be a ontingent fat ofnature that x̂K′

(A) = x̃K′

(A) and/or t̂K′

(A) = t̃K
′

(A) for every event A. Letme illustrate this with an example. The inertial mass mi and gravitationalmass mg are two quantities having di�erent experimental de�nitions. But,it is a ontingent fat of nature (experimentally proved by Eötvös around1900) that, for any objet, the two masses are equal, mi = mg. A littlere�etion reveals, however, that this is not the ase here. It follows fromspeial relativity that x̃K(A), t̃K(A) are related with x̃K′

(A), t̃K
′

(A) throughthe Lorentz transformation, while x̂K(A), t̂K(A) are related with x̂K′

(A), t̂K
′

(A)through the orresponding Galilean transformation, therefore, taking intoaount identities (47)�(48), x̂K′

(A) 6= x̃K′

(A) and t̂K′

(A) 6= t̃K
′

(A), if v 6= 0.Thus, our �rst partial onlusion is that di�erent physial quantities arealled �spae� tag, and similarly, di�erent physial quantities are alled �time�tag in speial relativity and in lassial physis.7 In order to avoid furtheronfusion, from now on ŝpae and t̂ime tags will mean the physial quantitiesde�ned in (D1), (D2), (D5), and (D6)�aording to the usage of the termsin lassial physis�, and �spae� and �time� in the sense of the relativistide�nitions (D3), (D4), (D7) and (D8) will be alled s̃pae and t̃ime.Speial relativity theory makes di�erent assertions about somethings whihare di�erent from ŝpae and t̂ime. In our symboli notation, lassial physis7This was �rst reognised by Bridgeman (1927, p. 12), although he did not investigate thefurther onsequenes of this fat.



32laims G1

(
M̂

) about M̂ and relativity theory laims G2

(
M̃

) about someother features of reality M̃ . The question is what speial relativity and lassialphysis say when they are making assertions about the same things.Speial relativity does not tell us anything newabout spae and time35 . Classial physis alls �spae� and �time� what we denoted by ŝpae andt̂ime. So relativity theory would tell us something new if it aounted forphysial quantities x̂ and t̂ di�erently. If there were any event A and any inertialframe of referene K⋆ in whih the ŝpae or t̂ime tag assigned to the event byspeial relativity, [
x̂K⋆

(A)
]
relativity

, [
t̂K

⋆

(A)
]
relativity

, were di�erent from thesimilar tags assigned by lassial physis, [x̂K⋆

(A)
]
classical

, [
t̂K

⋆

(A)
]
classical

. If,for example, there were any two events ̂simultaneous in relativity theory whihwere not ̂simultaneous aording to lassial physis, or vie versa�to touh ona sore point. But a little re�etion shows that this is not the ase. Taking intoaount empirial identities (47)�(48), one an alulate the relativity theoretipredition for the outomes of the measurements desribed in (D1), (D2), (D5),and (D6), that is, the relativity theoreti predition for x̂K′

(A):
[
x̂K′

(A)
]

relativity
= x̃K(A) − ṽK(K ′)t̃K(A) (51)the value of whih is equal to

x̂K(A) − v̂K(K ′)t̂K(A) =
[
x̂K′

(A)
]

classical
(52)Similarly,

[
t̂K

′

(A)
]

relativity
= t̃K(A) = t̂K(A) =

[
t̂K

′

(A)
]

classical
(53)This ompletes the proof of Thesis 1.Lorentz theory and speial relativity areompletely idential theories36 . Sine Lorentz theory adopts the lassial oneptions of ŝpae and t̂ime,it does not di�er from speial relativity in its assertions about ŝpae and t̂ime.What about the other laim�G2

(
M̃

)�about s̃pae and t̃ime? In order toprove what Thesis 2 asserts, that is to say the omplete identity of Lorentztheory and of speial relativity, we also have to show that the two theories have



33idential assertions about x̃ and t̃, that is,
[
x̃K′

(A)
]

relativity
=

[
x̃K′

(A)
]

LT[
t̃K

′

(A)
]

relativity
=

[
t̃K

′

(A)
]

LTAording to relativity theory, the s̃pae and t̃ime tags in K ′ and in K arerelated through the Lorentz transformations. From (47)�(48) we have
[
t̃K

′

(A)
]

relativity
=

t̂K(A) − v x̂K(A)
c2√

1 − v2

c2

(54)
[
x̃K′

(A)
]

relativity
=

x̂K(A) − v t̂K(A)√
1 − v2

c2

(55)37 . On the other hand, taking the assumptions of Lorentz theory that thestandard lok slows down by fator √
1 − v2

c2 and that a rigid rod su�ers aontration by fator √
1 − v2

c2 when they are gently aelerated from K to
K ′, one an diretly alulate the s̃pae tag x̃K′

(A) and the t̃ime tag t̃K′

(A),following the desriptions of operations in (D7) and (D8).First, let us alulate the reading of the lok slowly transported in K ′ fromthe origin to the lous of an event A. The lok is moving with a varyingveloity8
v̂K

C (t̂K) = v + ŵK(t̂K)where ŵK(t̂K) is the veloity of the lok relative to K ′, that is, ŵK(0) = 0when it starts at x̂K
C (0) = 0 (as we assumed, t̂K = 0 and the transported lokshows 0 when the origins of K and K ′ oinide) and ŵK(t̂K1 ) = 0 when the lokarrives at the plae of A. The reading of the lok at the time t̂K1 will be

T =

∫ t̂K

1

0

√

1 −

(
v + ŵK(t̂)

)2

c2
dt̂ (56)Sine ŵK is small we may develop in powers of ŵK , and we �nd from (56) whennegleting terms of seond and higher order

T =
t̂K1 −

„
t̂K

1
v+

R t̂
K
1

0
ŵK(t̂) dt̂

«
v

c2√
1 − v2

c2

=
t̂K(A) − x̂K(A)v

c2√
1 − v2

c2

(57)8For the sake of simpliity we ontinue to restrit our alulation to one spae dimension.For the general alulation of the phase shift su�ered by moving loks, see Jánossy 1971, pp.142�147.



34(where, without loss of generality, we take t̂K1 = t̂K(A)). Thus, aording to thede�nition of t̃, we have
[
t̃K

′

(A)
]

LT
=
t̂K(A) − v x̂K(A)

c2√
1 − v2

c2

(58)whih is equal to [
t̃K

′

(A)
]

relativity
in (54).Now, taking into aount that the length of the o-moving meter stik isonly √

1 − v2

c2 , the distane of event A from the origin of K is the following:
x̂K(A) = t̂K(A)v + x̃K′

(A)

√
1 −

v2

c2
(59)and thus

[
x̃K′

(A)
]

LT
=
x̂K(A) − v t̂K(A)√

1 − v2

c2

=
[
x̃K′

(A)
]

relativityThis ompletes the proof. The two theories make ompletely idential assertionsnot only about the ŝpae and t̂ime tags x̂, t̂ but also about the s̃pae and t̃imetags x̃, t̃.38 . Consequently, there is full agreement between the Lorentz theory andspeial relativity theory in the following statements:(a) Ṽeloity�whih is alled �veloity� by relativity theory�is not an additivequantity,
ṽK′

(K ′′′) =
ṽK′

(K ′′) + ṽK′′

(K ′′′)

1 + evK′ (K′′)evK′′ (K′′′)
c2while ̂veloity�that is, what we traditionally all �veloity��is an additivequantity,

v̂K′

(K ′′′) = v̂K′

(K ′′) + v̂K′′

(K ′′′)where K ′,K ′′,K ′′′ are arbitrary three frames. For example,
v̂K′

(light signal) = v̂K′

(K ′′) + v̂K′′

(light signal)(b) The (
x̃1, x̃2, x̃3, t̃

)-map of the world an be onveniently desribed througha Minkowski geometry, suh that the t̃-simultaneity an be desribedthrough the orthogonality with respet to the 4-metri of the Minkowskispae, et.() The (
x̂1, x̂2, x̂3, t̂

)-map of the world, an be onveniently desribedthrough a traditional �spae-time geometry� like E3 × E1.



35(d) The ̂veloity of light is not the same in all inertial frames of referene.(e) The ˜veloity of light is the same in all inertial frames of referene.(f) T̂ime and ̂distane are invariant, the referene frame independentonepts, t̃ime and ˜distane are not.(g) t̂-simultaneity is an invariant, frame-independent onept, while t̃-simultaneity is not.(h) For arbitrary K ′ and K ′′, x̂K′

(A), t̂K
′

(A) an be expressed by
x̂K′′

(A), t̂K
′′

(A) through a suitable Galilean transformation(i) For arbitrary K ′ and K ′′, x̃K′

(A), t̃K
′

(A) an be expressed by
x̃K′′

(A), t̃K
′′

(A) through a suitable Lorentz transformation....Moreover, in all ases when it holds, they will agree in the relativity priniple:(j) The behaviour of similar systems o-moving as a whole with di�erentinertial frames, expressed in terms of the results of measurementsobtainable by means of o-moving measuring-rods and loks (that is, interms of quantities x̃ and t̃) is the same in every inertial frame of referene.Combining this with (i),(k) The laws of physis, expressed in terms of x̃ and t̃, must be given by meansof Lorentz ovariant equations.Finally, they agree that(l) All fats about x̃ and t̃ (and, onsequently, all fats about x̂ and t̂) anbe derived bakward from (e) and (j).To sum up symbolially, Lorentz theory and and speial relativity theoryhave idential assertions about both M̂ and M̃ : they unanimously laim that
G1

(
M̂

)
&G2

(
M̃

).39 . Finally, note that in an arbitrary inertial frame K ′ for every event Athe tags x̂K′

1 (A), x̂K′

2 (A), x̂K′

3 (A), t̂K′

(A) an be expressed in terms of x̃K′

1 (A),
x̃K′

2 (A), x̃K′

3 (A), t̃K′

(A) and vie versa. Consequently, we an express the lawsof physis�as is done in speial relativity�equally well in terms of the variables
x̃1, x̃2, x̃3, t̃ instead of the ŝpae and t̂ime tags x̂1, x̂2, x̂3, t̂. On the other hand,we should emphasise that the one-to-one orrespondene between x̃1, x̃2, x̃3, t̃and x̂1, x̂2, x̂3, t̂ also entails that the laws of physis (so alled �relativisti� lawsinluded) an be equally well expressed in terms of the (traditional) ŝpae andt̂ime tags x̂1, x̂2, x̂3, t̂ instead of the variables x̃1, x̃2, x̃3, t̃. In brief, physis ouldmanage equally well with the lassial Galileo-invariant oneptions of ŝpaeand t̂ime.



36Comments40 . In a strit logial sense we have �shed the argumentation for our twotheses in Point 30. We proved that speial relativity and Lorentz theory areompletely idential theories. Nevertheless, the following omments may aid thereader in arriving at his own appraisal.Are relativisti deformations real physial hanges?41 . Many believe that it is an essential di�erene between the two theories thatrelativisti deformations like the Lorentz�FitzGerald ontration and the timedilatation are real physial hanges in Lorentz theory, but there are no similarphysial e�ets in speial relativity. Let us examine two typial argumentations.Aording to the �rst argument the �Lorentz ontration/dilatation� of a rodannot be an objetive physial deformation in relativity theory, beause it isa frame-dependent fat whether �the rod is shrinking or expanding�. Considera rod aelerated from the sate of rest in referene frame K ′ to the state ofrest in referene frame K ′′. Aording to relativity theory, �the rod shrinksin frame K ′ and, at the same time, expands in frame K ′′�. But this is aontradition, the argument says, if the deformation was a real physial hange.(In ontrast, the argument says, Lorentz's theory laims that �the length of arod� is a frame-independent onept. Consequently, in Lorentz's theory, �theontration/dilatation of a rod� an indeed be an objetive physial hange.)However, we have already lari�ed, that the terms �distane� and �time�have di�erent meanings in relativity theory and Lorentz's theory. Due to thedi�erene between l̂ength and l̃ength, we must also di�erentiate ̂dilatation from
˜dilatation, ̂ontration from ˜ontration, and so on. For example, onsider thereferene frame of the etalons K and another frame K ′ moving relative to K.The following statements are true about the �length� of a rod aelerated fromthe sate of rest in referene frame K (state1) to the state of rest in refereneframe K ′ (state2):

l̂K (state1) > l̂K (state2) ̂ontration in K (60)
l̂K

′

(state1) > l̂K
′

(state2) ̂ontration in K ′ (61)
l̃K (state1) > l̃K (state2) ˜ontration in K (62)
l̃K

′

(state1) < l̃K
′

(state2) ˜dilatation in K ′ (63)And there is no di�erene between relativity theory and Lorentz's theory: all ofthe four statements (60)�(63) are true in both theories. If, in Lorentz's theory,fats (60)�(61) provide enough reason to say that there is a real physial hange,then the same fats provide enough reason to say the same thing in relativitytheory. And vie versa, if (62)�(63) ontradited to the existene of real physialhange of the rod in relativity theory, then the same holds for Lorentz's theory.
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Figure 11. One and the same objetive physial proess is traed in the inreaseof kineti energy of the spaeship relative to frame K ′, while it is traed in thederease of kineti energy relative to frame K ′′42 . It should be mentioned, however, that there is no ontradition between(62)�(63) and the existene of real physial hange of the rod. Relativitytheory and Lorentz's theory unanimously laim that l̃ength is a relative physialquantity. It is entirely possible that one and the same objetive physial hangeis traed in the inrease of the value of a relative quantity relative to onereferene frame, while it is traed in the derease of the same quantity relativeto another referene frame (Fig 11). (What is more, both, the value relative toone frame and the value relative to the other frame, re�et objetive features ofthe objetive physial proess in question.)43 . Aording to the other wide-spread argument the relativisti deformationsannot be real physial e�ets sine they an be observed by an observer also ifthe objet is at rest but the observer is in motion at onstant veloity. And these�relativisti deformations� annot be explained as real physial deformations ofthe objet at rest�the argument says.There is, however, a triple misunderstanding behind suh an argument:
• Of ourse, no real distortion is su�ered by an objet whih is ontinuouslyat rest relative to a referene frame K ′, and, onsequently, whih isontinuously in motion at a onstant veloity relative to another frame
K ′′. None of the observers an observe suh a distortion. For example,

l̃K
′

( distortion freerod at t̃1 )
= l̃K

′

( distortion freerod at t̃2 )

l̃K
′′

( distortion freerod at t̃1 )
= l̃K

′′

( distortion freerod at t̃2 )

• It is surely true for any t̃ that
l̃K

′

( distortionfree rod at t̃ )
6= l̃K

′′

( distortionfree rod at t̃ ) (64)



38This fat, however, does not express a ˜ontration of the rod�neither areal nor an apparent ˜ontration.
• On the other hand, inequality (64) is a onsequene of the real physialdistortions su�ered by the measuring equipments�with whih the s̃paeand t̃ime tags are empirially de�ned�when they are transfered from theBIPM to the other referene frame in question.944 . Finally, let me give an example for a well known physial phenomenonwhih is of exatly the same kind as the relativisti deformations, butnobody would question whether it is a real physial hange. Consider theeletromagneti �eld of a point harge q. One an easily solve the Maxwellequations when the partile is at rest in a given K ′). The result is the familiarspherially symmetri Coulomb �eld (Fig. 12):
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ẼK′
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inK ′

=
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B̃K′

1

∣∣∣ at rest
inK ′

= 0 (68)
B̃K′

2

∣∣∣ at rest
inK ′

= 0 (69)
B̃

′K′

3

∣∣∣ at rest
inK ′

= 0 (70)How does this �eld hange if we set the harge in motion at onstant ˜veloity
ṽ along the x̃3 axis? Maxwell's equations an also answer this question. Firstwe solve the Maxwell equations for arbitrary time-depending soures. Then,from the retarded potentials suh obtained, we derive the Lienart-Wiehertpotentials, from whih we an determine the �eld. (See, for example, Feynman,Leighton and Sands 1963, Vol. 2.) Here is the result:
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(
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)2
+

(
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2

)2
+B2

) 3

2

(71)9For further details of what a moving observer an observe by means of his or her distortedmeasuring equipments, see Bell 1983, pp. 75�76.
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Figure 12. The eletri �eld of a point harge
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= 0 (76)where
B =

x̃K′

3 − X̃K′

3

(
t̃
)

√
1 − ev2

c2and X̃K′

3

(
t̃
) is the ˜position of the harge at t̃ime t̃.So, the eletromagneti �eld of the harge hanged : earlier it was like (65)�(70), then it hanged for the one desribed by (71)�(76). There appeared amagneti �eld (turning the magneti needle, for example) and the eletri �eld�attened in the diretion of motion (Fig. 12). No physiist would say that thisis not a real physial hange in the eletromagneti �eld of the harge, only



40beause we an express the new eletromagneti �eld of the moving harge interms of the variables relative to the o-moving referene frame K ′′,
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B̃K′′

1

∣∣∣ moving
inK ′

= 0 (80)
B̃K′′

2

∣∣∣ moving
inK ′

= 0 (81)
B̃K′′

3

∣∣∣ moving
inK ′

= 0 (82)and it has the same form as the old eletromagneti �eld, when the harge wasat rest in K ′, expressed in the terms of the variables relative to K ′.45 . Thus, relativisti deformations are real physial deformations also inspeial relativity theory. One has to emphasise this fat beause it is animportant part of the physial ontent of relativity theory. It must be lear,however, that this onlusion is independent of our main onern. Whatis important is the following: Lorentz's theory and speial relativity haveidential assertions about l̂ength and l̃ength, ̂duration and ˜duration, ̂shrinkingand ˜shrinking, et. Consequently, whether or not these fats provide enoughreason to say that the deformations are real physial hanges, the onlusion isommon to both theories.The intuition behind the de�nitions46 . Before entering into the disussion of the intuitions behind de�nitions(D1)�(D9), I would like to emphasise that, from the point of view of ourmain onern, it is not important how the di�erent de�nitions are justi�edand whether these justi�ations are orret or not. What is important is themere fat of the terminologial onfusion that the �spae� and �time� tags meandi�erent physial quantities in lassial physis and relativity theory.The basi di�erene between the intuitions behind the lassial andrelativisti de�nitions is the following. As we have seen, both Lorentz theoryand speial relativity �know� about the distortions of measuring-rods and loks



41when they are transfered from the BIPM to the moving (relative to the BIPM)referene frame K ′. In the relativisti de�nitions, (D7) and (D8), we ignorethis fat and de�ne the spae and time tags as they are measured by means ofthe distorted equipments. In ontrast, as it follows from the whole tradition oflassial physis, in de�nitions (D5)�(D6) we take into aount the distortionsof the measuring equipments. That is why the spae and time tags in K ′ arede�ned through the original spae and time data, measured by the originaldistortion free measuring-rod and lok, whih are at rest relative to the BIPM.47 . In order to see this �ompensatory view� of the lassial de�nition in amore expliit form, it worth while to mention possible alternative de�nitionsinstead of (D5) and (D6). We know that the standard lok slows down byfator √
1 − v2

c2 and that a rigid rod su�ers a ontration by fator √
1 − v2

c2when they are gently aelerated from K to K ′. Therefore, aording to theompensatory view, if we measure a distane and the result is X , then the �realdistane� is X√
1 − v2

c2 . Similarly, taking into aount the phase shift su�eredby a moving lok, we know from (57) that if the reading of the lok is T thenthe �real time� is
T +X v

c2√
1 − v2

c2Aordingly, the alternative de�nitions are the following:(D6') Spae tag of an event in K ′ aording to lassial physisLet X be the �distane� from the origin of K ′ of the lous of Aalong the x-axis measured by superposing the standard measuring-rod, being always at rest relative to K ′, in just the same way as ifall were at rest. The spae tag x̌K′

(A) of event A is
x̌K′

(A) := X

√
1 −

v2

c2
(83)(D5') Time tag of an event in K ′ aording to lassial physisTake a synhronised opy of the standard lok at rest in the BIPM,gently aelerate it from K to K ′ and set it to show 0 when theorigins of K and K ′ oinide. Then slowly (relative to K ′) move itto the lous of event A. Let T be the reading of the transfered lokwhen A ours. The time tag t̃K′

(A) is
ťK

′

(A) :=
T +X v

c2√
1 − v2

c2

(84)



42Sine X and T are nothing but x̃K′

(A) and t̃K
′

(A), it follows from (58) and(59) that
x̌K′

(A) = x̂K′

(A)

ťK
′

(A) = t̂K
′

(A)On the null result of the Mihelson�Morley experiment48 . Consider the following passage from Einstein:A ray of light requires a perfetly de�nite time T to pass from onemirror to the other and bak again, if the whole system be at restwith respet to the aether. It is found by alulation, however,that a slightly di�erent time T 1 is required for this proess, ifthe body, together with the mirrors, be moving relatively to theaether. And yet another point: it is shown by alulation thatfor a given veloity v with referene to the aether, this time T 1is di�erent when the body is moving perpendiularly to the planesof the mirrors from that resulting when the motion is parallel tothese planes. Although the estimated di�erene between these twotimes is exeedingly small, Mihelson and Morley performed anexperiment involving interferene in whih this di�erene shouldhave been learly detetable. But the experiment gave a negativeresult � a fat very perplexing to physiists. (Einstein 1920, p. 49)The �alulation� that Einstein refers to is based on the Galilean �kinematis�,that is, on the invariane of �time� and �simultaneity�, on the invarianeof �distane�, on the lassial addition rule of �veloities�, et. That is tosay, �distane�, �time�, and �veloity� in the above passage mean the lassial
̂distane, t̂ime, and ̂veloity de�ned in (D1), (D2), (D5), and (D6). The negativeresult was �very perplexing to physiists� beause their expetations were basedon traditional onepts of ŝpae and t̂ime, and they ould not imagine otherthat if the ŝpeed of light is c relative to one inertial frame then the ŝpeed of thesame light signal annot be the same c relative to another referene frame.49 . On the other hand, Einstein ontinues this passage in the following way:Lorentz and FitzGerald resued the theory from this di�ulty byassuming that the motion of the body relative to the aether produesa ontration of the body in the diretion of motion, the amount ofontration being just su�ient to ompensate for the di�erene intime mentioned above. Comparison with the disussion in Setion11 shows that also from the standpoint of the theory of relativitythis solution of the di�ulty was the right one. But on the basis ofthe theory of relativity the method of interpretation is inomparablymore satisfatory. Aording to this theory there is no suh thing asa �speially favoured� (unique) o-ordinate system to oasion the



43introdution of the aether-idea, and hene there an be no aether-drift, nor any experiment with whih to demonstrate it. Here theontration of moving bodies follows from the two fundamentalpriniples of the theory, without the introdution of partiularhypotheses; and as the prime fator involved in this ontrationwe �nd, not the motion in itself, to whih we annot attah anymeaning, but the motion with respet to the body of referene hosenin the partiular ase in point. Thus for a o-ordinate system movingwith the earth the mirror system of Mihelson and Morley is notshortened, but it is shortened for a o-ordinate system whih is atrest relatively to the sun. (Einstein 1920, p. 49)What �resued� means here is that�within the framework of the lassial ŝpae-t̂ime theory and Galilean ̂kinematis�Lorentz and FitzGerald proved that ifthe assumed deformations of moving bodies exist then the expeted result ofthe Mihelson�Morley experiment is the null e�et. On the other hand, wehave already lari�ed, what Einstein also on�rms in the above quoted passage,that these deformations also derive from the two basi postulates of speialrelativity. Putting all these fats together (see Shema 1), we must say that thenull result of the Mihelson�Morley experiment simultaneously on�rms both,the lassial rules of Galilean ̂kinematis for x̂ and t̂, and the violation of theserules (Lorentzian ˜kinematis) for the s̃pae and t̃ime tags x̃, t̃. It on�rms thelassial addition rule of ̂veloities, on the one hand, and, on the other hand, italso on�rms that ˜veloity of light is the same in all frames of referene.This atually holds for all other experimental on�rmations of speialrelativity. That is why the only di�erene Einstein an mention in the quotedpassage is that speial relativity does not refers to the aether. (As a historialfat, this di�erene is true. Although, as we will see in Points 55�56 and59�61, the onept of aether an be entirely removed from the reent logialreonstrution of the Lorentz theory.)50 . Finally, it is no surprise that the deformations an be �derived� from theLorentz ˜kinematis. The physial information about the deformations su�eredby objets aelerated from one state of motion to another, say from the stateof rest relative to K ′ to the state of rest relative to K ′′, is inbuilt into therelationship between the tags x̃K′

(A), t̃K
′

(A) and x̃K′′

(A), t̃K
′′

(A). For theserelations are determined by the physial behaviour of measuring rods and loksduring the aeleration and relaxation proess, as Einstein warns us (see thequotation in Point 23).The onventionalist approah51 . Aording to the onventionalist thesis,10 Lorentz's theory and Einstein'sspeial relativity are two alternative sienti� theories whih are equivalent on10Friedman 1983, p. 293; Einstein 1983, p. 35. (see Point ??)
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Galilean ̂kinematisfor x̂, t̂ (the ŝpeedof light is NOTthe same in allinertial frame) 
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the result of theMihelson-Morleyexperiment mustbe the null e�et 
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Lorentz ˜kinematisfor x̃, t̃ (the s̃peedof light IS the samein all inertial frame) 
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⇒




the result of theMihelson-Morleyexperiment mustbe the null e�et 
Shema 1: The null result of the Mihelson�Morley experiment simultaneouslyon�rms both, the lassial rules of Galilean ̂kinematis for x̂ and t̂, and theviolation of these rules (Lorentzian ˜kinematis) for the s̃pae and t̃ime tags x̃, t̃.



45empirial level. Due to the empirial underdeterminay, the hoie betweenthese alternative theories is based on external aspets.11 Following Poinaré'ssimilar argument about the relationship between geometry, physis, and theempirial fats, the onventionalist thesis asserts the following relationshipbetween Lorentz theory and speial relativity:



lassialspae-time
E3 × E1


 +




physialontent ofLorentztheory 
 =

[ empirialfats ]




relativistispae-time
M4


 +




speialrelativistiphysis 
 =

[ empirialfats ]Continuing the symboli notations we used in the Introdution, denote Zthose objetive features of physial reality that are desribed by the alternativephysial theories P1 and P2 in question. With these notations, the logial shemaof the onventionalist thesis an be desribed in the following way: We annotdistinguish by means of the available experiments whether G1 (M)&P1 (Z) istrue about the objetive features of physial reality M ∪ Z, or G2 (M)&P2 (Z)is true about the same objetive features M ∪ Z. Shematially,
[G1 (M)] + [P1 (Z)] =

[ empirialfats ]

[G2 (M)] + [P2 (Z)] =

[ empirialfats ]52 . However, it is lear from the previous setions that the terms �spae�and �time� have di�erent meanings in the two theories. Lorentz theory laims
G1

(
M̂

) about M̂ and relativity theory laims G2

(
M̃

) about some otherfeatures of reality M̃ . Of ourse, this terminologial onfusion also appears in thephysial assertions. Let us symbolise with Ẑ the objetive features of physialreality, suh as the l̂ength of a rod, et., desribed by physial theory P1. Andlet Z̃ denote some (partly) di�erent features of reality desribed by P2, suh asthe l̃ength of a rod, et. Now, as we have seen, both theories atually laim that
G1

(
M̂

)
&G2

(
M̃

). It is also lear that, for example, within Lorentz's theory,we an legitimately query the l̃ength of a rod. For Lorentz's theory has ompletedesription of the behaviour of a moving rigid rod, as well as the behaviour ofa moving lok and measuring-rod. Therefore, it is no problem in Lorentz'stheory to predit the result of a measurement of the �length� of the rod, if themeasurement is performed with a o-moving measuring equipments, aordingto empirial de�nition (D8). This predition will be exatly the same as the11Cf. Zahar 1973; Grünbaum 1974; Friedman 1983; Brush 1999; Janssen 2002.



46predition of speial relativity. And vie versa, speial relativity would have thesame predition for the l̂ength of the rod as the predition of the Lorentz theory.That is to say, the physial ontents of Lorentz's theory and speial relativityalso are idential: both laim that P1

(
Ẑ

)
&P2

(
Z̃

). So we have the following:
[
G1

(
M̂

)
&G2

(
M̃

)]
+

[
P1

(
Ẑ

)
&P2

(
Z̃

)]
=

[ empirialfats ]

[
G1

(
M̂

)
&G2

(
M̃

)]
+

[
P1

(
Ẑ

)
&P2

(
Z̃

)]
=

[ empirialfats ]In other words, sine there are no two di�erent theories, there is no hoie,based neither on internal nor on external aspets.Methodologial remarks53 . It worth while emphasising that my argument is based on the followingvery weak �operationalist� premise: physial terms, assigned to measurablephysial quantities, have di�erent meanings if they have di�erent empirialde�nitions. This premise is one of the fundamental pre-assumptions of Einstein's1905 paper and is widely aepted among physiists. Without lear empirialde�nition of the measurable physial quantities a physial theory annotbe empirially on�rmable or dison�rmable. In itself, this premise is notyet equivalent to operationalism or veri�ationalism. It does not generallyimply that a statement is neessarily meaningless if it is neither analyti norempirially veri�able. However, when the physiist assigns time and spae tagsto an event, relative to a referene frame, (s)he is already after all kinds ofmetaphysial onsiderations about �What is spae and what is time?� andmeans de�nite physial quantities with already settled empirial meanings.54 . In saying that the meanings of the words �spae� and �time� are di�erentin relativity theory and in lassial physis, it is neessary to be areful of apossible misunderstanding. I am talking about something entirely di�erent fromthe inommensurability thesis of the relativist philosophy of siene.12 How isit that relativity makes any assertion about lassial ŝpae and t̂ime, and vieversa, how an Lorentz's theory make assertions about quantities whih arenot even de�ned in the theory? As we have seen, eah of the two theories issu�iently omplete aount of physial reality to make preditions about thosefeatures of reality that orrespond�aording to the empirial de�nitions�tothe variables used by the other theory, and we an ompare these preditions.For example, within Lorentz's theory, we an legitimately query the reading of alok slowly transported in K ′ from one plae to another. That exatly is whatwe alulated in setion ??. Similarly, in relativity theory, we an legitimatelyquery the s̃pae and t̃ime tags of an event in the referene frame of the etalonsand then apply formulas (46)�(45). This is a fair alulation, in spite of the fat12See Kuhn 1970, Chapter X; Feyerabend 1970.



47that the result so obtained is not expliitly mentioned and named in the theory.This is what we atually did. And the onlusion was that not only are the twotheories ommensurable, but they provide ompletely idential aounts of thesame physial reality.Privileged referene frame55 . Due to the popular/textbook literature on relativity theory, there is awidespread aversion to a privileged referene frame. However, like it or not,there is a privileged referene frame in both speial relativity and lassialphysis. It is the frame of referene in whih the etalons are at rest. Thisprivileged referene frame, however, has nothing to do with the onepts of�absolute rest� or the aether, and it is not privileged by nature, but it isprivileged by the trivial semantial onvention providing meanings for the terms�distane� and �time�, by the fat that of all possible measuring-rod-like andlok-like objets �oating in the universe, we have hosen the ones �oatingtogether with the International Bureau of Weights and Measures in Paris. InBridgman's words:It annot be too strongly emphasised that there is no getting awayfrom preferred operations and unique standpoint in physis; theunique physial operations in terms of whih interval has its meaninga�ord one example, and there are many others also. (Bridgman 1936,p. 83)56 . Many believe that one an avoid a referene to the etalons sitting in aprivileged referene frame by de�ning, for example, the unit of t̃ime for anarbitrary (moving) frame of referene K ′ through a esium lok, or the like,o-moving with K ′. In this way, one needs not to refer to a standard lokaelerated from the referene frame of the etalons into referene frame K ′.But further thought reveals that suh a de�nition has several di�ulties. Forif this operation is regarded as a onvenient way of measuring t̃ime, then westill have t̃ime in the theory, together with the privileged referene frame of theetalons. If, however, this operation is regarded as the empirial de�nition ofa physial quantity, then it must be lear that this quantity is not t̃ime but anew physial quantity, say ˜̃time. In order to establish any relationship between
˜̃time tags belonging to di�erent referene frames, it is a must to use an �etalonesium lok� as well as to refer to its behaviour when aelerated from oneinertial frame into the other.The physis of moving objets57 . Although speial relativity does not tell us anything new about spaeand time, both speial relativity and Lorentz theory enrih our knowledge ofthe physial world with the physis of objets moving at onstant veloities�in aordane with the title of Einstein's original 1905 paper. The essential



48physial ontent of their disoveries is that physial objets su�er distortionswhen they are aelerated from one inertial frame to the other, and that thesedistortions satisfy some uniform laws.FitzGerald, Lorentz13 and Poinaré derived these laws from the requirementthat the deformations must explain the null result of the Mihelson�Morleyexperiment. They arrived to the onlusion that the standard lok slowsdown by fator √
1 − v2

c2 and that a rigid rod su�ers a ontration by fator√
1 − v2

c2 when they are gently aelerated from K to K ′. As we have shownin Point 37, this laim is equivalent with the assertion that the s̃pae andt̃ime tags x̃K′′

(A), t̃K
′′

(A) measured by the o-moving distorted equipmentsan be expressed from the similar tags x̃K′

(A), t̃K
′

(A) by a suitable Lorentztransformation.The general laws of deformations apply to both the measuring-equipmentand the objet to be measured. Therefore, it is no surprise that the �length�of a moving, onsequently distorted, rod measured by o-moving, onsequentlydistorted, measuring-rod and lok, that is the l̃ength of the rod, is the sameas the l̃ength of the orresponding stationary rod measured with stationarymeasuring-rod and lok. The ˜duration of a slowed down proess in a movingobjet measured with a o-moving, onsequently slowed down, lok will be thesame as the ˜duration of the same proess in a similar objet at rest, measuredwith the original distortion free lok at rest. These and similar observationslead Lorentz and Poinaré to onlude with the general validity of the relativitypriniple.14 In his 1905 paper Einstein showed how to derive the same rules fromthe assumption that relativity priniple generally holds and (or onsequently)the ˜veloity of a light signal is the same in all inertial referene frames. Thesehistori di�erenes are, however, not important from the point of view of ourmain onern. What is important is that in both ways one an derive exatlythe same laws of deformations, exatly the same rules for x̂ and t̂, and exatlythe same rules for x̃ and t̃.58 . The relativity priniple together with the Lorentz transformation of s̃paeand t̃ime provide the general desription of the behaviour of moving physialsystems. Using similar notations we introdued in Point 8, let E ′ be a set ofdi�erential equations desribing the behaviour of the system in question in anarbitrary referene frame K ′. Let ψ′
0 denote a set of (initial) onditions, suhthat the solution determined by ψ′

0 desribes the behaviour of the system whenit is, as a whole, at rest relative to K ′. Let ψ′
ev be a set of onditions whihorresponds to the solution desribing the same system in uniform motion atveloity ṽ relative to K ′. To be more exat, ψ′
ev orresponds to a solution of

E ′ that desribes the same behaviour of the system as ψ′
0 but in superposition13FitzGerald and Lorentz also made an attempt to understand how these deformationsatually ome about from the moleular fores. (See Bell 1992; Brown and Pooley 2001;Brown 2001; 2003.)14Whether or not relativity priniple generally holds in relativisti physis is a more omplexquestion. See Szabó 2004.



49with a olletive translation at veloity ṽ. Denote E ′′ and ψ′′
0 the equations andonditions obtained from E ′ and ψ′

0 by substituting every x̃K′ with x̃K′′ and t̃K′with t̃K′′ . Denote Λev (E ′) ,Λev (ψ′
ev) the set of equations and onditions expressedin terms of the double-primed variables, applying the Lorentz transformations.Now, what the relativity priniple (statement (j) in Setion ??) states is thatthe laws of physis desribing the behaviour of moving objets are suh thatthey satisfy the following relationships:
Λev (E ′) = E ′′ (85)
Λev (ψ′

ev) = ψ′′
0 (86)To make more expliit how this priniple provides a useful method in thedesription of the deformations of physial systems when they are aeleratedfrom one inertial frame K ′ into some other K ′′, onsider the following situation:Assume we know the relevant physial equations and know the solution of theequations desribing the physial properties of the objet in question when it isat rest in K ′: E ′, ψ′

0. We now inquire as to the same desription of the objetwhen it is moving at a given onstant ˜veloity relative toK ′. If (85)�(86) is true,then we an solve the problem in the following way. Simply take E ′′, ψ′′
0�byputting one more prime on eah variable�and express ψ′

ev from (86) by meansof the inverse Lorentz transformation: ψ′
ev = Λ−1

ev (ψ′′
0 ). Now, aording to thestandard views, the solution belonging to ondition ψ′
ev desribes the same objetwhen it is moving at a given onstant ˜veloity relative to K ′. This is the waywe usually solve problems suh as the eletromagneti �eld of a moving pointharge, the Lorentz ontration of a rigid body, the loss of phase su�ered by amoving lok, the dilatation of the mean life of a osmi ray µ-meson, et. (Aswe have seen in Points 10�11, the situation is, in fat, muh more omplex.Whether or not the solution thus obtained is orret depends on the details ofthe relaxation proess after the aeleration of the system.)The aether59 . Many of those, like Einstein himself (see Point 49), who admit the�empirial equivalene� of Lorentz's theory and speial relativity argue thatthe latter is �inomparably more satisfatory� beause it has no referene tothe aether. As it is obvious from the previous setions, we did not make anyreferene to the aether in the logial reonstrution of Lorentz's theory. It ishowever a histori fat that Lorentz did. In this setion, I want to larify thatthe onept of aether is merely a verbal deoration in Lorentz theory, whih anbe interesting for the historians, but negligible from the point of view of reentlogial reonstrutions.60 . One an �nd various verbal formulations of the relativity priniple andLorentz-ovariane. In order to ompare these formulations, let us introduethe following notations:
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A (K ′,K ′′) := The laws of physis in inertial frame K ′ are suh that thelaws desribing a physial system o-moving with frame K ′′ areobtainable by solving the problem for the similar physial systemat rest relative to K ′ and perform the following substitutions:

x̃K′

1 7→ α1 = x̃K′

1

x̃K′

2 7→ α2 = x̃K′

2

x̃K′

3 7→ α3 =
x̃K′

3 − ṽt̃K
′

√
1 − ev2

c2

(87)
t̃K

′

7→ τ =
t̃K

′

− ev
c2 x̃

K′

3√
1 − ev2

c2

B (K ′,K ′′) := The laws of physis in K ′ are suh that the mathematiallyintrodued variables α1, α2, α3, τ in (87) are equal to
x̃K′′

1 , x̃K′′

2 , x̃K′′

3 , t̃K
′′ , that is, the �spae� and �time� tags obtainedby means of measurements in K ′′, performed with the samemeasuring-rods and loks we used in K ′ after that theywere transfered from K ′ into K ′′, ignoring the fat that theequipments undergo deformations during the transmission.

C (K ′,K ′′) := The laws of physis in K ′ are suh that the laws of physisempirially asertained by an observer in K ′′, desribing thebehaviour of physial objets o-moving with K ′′, expressed invariables x̃K′′

1 , x̃K′′

2 , x̃K′′

3 , t̃K
′′ , have the same forms as the similarempirially asertained laws of physis in in K ′, desribingthe similar physial objets o-moving with K ′, expressed invariables x̃K′

1 , x̃K′

2 , x̃K′

3 , t̃K
′ , if the observer in K ′′ performs thesame measurement operations as the observer in K ′ with thesame measuring equipments transfered from K ′ to K ′′, ignoringthe fat that the equipments undergo deformations during thetransmission.It is obvious that

A (K ′,K ′′) &B (K ′,K ′′) ⇒ C (K ′,K ′′)So, let us restrit our onsiderations on the more fundamental
A (K ′,K ′′) &B (K ′,K ′′)Taking this statement, the usual Einsteinian formulation of the relativitypriniple is the following:




Einstein'sRelativityPriniple 
 = (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]



51Many believe that this version of relativity priniple is essentially di�erentfrom the similar priniple of Lorentz, sine Lorentz's priniple makes expliitreferene to the motion relative to the aether. Using the above introduednotations, it says the following:
[ Lorentz'sPriniple ]

= (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]It must be learly seen, however, that Lorentz's aether hypothesis is logiallyindependent from the atual physial ontent of his theory. In fat, as alittle re�etion reveals, Lorentz's priniple and Einstein's relativity prinipleare logially equivalent to eah other. It is trivially true that



Einstein'sRelativityPriniple 
 = (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]

=

[ Lorentz'sPriniple ]It follows from the meaning of A (K ′,K ′′) and B (K ′,K ′′) that
(∃K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]Consequently,
[ Lorentz'sPriniple ]

= (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]

⇒ (∃K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

=




Einstein'sRelativityPriniple 
Thus, it is Lorentz's priniple itself�the verbal formulation of whih refersto the aether�that renders any laim about the aether a logially separatedhypothesis outside of the sope of the fatual ontent of both Lorentz theoryand speial relativity. The role of the aether ould be played by anything else.As both theories laim, it follows from the empirially on�rmed laws of physisthat physial systems undergo deformations when they are transferred from oneinertial frame K ′ to another frame K ′′. One ould say, these deformations areaused by the transmission of the system from K ′ to K ′′. You ould say theyare aused by the �wind of aether�. By the same token you ould say, however,that they are aused by �the wind of anything�, sine if the physial systemis transfered from K ′ to K ′′ then its state of motion hanges relative to anarbitrary third frame of referene.



5261 . On the other hand, it must be mentioned that speial relativity doesnot exlude the existene of the aether.15 Neither does the Mihelson�Morleyexperiment. If speial relativity/Lorentz theory is true then there mustbe no indiation of the motion of the interferometer relative to the aether.Consequently, the fat that we do not observe indiation of this motion is nota hallenge for the aether theorist. Thus, the hypothesis about the existene ofaether is logially independent of both Lorentz theory and speial relativity.Symmetry priniple and heuristi value62 . Finally, it worth while mentioning that Lorentz's theory and speialrelativity, as ompletely idential theories, o�er the same symmetry priniplesand heuristi power. As we have seen, both theories laim that quantities
x̃K′

, t̃K
′ in an arbitrary K ′ and the similar quantities x̃K′′

, t̃K
′′ in anotherarbitrary K ′′ are related through a suitable Lorentz transformation. This fatin onjuntion with the relativity priniple (within the sope of validity of thepriniple) implies that laws of physis are to be desribed by Lorentz ovariantequations, if they are expressed in terms of variables x̃ and t̃, that is, in termsof the results of measurements obtainable by means of the orresponding o-moving equipments�whih are distorted relative to the etalons. There is nodi�erene between the two theories that this s̃pae-t̃ime symmetry provides avaluable heuristi aid in the searh for new laws of nature.63 . With these omments I have ompleted the argumentation for my basilaim that speial relativity and Lorentz theory are ompletely idential in bothsenses, as theories about spae-time and as theories about the behaviour ofmoving physial objets. Consequently, in omparison with the lassial Galileo-invariant oneptions, speial relativity theory does not tell us anything newabout spae and time. As we have seen, the longstanding belief that it does isthe result of a simple but subversive terminologial onfusion.

15Not to mention that already in 1920 Einstein himself argues for the existene of somekind of aether. (See Reignier 2000)
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5464 . De�nitions (D1)�(D8) in Point 33, faithfully re�eting how �spae� and�time� tags are understood in lassial physis and relativity theory, answeredthe purpose of demonstrating that Einstein's speial relativity has exatly thesame laims about spae and time as lassial physis and Lorentz's theory.However, neither the lassial nor the relativisti de�nitions are trouble free.They are based on several pre-assumptions about ontingent fats of naturewhih annot be known or even formulated prior to the de�nitions of spae andtime tags.Let us fous on what is ommon to both the lassial and relativistiapproahes, de�nitions (D1)�(D4). The �rst di�ulty is aused by the usage ofmeasuring rod for the de�nition of distane. The problem I mean is di�erentfrom the one proposed by Reihenbah (1958), namely that the length of therod may be altered by some universal fores when the rod is transported fromone plae to the another. This is no problem from logial/operational pointof view, as long as this method provides an unambiguous de�nition of spaetags. In aordane with Reihenbah's �nal onlusion, I believe that theNewtonian onept of �absolute length� (see Point 67) of the rod, independentof operational de�nition of �distane�, is meaningless or at least is outside ofthe sope of physis. If spae tags are de�ned aording to (D2) then thelength of the measuring rod is�by de�nition�onstant, no matter what is ourmetaphysial pre-assumption about the length of the rod ansih. There are,however, real irularities here that appear at the very operational level. Theoperations desribed in (D2) and (D4) rest on the onept of a measuring rodat rest relative to a given referene frame. However, we enounter the followingdi�ulties:(a) We have seen in Point 19 that the onept of a rod �at rest� relative to areferene frame is problemati in itself.(b) One might think that this is no problem if the measuring rod is always inequilibrium state when we are measuring with it. It must be lear howeverthat the equilibrium state of the rod annot be asertained prior to thede�nition of its length, that is, prior to the de�nition of distane.() The onept of rest relative to a referene frame is problemati not onlyfor the measuring rod, as a whole, but even for one single partile of therod. The reason is that we are missing a prior de�nition of veloity relativeto a given referene frame.(d) Throughout de�nitions (D1)�(D9) we nonhalantly used the term�referene frame�. Of ourse, it is no problem to give the usual meaningto this term after having de�ned spae and time tags of events; when wealready have the onepts of simultaneity, the distane of simultaneousevents, dimensions, straight lines, et. But the term �referene frame�has no meaning prior to the spae and time tags. We enounter thiswrong irularity in de�nitions (D2) and (D4): we ought to superpose themeasuring-rod along a straight line, suh that the rod is always at restrelative to the referene frame.
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w(t)

w

tFigure 13. Veloity may vary suh that the lok's journey takes very long time,nevertheless the integral in (88) is less than t(e) We also used the term �inertial� frame of referene. This is another termthat has no meaning without a previous de�nition of spae and time tags.65 . Another soure of irularities is the �slow transportation� of the standardlok in de�nitions (D1) and (D3). The reason why the transportation must beslow is that the lok may aumulate a loss of phase during its journey. From(56) we an express this phase shift:
∆T = t−

∫ t

0

√
1 −

w(τ)2

c2
dτ (88)where w(t) is the lok's veloity during its journey. Of ourse, ∆T → 0 if

w(t) tends to zero in some uniform sense, for instane if max |w(t)| → 0. Onemight think that this ondition an be provided without any viious irularityby moving the standard lok from its original plae to the lous of the eventin question over a very long period of time, aording to the reading of thelok itself. This is however not the ase. If funtion w(t) is something like asshown in Fig. 13 then the lok's journey takes very long time, neverthelessthe loss of phase in (88) does not vanish. Yet one might also think thatthis does not ause a viious irularity in the operational de�nition of timetags, beause we an inlude the loss of phase into the de�nition, just like inthe relativisti de�nition (D6).16 However, this operation ould not providean unambiguous de�nition of time tags. The reason is that the phase shift(onsequently, the reading) of the lok depends on the onrete shape offuntion w(t). To keep w(t) ontrolled�either in order to avoid ambiguity, orin order to provide the ondition max |w(t)| → 0�we must be able to asertainthe lok's instantaneous veloity relative to referene frame K, throughout16In de�nition (D6), the time tag is simply de�ned by the reading of the lok, disregardingthe loss of phase aumulated during its journey. This phase shift�alulated in Point 37�is,for example, the origin of the di�erene between t̂-simultaneity and et-simultaneity.



56its journey. And this leads to the same viious irularities we mentioned inPoint 64 () and (d).66 . The upshot of these onsiderations is that, in order to avoid theirularities mentioned above and to minimise the onventional elements inthe empirial foundation of our physial theory of spae and time, we mustavoid using standard measuring rod in the de�nition of distane and using slowtransportation of the standard lok in the de�nition of time tags. We mustalso abstain from relying on the onept of referene frame and inertial motion.Instead, we will use one standard lok and light signals. A light signalshould not be understood as a �light ray� or a �light beam�, that is, we shouldnot assume�in advane�that the light signal propagates along a �straight line�.



Empirial De�nition of Spae and Time Tags 57Empirial De�nition of Spae and Time Tags67 . First we hose an etalon lok. That is to say, we hose a system (asequene of phenomena) �oating somewhere in the universe. Let the etalonlok be the lok in the Paris International Bureau of Weights and Measures.We do not assume that this is a lok measuring �proper time�. We do notassume that it is �running uniformly�. Neither we assume that it is �at rest�relative to anything, nor that it is of �inertial motion�. None of these oneptsis de�ned yet.
standard clock

t2

1
2 (t1 + t2)

B

C

t1A

D

Figure 14. Operational de�nition of time tagsConsider the experimental arrangement in Fig. 14. The standard lok emitsa radio signal at lok-reading t1 (event A). The signal is reeived by anotherequipment whih, immediately, emits another signal (event B). This �re�eted�signal is deteted by the standard lok at t2 (event C).De�nition (A1) The absolute time tag of event B is the following:
τ (B) := t1 +

1

2
(t2 − t1) (89)The de�nition is about event B onsisting in the �re�etion� of the radio signalemitted by the standard lok. That is to say, we assigned an absolute timetag to a de�nite physial phenomenon whih we alled �event�. It is far fromobvious, however, what must be regarded as an event in general�prior to theonepts of time and distane�, and how one an extend the de�nition forthe physial events of other kinds. (See Brown 2005, pp. 11-14.) We do notdwell on this problem here. The reader an easily imagine various operationalsolutions of how to use the B-type �re�etion� events for marking other physialevents/phenomena. So we will assume that de�nition (A1) is extended for allphysial events.
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B

C
τ (C)

A
τ (A)

γ(τ )standard clock

Figure 15. Clok-like time sequene68 . At this point, one might think that we are ready to de�ne the distanebetween simultaneous events in the usual way. Surely, we an de�ne the distanebetween the simultaneous eventsD and B as 1
2 (t2 − t1) c, where the value of c istaken as a onvention. However, as a little re�etion reveals, in this way we ande�ne only the distane from the standard lok. But there is no way to extendthis de�nition for arbitrary pair of simultaneous events. In order to de�ne thedistane between arbitrary simultaneous evens we need further preparations.Denote Sτ the set of simultaneous events with time tag τ .De�nition (A2) A one-parameter family of events γ(τ) is alled time sequeneif γ(τ) ∈ Sτ for all τ .One has to reognise that a time sequene is a lok-like proess. For everyevent, one an de�ne a time-like tag in the same way as (A1): Event A (Fig. 15)is marked with the emission of a radio signal at time τ(A). The signal is re�etedat event B. Event C is the detetion of the re�eted signal at time τ(C). Wede�ne the following time-like tag for event B:

τγ(B) := τ(A) +
1

2
(τ(C) − τ(A))It is an empirial fat that τγ(B) 6= τ(B) in general. It is another empirialobservation however that for some partiular ases τγ(B) = τ(B).De�nition (A3) A time sequene γ(τ) is a synhronised opy of the standardlok if for every event B τγ(B) = τ(B).Whether or not there exist synhronised opies of the standard lok is anempirial question. Observations on�rm the following statement:Empirial fat (E1) For any event A there exists a unique synhronised opyof the standard lok γ(τ) suh that

A = γ (τ(A))
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γ(τ )standard clock
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τ
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τ (U)

Figure 16. The distane between two simultaneous events69 . Now we are ready to de�ne the distane between simultaneous events.De�nition (A4) The absolute distane between two simultaneous evens A,B ∈
Sτ is operationally de�ned in the following way. Take a synhronised opy of thestandard lok γ suh that A = γ(τ). (See Fig. 16) Let U = γ (τ(U)) is an eventmarked with the emission of a radio signal at absolute time τ(U), suh that thesignal is reeived and re�eted at event B. The detetion of the re�eted signalmarks event V = γ (τ(V )) of time tag τ(V ). The absolute distane is

dτ (A,B) :=
1

2
(τ(V ) − τ(U)) c (90)where c = 300 000 000m

s
by onvention.70 . Although they seem to be evident, the following fats annot be known apriori :Empirial fat (E2) For all A,B,C ∈ Sτ

dτ (A,B) ≥ 0 (91)
dτ (A,A) = 0 (92)

dτ (A,B) + dτ (B,C) ≥ dτ (A,C) (93)The following propositions are however derivable from the de�nitions.
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Figure 17. Synhronised opies of the standard lok keep the distane betweeneah otherLemma 1 Consider two synhronised opies of the standard lok γ1 and γ2(Fig. 17). For any moment of absolute time τ0
dτ0

(γ1(τ0), γ2(τ0)) = dτ0
(γ2(τ0), γ1(τ0)) (94)and

dτ0
(γ1(τ0), γ2(τ0)) = dτ0+T (γ1(τ0 + T ), γ2(τ0 + T )) (95)where

T =
dτ0

(γ1(τ0), γ2(τ0))

cProof Let γ1(τ0) be event A2. Consider the following events: a radiosignal is emitted at A1, then re�eted at B1, then it is re�eted again at A2 andre�eted again at B2, and so on. Let τ(E) = τ (B2) and τ(C) = τ (B1). Takinginto aount that both γ1 and γ2 are synhronised opies of the standard lok,we have the following equations:
τ (A2) =

τ (B2) + τ (B1)

2

τ (B2) =
τ (A3) + τ (A2)

2

τ (B1) =
τ (A2) + τ (A1)

2



Empirial De�nition of Spae and Time Tags 61From the above three equations we have
τ (A3) − τ (A2) = τ (A2) − τ (A1) (96)and
τ (B2) − τ (B1) = τ (A2) − τ (A1) (97)Therefore,

τ (E) − τ (C) = τ (A2) − τ (A1) = τ (B2) − τ (B1)Imagine now a radio signal emitted from C, re�eted at D and deteted at E.Taking into aount that
τ (E) + τ (C)

2
= τ (D) = τ0 =

τ (B2) + τ (B1)

2we have
dτ0

(γ1(τ0), γ2(τ0)) =
τ (E) − τ (C)

2
c

=
τ (B2) − τ (B1)

2
c

= dτ0
(γ2(τ0), γ1(τ0))Taking into aount this symmetry, (95) immediately follows from (96).

�In other words, as it follows from (94), for any A,B ∈ Sτ

dτ (A,B) = dτ (B,A) (98)One has to reognise that a funtion Sτ × Sτ → R with properties (91)�(93)and (98) is what the mathematiian alls metri on Sτ . Thus, we an stipulatethat (Sτ , dτ ) is a metri spae for every moment of absolute time τ .71 . Having metri de�ned on Sτ , we an de�ne the onept of a straight linein Sτ (Fig. 18).De�nition (A5) A subset σ ⊂ Sτ is alled (straight) line if satis�es thefollowing onditions:1. for any A,B,C ∈ σ dτ (A,C) + dτ (C,B) = dτ (A,B) or dτ (A,B) +
dτ (B,C) = dτ (A,C) or dτ (B,A) + dτ (A,C) = dτ (B,C).2. σ is maximal for property 1.Empirial fat (E3) For every A,B ∈ Sτ there exists a unique line ontaining

A and B.
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Sτ

dτ(C,B)
dτ(A,C)

B
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dτ(A,B)
A

Figure 18. Line segment
Sτ

O

Z

X
Y

σ2

σ1

Figure 19. Orthogonal line segmentsDe�nition (A6) Let σ1 and σ2 two lines in Sτ suh that σ1 ∩ σ2 = {O} (seeFig. 19). σ2 is orthogonal to σ1 if for every Z ∈ σ2 and for every X,Y ∈ σ1

dτ (X,O) = dτ (O, Y ) ⇔ dτ (X,Z) = dτ (Y, Z)Empirial fat (E4) If σ1 is orthogonal to σ2 then σ2 is orthogonal to σ1.Empirial fat (E5) For every O ∈ Sτ there exist three lines σ1,σ2 and σ3suh that they are pairwise orthogonal and σ1 ∩ σ2 ∩ σ3 = {O}.Empirial fat (E6) Let O ∈ Sτ an arbitrary event and three lines σ1,σ2 and
σ3 suh that they are pairwise orthogonal and σ1 ∩ σ2 ∩ σ3 = {O}. There is noline σ ⊂ Sτ orthogonal to eah of σ1,σ2 and σ3, suh that σ1∩σ2∩σ3∩σ = {O}.We usually express this fat by saying that spae is three dimensional.Empirial fat (E7) Let A ∈ Sτ be an arbitrary event and σ1 ⊂ Sτ andarbitrary line. There always exists a line σ2 orthogonal to σ1.De�nition (A7) Using the notations in (E7), let σ1 ∩ σ2 = {O}. Distane of
dτ (A,O) is alled the distane of A from σ1.
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X2
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C

X1

SτFigure 20. Cartesian oordinates in SτDe�nition (A8) Let σ1 ⊂ Sτ be a line. A line σ2 is parallel to σ1 if for all
X ∈ σ2 the distane of X from σ1 is the same.Empirial fat (E8) Let σ1 ⊂ Sτ be a line and let C ∈ Sτ an arbitrary event.There exists exatly one line σ2 suh that C ∈ σ2 and σ2 is parallel to σ1.De�nition (A9) Let A,B ∈ σ two events on line σ. Line segment betweenevents A,B ∈ Sτ is the following subset of σ:

σ(A,B) := {X ∈ σ| dτ (A,X) + dτ (X,B) = dτ (A,B)} (99)72 . Now, we have everything at hand to de�ne the usual Cartesian oordinatesin Sτ . First we need a 3-frame.De�nition (A10) A 3-frame in Sτ onsists of three pairwise orthogonal linesegments , σ (Y1, Y2), σ (Z1, Z2), suh that
σ (X1, X2) ∩ σ (Y1, Y2) ∩ σ (Z1, Z2) = {O}where O is the origin of the frame (Fig. 20).The end points play marginal role, but we do not assume that these segmentshave �in�nite� length. The segments are supposed to be long enough for thepurposes of the empirial oordination of the physial events in question. Theorigin of the 3-frame is arbitrary, although it ould be a nature hoie to takethe �τ -event� of the standard lok as origin.In the following de�nition we give the operational de�nition of the threeabsolute spae tags of an event A ∈ Sτ .



Empirial De�nition of Spae and Time Tags 64De�nition (A11) Take a line segment σ(B,C) ∋ A parallel to σ (Z1, Z2). Takeanother line segment σ(A,D) orthogonal to σ (Z1, Z2) suh that D ∈ σ (Z1, Z2).Let σ(O,E) be a line segment parallel to σ(A,D) suh that E ∈ σ(B,C).Finally, take the line segments σ(E,F ) and σ(E,G) suh that σ(E,F ) is parallelto σ (X1, X2) and F ∈ σ (Y1, Y2), and σ(E,G) is parallel to σ (Y1, Y2) and G ∈
σ (X1, X2). Now, the spae tags are de�ned as follows:

xτ (A) :=

{
dτ (G,O) if G ∈ σ (O,X2)

−dτ (G,O) if G ∈ σ (O,X1)

yτ (A) :=

{
dτ (F,O) if F ∈ σ (O, Y2)

−dτ (F,O) if F ∈ σ (O, Y1)

zτ (A) :=

{
dτ (D,O) if D ∈ σ (O,Z2)

−dτ (D,O) if D ∈ σ (O,Z1)73 . It must be emphasised that with the above de�nitions we only de�ned thespae tags in a given set of simultaneous events Sτ . Yet, we have no onnetionwhatsoever between two Sτ and Sτ ′ if τ 6= τ ′. In priniple, there exist in�nitelymany possible bijetions between the di�erent Sτ 's, but without any naturalphysial meaning. This is true, even if we presribe that the bijetion must bean isomorphism preserving distanes.Aording to some vague intuition, a time sequene γ(τ) satisfying that
xτ (γ(τ)) = onst. (100)
yτ (γ(τ)) = onst. (101)
zτ (γ(τ)) = onst. (102)orresponds to a loalised physial objet being at rest. �At rest� � relative towhat? The atual behaviour desribed by these equations very muh depends onhow the di�erent 3-frames are hosen in the di�erent Sτ 's. One might think thatan objet is at rest if equations (100)�(102) hold in one and the same 3-framein all Sτ . But, what does it mean that �one and the same 3-frame in all Sτ �?When an we say that a line segment σ (X ′

1, X
′
2) in Sτ ′ is the same 3-frame axisas σ (X1, X2) in Sτ? When an we say that an event A′ is in the same plae in

Sτ ′ as event A in Sτ? In asking these questions, it is neessary to be areful of apossible misunderstanding. Although they are lose to eah other, the problemwe are addressing here is di�erent from the problem of persistene of physialobjets. What we would like to de�ne is the identity of two louses of spae attwo di�erent times, and not the genidentity of the physial objets oupyingthem. One might think that some de�nition of genidentity of physial objetsmust be prior to our operational de�nition of spae and time tags, at least inthe ase of the standard lok. This is, however, not neessarily the ase. Thestandard lok is just an ordered (ordered by the lok readings) sequene ofphysial events, but without any further metaphysial assumption that these
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Figure 21. Proof of Lemma 2events belong to the same physial objet. (We de�nitely do not have suh anassumption in the ase of a synhronised opy of the standard lok.)74 . In order to establish onnetion between arbitrary two sets of simultaneousevents we need some preparations.Lemma 2 Let γ1 and γ2 be arbitrary two synhronised opies of the standardlok. For any two moments of absolute time τ and τ ′
dτ (γ1 (τ) , γ2 (τ)) = dτ ′ (γ1 (τ ′) , γ2 (τ ′)) (103)Proof The proof will be based on (95). Let us assume that τ < τ ′. Denote

T the period in (95), that is
T =

dτ (γ1 (τ) , γ2 (τ))

cFirst we will prove that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′ (γ1 (τ ′) , γ2 (τ ′))Let n be the smallest integer suh that τ ′ < τ + nT =: τ1 (Fig. 21). It followsfrom (95) that
dτ (γ1 (τ) , γ2 (τ)) = dτ1

(γ1 (τ1) , γ2 (τ1))
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2 . Consider the synhronised opy of the standard lok Γ2 thatgoes through the middle point of line segment σ (γ1 (τ) , γ2 (τ)). Taking intoaount that τ2 = τ + m2

T
2 for some integer m2 (namely, m2 = n), and alsothat T

2 c = dτ (γ1(τ),γ2(τ))
2 , one an apply (95) for the synhronised opies of thestandard lok γ1 and Γ2. Therefore,

dτ2
(γ1 (τ2) ,Γ2 (τ2)) = dτ (γ1 (τ) ,Γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2The same argument an be repeated for γ2 and Γ2. Therefore,
dτ2

(Γ2 (τ2) , γ2 (τ2)) = dτ (Γ2 (τ) , γ2 (τ)) =
dτ (γ1 (τ) , γ2 (τ))

2It follows from (93) that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ2

(γ1 (τ2) , γ2 (τ2))Assume that τ ′ > τ2. Therefore, take τ3 := τ2+τ1

2 . Again, onsider thesynhronised opies of the standard lok Γ1
3, Γ2

3, Γ3
3 dividing line segment

σ (γ1 (τ) , γ2 (τ)) into 4 piees of equal length. Taking into aount that
τ3 = τ + m3

T
4 for some integer m3 and also that T

4 c = dτ (γ1(τ),γ2(τ))
4 , onean apply (95) for the synhronised opies of the standard lok γ1 and Γ1

3.Therefore,
dτ3

(
γ1 (τ3) ,Γ

1
3 (τ3)

)
= dτ

(
γ1 (τ) ,Γ1

3 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Similarly,
dτ3

(
Γ1

3 (τ3) ,Γ
2
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ2

3 (τ3) ,Γ
3
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ3

3 (τ3) , γ2 (τ3)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Consequently, from (93),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ3

(γ1 (τ3) , γ2 (τ3))Assume τ ′ < τ3. Therefore, take τ4 := τ3+τ2

2 . Again, onsider thesynhronised opies of the standard lok Γ1
4,Γ

2
4,Γ

3
4, . . .Γ

7
4 dividing line segment

σ (γ1 (τ) , γ2 (τ)) into 8 piees of equal length. Taking into aount that
τ4 = τ + m4

T
8 for some integer m4 and also that T

8 c = dτ (γ1(τ),γ2(τ))
8 , onean apply (95) for the synhronised opies of the standard lok γ1 and Γ1

4.Therefore,
dτ4

(
γ1 (τ4) ,Γ

1
4 (τ4)

)
= dτ

(
γ1 (τ) ,Γ1

4 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

8
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dτ4

(
Γ1

4 (τ4) ,Γ
2
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8

dτ4

(
Γ2

4 (τ4) ,Γ
3
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8...
dτ4

(
Γ7

4 (τ4) , γ2 (τ4)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Consequently, from (93),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ4

(γ1 (τ4) , γ2 (τ4))And so on and so forth,
dτ (γ1 (τ) , γ2 (τ)) ≥ dτi

(γ1 (τi) , γ2 (τi))On the other hand,
lim

i→∞
τi = τ ′therefore

dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′ (γ1 (τ ′) , γ2 (τ ′))Exatly in the same way one an prove that
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))One simply has to hange the roles of τ and τ ′. Denote T ′, this time, the period

T ′ =
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

cLet n′ be the smallest integer suh that τ > τ ′ − n′T ′ =: τ ′1 Then, it followsfrom (95) that
dτ ′ (γ1 (τ ′) , γ2 (τ ′)) = dτ ′

1
(γ1 (τ ′1) , γ2 (τ ′1))Let τ ′2 :=

τ ′

1
+τ ′

2 . Consider the synhronised opy of the standard lok Γ′
2that goes through the middle point of line segment σ (γ1 (τ ′) , γ2 (τ ′)). Takinginto aount that τ ′2 = τ ′ − m′

2
T
2 for some integer m2, and also that T

2 c =
dτ′(γ1(τ ′),γ2(τ ′))

2 , one an apply (95) for the synhronised opies of the standardlok γ1 and Γ′
2. Therefore,
dτ ′

2
(γ1 (τ ′2) ,Γ

′
2 (τ ′2)) = dτ ′ (γ1 (τ ′) ,Γ′

2 (τ ′))

=
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2
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dτ ′

2
(Γ′

2 (τ ′2) , γ2 (τ ′2)) =
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Therefore,
dτ ′

2
(γ1 (τ ′2) , γ2 (τ ′2)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))And so on and so forth,

dτ ′

i
(γ1 (τ ′i) , γ2 (τ ′i)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))At the same time,

lim
i→∞

τ ′i = τConsequently,
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))

�75 . The following isomorphism an be regarded as a natural one.De�nition (A12)
Tτ ′

τ : Sτ → Sτ ′

A 7→ Tτ ′

τ (A) = γ(τ ′)where γ is a synhronised opy of the standard lok suh that A = γ(τ). Letus all Tτ ′

τ the time shift between Sτ and Sτ ′ .It follows from (E1) and Lemma 2 that this de�nition is sound and Tτ ′

τ is abijetion preserving distanes.76 . Now we have everything at hand to de�ne the spae tags of events.De�nition (A13) Let A be an arbitrary event. The absolute spae tags of Aare de�ned as follows:
ξ1(A) := x0

(
T0

τ(A) (A)
)

ξ2(A) := y0

(
T0

τ(A) (A)
)

ξ3(A) := z0

(
T0

τ(A) (A)
)Thus we have de�ned four absolute spae-time tags for every event:

τ(A), ξ1(A), ξ2(A), ξ3(A).



Comments 69Comments77 . I all τ(A) �absolute time� not in the sense of what Newton alled�absolute, true and mathematial time�, that is independent of any empirialde�nition (see Sholium II in hapter �De�nitions� of the Prinipia.), but in thesense of what the 20th entury physis alls absolute time, that is �independentof the position and the ondition of motion of the system of o-ordinates�(Einstein 1920, p. 51). The spae-time tags τ(A), ξ1(A), ξ2(A), ξ3(A) areabsolute in the sense that they are not relative to a referene frame but priorto any referene frame (atually the onept of �referene frame� is still notde�ned).Our onepts of absolute time and spae tags are, of ourse, �relative� tothe trivial semantial onvention by whih we de�ne the meaning of the terms.Namely, they are �relative� to the etalon lok-like proess we have hosen in theuniverse. This kind of �relativism� is however ommon to all physial quantitieshaving empirial meaning. (Beyond the hoie of the etalon lok, the spaetags ξ1(A), ξ2(A), ξ3(A) have some additional onventional element; they alsoare relative to the hosen 3-frame in S0. This additional onventionality is,however, of marginal importane; it is nothing more than what we would allin our usual language �the hoie of a 3-oordinate basis in a given refereneframe�.)78 . As it was already mentioned in Point 33 (Footnote 5), there has beena long disussion in the literature about the onventionality of simultaneity.(See, for example, Reihenbah 1956; Bridgeman 1965; Grünbaum 1974; Salmon1977; Malament 1977; Friedman 1983; Ben-Yami 2006.) Without entering inthe details of the various arguments, the following fats must be pointed outhere.As it is obvious from (89), we hose the standard �ε = 1
2 -synhronisation�.(Of ourse, it ould be a ontingent fat of nature that t2 = t1 in Fig. 14. Inthat ase the hoie of the value of ε would not matter.) This hoie was entirelyonventional; it was a part of the trivial semantial onvention de�ning the term�absolute time tag�. This hoie is prior to any laims about the one-way or evenround-trip speed of eletromagneti signals, beause there is no suh a oneptas �speed� prior to the de�nition of time and spae tags; it is, of ourse, prior to�the metri of Minkowski spae-time�, in partiular to the �light-one strutureof the Minkowski spae-time�, beause we have no words to tell this strutureprior to the spae-time tags; and it is prior to the ausal order of physialevents, beause�even if we ould know this ausal order prior to temporality�we annot know in advane how ausal order is related with temporal order(whih we have de�ned here). It is atually prior to any disourse about twolouses in spae, beause there is no �spae� prior to de�niton (A1) and there isno onept of a �persistent spae lous� prior to de�niton (A12).79 . A remark is in order on the empirial fats (E1)�(E8) to whih we referin onstruting spae-time tags. In laiming these statements as empirialfats I mean that they ought to be true aording to our ordinary physial



Comments 70theories. The ordinary physial theories are however based on the ordinary,problemati, spae-time oneptions, relaying on �referene frames realised byrigid bodies� and the like, without proper, non-irular, empirial de�nitons.Thus, espeially in the ontext of de�ning the two most fundamental physialquantities, distane and time, we must not regard our ordinary physial theoriesas empirially meaningful and empirially on�rmed laims about the world.Whether these statements are true or not is, therefore, an empirial question,and it is far from obvious whether they would be ompletely on�rmed if theorresponding experiments were performed with higher preision, similar to thereent GPS measurements, espeially for larger distanes. Strangely enough,aording to my knowledge, these very fundamental fats have never been testedexperimentally; no textbook or monograph on spae-time physis refers to suhexperimental results; atually, they do not even attempt to provide a lear,non-irular empirial de�nition of �time� and �distane�.So, the best we an do is to believe that our physial theories based on theusual sloppy formulation of spae-time onepts are true (in some sense) andto onsider the preditions of these theories as empirial fats. However, as thefollowing analysis reveals, it is far from obvious whether the preditions of thebelieved theories really imply (E1)�(E8).80 . Throughout the de�nition of spae-time tags, we avoided the term�inertial�, and beause of a good reason. First of all, if �inertial� is regardedas a kinematial notion based on the onept of straight line and onstany ofveloity, then it annot be anteedent to the onept of spae-time tags. If, onthe other hand, it is understood as a manner of existene of a physial objet inthe universe, when the objet is undergoing a free �oating, in other words, whenit is �free from fores�, then the onept is even more problemati. The reasonis that �fore� is a onept de�ned through the deviation from the trajetoryof inertial motion (�rst irularity), and neither the inertial trajetory nor themeasure of deviation from it an be expressed without spatiotemporal onepts,that is, they annot be anteedent to the de�nition of spae-time tags (seondirularity). So there is no preise, non-irular de�nition of inertial motion.81 . Aording to our believed speial relativisti physial theory, spae-timeis a 4-dimensional Minkowski spae and inertial trajetory is a time-like straightline in the Minkowski spae. Sine we are prior to the empirial de�nitions of thebasi spatiotemporal quantities, we annot regard this laim as an empiriallyon�rmed physial theory. Nevertheless, let us assume for a moment that ourspeial relativisti theory is the true desription of the world �from God's pointof view�. It is straightforward to hek that all the fats (E1)�(E8) are true if1) the standard lok moves along an inertial world line in the Minkowski spae-time and 2) it reads the proper time, that is, it measures the length of its ownword line, aording to the Minkowski metri. However, we human beings anknow neither whether the standard lok (hosen by us) is of inertial motion inGod's Minkowskian spae-time nor whether it reads the proper time. What ifthese onditions fail? What does speial relativisti kinematis say about (E1)�(E8) if the standard lok is aelerated and/or it does not read the proper



Comments 71time?In order to answer this question, we have to follow up the operationalde�nitions (D1), (D2),. . . and alulate whether statements (E1), (E2),. . . aretrue or not if the standard lok moves along a given world line γ and the�time� it reads is, say, a given funtion of the Minkowskian oordinate time,
χ(t). Although the task is straightforward, the alulation is too omplex togive a general answer by analyti means. But the problem an be e�ientlysolved by omputer. One �nds the following�perhaps surprising�results.For the sake of the ontrast, let me �rst mention that one obtains a verymisguiding result if, for the sake of simpliity, the alulation is made in a2-dimensional Minkowski spae-time: No matter if the standard lok movesalong a non-inertial world line γ, no matter if it reads a time χ(t) whih isan arbitrary monotoni funtion of the Minkowskian oordinate time, di�erentfrom the proper time along its world line, fats (E1)�(E8) are always true.If this 2-dimensional result were the �nal truth one would onlude that nospatiotemporal measurement an asertain whether the standard lok movesinertially or not; the very onept of �inertial� motion would remain a purelyonventional one; fats (E1)�(E8) would always be true, independently of the�objetive� fat of how the standard lok moves in God's Minkowski spae-time.In ontrast, the real 4-dimensional alulation leads to the following results:(A) Fats (E1)�(E8) are always true if the standard lok moves along aninertial world line, no matter if the lok reads a time χ(t) whih is an arbitrarymonotoni funtion of the Minkowskian oordinate time, di�erent from theproper time along its world line.(B) If the standard lok moves along a non-inertial world line γ, fats (E1)�(E8) are never true, no matter if the lok reads the proper time or not.The whole thing hinges on (E1); there are no synhronised opies of the standardlok if the standard lok moves non-inertially.82 . There are remarkable onsequenes of the above results:1. Result (A) implies that no objetive meaning an be assigned to theonept of �proper time�. �Time� is what the etalon lok reads, byde�nition.2. Contrary to the misguiding 2-dimensional result, (B) shows that the notionof �inertial motion� is not entirely onventional. In aord with ourintuition based on the believed physial theories, we an give an objetivemeaning to �inertial motion� by means of orret�neither logially noroperationally irular�experiments: the standard lok is of inertialmotion if statements (E1)�(E8) are true. Assuming that the standardlok is inertial, one an extend the onept for an arbitrary time sequene

γ(τ) of events: γ(τ) orresponds to an inertial motion if the absolute spaetags ξ1 (γ (τ)) , ξ2 (γ (τ)) , ξ3 (γ (τ)) are linear funtions of the absolute timetag τ .
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A
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X

St

♦X
A

Standard clock

∨A

Figure 22. The test of inertiality3. On the basis of our believed physial theories, one annot, however, preditwhether (E1)�(E8) are true or false. It is still an open empirial question.4. Imagine that (E1)�(E8) are not satis�ed. It not only means that thestandard lok we have hosen is non-inertial but it also means that thehosen lok is inappropriate for the de�nition of spae-time tags. Moreexatly, one has to stop at de�nition (D1). One an de�ne the time tagsbut annot de�ne the spatial notions, in partiular the distanes betweensimultaneous evens.5. Consequently, it is meaningless to talk about �non-inertial refereneframe�, �spae-time oordinates (tags) de�ned/measured by an aeleratedobserver�, and the likes.83 . In the light of these onsequenes, it is an intriguing question whetherthe standard lok ontemporary physial laboratories use for oordination ofphysial events satis�es onditions (E1)�(E8), in partiular (E1). It is quiteimplausible that it does�taking into aount the Earth's rotation, the Earth'smotion around the Sun, the Solar System's motion in our Galaxy, et.Consider �rst what in fat has to be tested (Fig. 22). (E1) would requirethe existene of a unique synhronised opy of the standard lok through everyevent. Let therefore A be an arbitrary event with absolute time tag τ(A).



Comments 73Introdue the following notations:
∨A :=

{
X

∣∣∣∣
Radio signal from Ais reeived at X. }

∧A :=

{
X

∣∣∣∣
Radio signal from Xis reeived at A. }

♦B
A := ∨A ∩ ∧BConsider the following quantity:

N := max
t,A





min
X∈∨A∩St

max
Y ∈♦X

A

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t > τ(A)min
X∈∧

A
∩St

max
Y ∈♦

A

X

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t < τ(A)

N = 0 is a neessary ondition of inertiality of the standard lok. In this ase,for every event A there exists a unique synhronised opy of the standard lok.That is, for every time t > τ(A) there is a unique event X ∈ ∨A ∩ St suh that
τ(Y ) = τ(A)+τ(X)

2 for all Y ∈ ♦X
A and for every time t < τ(A) there is a uniqueevent X ∈ ∧A ∩ St suh that τ(Y ) = τ(A)+τ(X)

2 for all Y ∈ ♦A
X .84 . Let us outline how the experimental test ould be realised. Our standardlok is transmitting, say in every few nanoseonds, a radio signal enodingthe atual lok reading (Fig. 23). We need a huge number of little devies

e1, e2, . . . ei, . . . with the following funtions:1. They ontinuously reeive the regular time signals from the standard lok.2. They an transmit radio signals ontaining the following information:a) an ID ode of the devie and information about the standard lokreading, so from the signal they send it always an be known whihdevie was the transmitter and what was the standard lok readingreeived by the transmitter at the moment of the emission of the signal,b) information about the type of event on the oasion of whih the signalwas transmitted.3. They an reeive the signals transmitted by the others.We install these devies everywhere in a ertain region of the universe. Now,the following events will happen.1. Assume that e3 is programed suh that it transmits a radio signal (event
A) when reeives the time signal of t1 from the standard lok. Let us allit A-signal. The A-signal will arrive bak to the standard lok at time t2.2. The A-signal sweeps through the whole region and triggers the otherdevies to transmit a B-signal. For example, event Bi onsists in that eireeives the A-signal from e3 and emits its own Bi-signal with the neededinformation. Bj is a similar event for ej , et.
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Standard clock

e1 e2 e3
ei
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ej
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C2j

ek

t1

Cki = Ckj

t2

Bj

C1i

t1i

t′1i

St

St′

Figure 23. The sketh of a realisti measurement to deide whether the standardlok is inertial or not



Comments 753. The B-signals will be reeived by some other devies. For example, C1iis the event when e1 reeives the Bi-signal transmitted by ei and sendsout his own signal (C1i-signal) with the orresponding information. Thisinformation arrives bak to the standard lok at time t1i.In this way, a huge amount of data is reorded, from whih we an asertainthe absolute time tags of all events in question. We an determine ♦Clm

A forevery Clm. For example, say, it turns out that Cki = Ckj and, therefore,
Bi, Bj ∈ ♦Cki

A , et. One also an determine the sets of simultaneous events.Now, the standard lok is inertial only if in every St there is a unique Clm ∈ Stsuh that for every event Bi ∈ ♦Clm

A

τ (Bi) =
τ (A) + τ (Clm)

2



Comments 76A matematikai elméletek � �zikai elméletekThe metaphysial basis of logi and mathematis(A physialist approah)�after su�ient lari�ation of the onepts in question it will be possible toondut these disussions with mathematial rigor and that the result then willbe that (under ertain assumptions whih an hardly be denied [in partiularthe assumption that there exists at all something like mathematial knowledge℄the platonisti view is the only one tenable� (Gödel: Some basi theoremson the foundations of mathematis and their impliations, 1951)Question:What if I am not a Platonist but I am a physialist?Physialism:Empiriism: Genuine information about the world must beaquired by a posteriori means.
+Physialist aount of the mental: Experiening itself, asany other mental phenomena, inluding the mental proessingthe experienes, an be wholly explained in terms of physialproperties, states, and events in the physial world.Standard shools in philosophy of mathematis

Mathematical objects

have meanings

Physical realism

Mathematical objects

have NO meanings
Formalism

Platonism

Intuitionism
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Mathematical objects

have meanings

Physical realism

Mathematical objects

have NO meanings
Formalism

Platonism

Intuitionism

Mathematial objets have no meaningsThesisMathematial �statements� are formulas of a formal language.They are not linguisti objets, onsequently they arry no meaningsand Tarskian truths.The argumentwill be based on the Truth-Condition Theory of Meaning:A meaning for a sentene is something that determines the onditionsunder whih the sentene is true or false.(David Lewis: GeneralSemantis, 1972)In order to determine this �something� one has to follow up how the sentenean be on�rmed or refuted.Consider eletrodynamis. What will the physiist answer to the followingquestions: Why is F = kQ1Q2

r2 (Coulomb law) true?How do we know that F = kQ1Q2

r2 is true?How ould you onvine me that F = kQ1Q2

r2 is true?How do you mean that F = kQ1Q2

r2 is true?How an we verify that F = kQ1Q2

r2 is true?



Comments 78Answer:F = kQ1Q2

r2 is true in the sense that the fore measured between smallharged partiles is indeed equal to kQ1Q2

r2 . We an test/on�rm this fat bymeans of laboratory experiments.Consider group theory:Aphabetvariables x, y, z, . . .individual onstant e (identity)funtion symbols i, p (inverse, produt)prediate symbol =puntuation (, ), ,logial symbols ∀,¬ →Axioms(G1) p(p(x, y), z) = p(x, p(y, z)) (assoiative law)(G2) p(e, x) = x (left identity)(G3) p(i(x), x) = e (left inverse)What will the mathematiian answer to the following questions:Why is p(e, p(e, e)) = e is true?How do we know that p(e, p(e, e)) = e is true?How ould you onvine me that p(e, p(e, e)) = e is true?How do you mean hat p(e, p(e, e)) = e is true?How an we verify that p(e, p(e, e)) = e is true?Answer:The mathematiian never refers to the physial/platoni/mental realm and theorresponding epistemi faulties! The mathematiian's �nal argument alwaysis that p(e, p(e, e)) = e is proved from the axioms of group theory:(1) p(e, x) = x (G2)(2) (∀x)(p(e, x) = x) Gen.(3) (∀x)(p(e, x) = x) → p(e, e) = e PC(4) p(e, e) = e (2), (3), MP(5) (∀x)(p(e, x) = x) → p(e, p(e, e)) = p(e, e) PC(6) p(e, p(e, e)) = p(e, e) (2), (5), MP(7) p(e, e) = e→ p(e, p(e, e)) = p(e, e) → p(e, p(e, e)) = e PC(=)(8) p(e, p(e, e)) = p(e, e) → p(e, p(e, e)) = e (4), (7), MP(9) p(e, p(e, e)) = e (6), (8), MP



Comments 79In Dummett's words:Like the empiriist view, the platonist one fails to do justie tothe role of proof in mathematis. For, presumably, the supra-sensible realm is as muh God's reature as is the sensible one; if so,onditions in it must be as ontingent as in the latter. [...℄ [W℄e donot seek, in order to refute or on�rm a [mathematial℄ hypothesis,a means of re�ning our intuitive faulties, as astronomers seek toimprove their instruments. Rather, if we suppose the hypothesistrue, we seek for a proof of it, and it remains a mere hypothesis,whose assertion would therefore be unwarranted, until we �nd one.(Dummett: What Is Mathematis About? (1994), p. 13.)Partial onlusion:
p(e, p(e, e)) = e does not have meaning; it does not refer to anything and annotbe true or false in the ordinary semantial sense. It is atually not a linguistiobjet, it is just a brik in a formal system.The meaningful sentenes are like �{Group} ⊢ p(e, p(e, e)) = e� instead of�p(e, p(e, e)) = e�. The �Σ ⊢ X� sentenes do have meanings and an be true orfalse�in what sense, it will be lear later on.RemarkA typial misinterpretation of the formalist �Σ ⊢ X�:�If Σ (is true) then X (is true)�The essential di�erene between mathematial truth andsemantial truth in a sienti� theory desribing somethingin the worldA physial theory P is a formal system L + a semantis S pointing to theempirial world. Normally, L is a (�rst-order) system with

• some logial axioms and the derivation rules (usually the �rst-orderprediate alulus with identity)
• the axioms of ertain mathematial theories
• some physial axioms.A sentene A in physial theory P an be true in two di�erent senses:Truth1: A is a theorem of L, that is, ⊢L A (whih is a mathematial truthwithin the formal system L, a fat of the formal system L).Truth2: Aording to the semantis S, A refers to an empirial fat (aboutthe physial system desribed by P ).



Comments 80Example:�The eletri �eld strength of a point harge is kQ
r2 � is a theoremof Maxwell's eletrodynamis. On the other hand, aording to the semantisrelating the symbols of the Maxwell theory to the empirial terms, this senteneorresponds to an empirial fat (about the point harges).Truth1 and Truth2 are independent onepts � one does notautomatially imply the otherAssume that

• Γ is a set of true2 sentenes in L
• and Γ ⊢L AIt does not automatially follow that A is true2. Whether A is true2 is againan empirial question:If so, then it is new empirially obtained information about the world,on�rming the validity of the whole physial theory P = L+ S.If not, then this information dison�rms the physial theory, as a whole .That is to say, one has to think about revising one of theonstituents of P .The physialist ontology of formal systems[N℄o philosophy an possibly be sympatheti to a mathematiianwhih does not admit, in one manner or the other, the immutableand unonditional validity of mathematial truth. Mathematialtheorems are true or false; their truth or falsity is absolute andindependent of our knowledge of them. In some sense, mathematialtruth is a part of objetive reality. (Hardy: Mathematial Proof,1929)Now we determine what this objetive reality atually is.Thesis:The objetive fat expressed by a mathematial proposition is a fatof a partiular part of the physial world: it is a fat of the formalsystem itself, that is, a fat about the physial system onsisting ofthe signs and the mehanial rules aording to whih the signs anbe ombined.
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Notebook

All mathematical truths are determined by the

physical facts within this part of the physical world Taking into aount that theonly means of obtaining reliableknowledge about this fat ismathematial proof, it must bea fat of the realm insideof the sope of formalderivations.Of ourse, from physialist point of view it does not matter whetherthe formal system is embodied in a omputer, in a human brain, inbrain+paper+hand+pen, et.�p(e, p(e, e)) = e� This is not a linguisti objet!atually means that the usual formalist step�{Group} ⊢ p(e, p(e, e)) = e� This is a linguisti objet!whih is nothing but the physialist stepThe assertion that there exists aproof-proess, the result of whih is
p(e, p(e, e)) = e

This is a usual sienti� assertion,just like 2H2 +O2 → 2H2OIn this way, a mathematial truth has ontingent fatual ontent, asany similar sienti� assertion. It is
• expressing objetive fat of the physial world
• syntheti
• a posteriori
• not neessary and not ertain
• true before anybody an prove it



Comments 82Abstration is a move from the onrete to the onreteMany from the formalist shool admit that... in order to think of a formal system at all we must think of it asrepresented somehow.(Haskell Curry: Outlines of a Formalist Philosophy ofMathematis, 1951)But, Curry ontinues this passage as follows:... in order to think of a formal system at all we must thinkof it as represented somehow. But when we think of it asformal system we abstrat from all properties peuliar tothe representation.(Haskell Curry: Outlines of a Formalist Philosophy ofMathematis, 1951)What does suh an �abstration� atually mean?What do we obtain if we abstrat from some unimportant, peuliar propertiesof a physial system L1 (whih is a �representation of a formal system�) ? Weobtain a theory P = L2 + S about L1, that is, a formal system L2 with asemantis S relating the elements of L2 to the important empirial fats of L1.That is, instead of an �abstrat struture� we obtain another �esh andblood formal system L2.By the same token, one annot obtain an �abstrat struture� asan �equivalene lass of isomorphi formal systems�. Suh things as�isomorphism�, �equivalene�, �equivalene lass� are living in a formalsystem �represented somehow� , that is, in a �esh and blood formalsystem:
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L1

L2

Ln

theoretical model
of L1

theoretical model
of L2

theoretical model
of Ln

isomorphisms

prototype
“abstract formal system”

equivalence class

M

This is no attak on sienti� realismWhen a physial theory laims thata physial objet has a ertain property adequately desribed by means of aformal system, then this re�ets a real feature of physial reality.This is not nominalismWhenmany di�erent physial objets display a similarproperty that is desribable by means of the same (equivalent) elements of oneommon formal system, this will be a true general feature of the group.But, this realist ommitment does not entitle us to laim that�abstrat strutures� exist over and above the real formal systemsof physial existene.Epistemologial status of meta-mathematial theoriesWe follow Hilbert's areful distintion:mathematis � a system of meaningless signsmeta-mathematis � meaningful statements about mathematis+ physialism:formal system � a physial system Lmeta-mathematial theory � a physial theory (M,S)



Comments 84All the truths that a meta-mathematial theory an tell us about itsobjet are of the type Truth2. This means that no feature of a formalsystem an be �proved� mathematially: Genuine information abouta formal system must be aquired by a posteriori means, that is, byobservation of the formal system and, as in physis in general, byindutive generalisation.
M

L
L is consistent

S

S
E

q

L

E = kq
r2

Consequently, all meta-mathematial �proofs� are questionable!
• When I say �questionable� I do not mean that I don't believe that, forexample, the sentene alulus is onsistent. I only mean that I believein it just as I believe in the Coulomb law or in the onservationof energy, or any other physial laws, whih are aquired by aposteriori means.
• To be sure, both truth1 and truth2 of a formula of M , like L is onsistentare known by a posteriori means. But,� ⊢ML is onsistent is known by observation of the formal system M� L is onsistent (is true2) is on�rmed by observations of the formalsystem L.ExampleConsider the following meta-mathematial statements:

PfM (x, y) x is the Gödel number of a sequene of formulas onstituting aproof of the formula of Gödel number y.
PfM (x, y, z) x is the Gödel number of a proof of the formula obtained from theformula of Gödel number y by substituting its only free variablewith number z.



Comments 85Representation:
{arithmeti} ⊢ Pf(x, y, z) if PfM (x, y, z) is true2
{arithmeti} ⊢ ¬Pf(x, y, z) if PfM (x, y, z) is false2 (104)Problem:(104) is not �formally proved�. It is known by a posteriori means!

L (arithmetic)

1
17

x

z
y

φ1

φ2
...

Ψy(z)

Ψy(.)

S
Pf (x, y, z)

PfM(x, y, z)

M





Hogyan lehet megragadni két formális rendszer közötti struktúláishasonlóságot?I.
L1 (arithmetic)

L2 (arithmetic)

?
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L1 (arithmetic)

L2 (arithmetic)

M (set theory, etc.)

S

isomorphism

L̃1

L̃2

III.
L1 (arithmetic)

L2 (arithmetic)

M (set theory, etc.)

S

isomorphism

L̃2

〈
A2, R2

1, R
2
2,, . . . R

2
2028

〉

L̃1〈
A1, R1

1, R
1
2,, . . . R

1
2028

〉



Comments 87BibliographyBell, J. S. (1987): How to teah speial relativity, in Speakable and unspeakable inquantum mehanis, Cambridge University Press, Cambridge.Bell, J. S. (1992): George Franis FitzGerald, Physis World 5, pp. 31-35.Ben-Yami, H. (2006): Causality and temporal order in speial relativity, The BritishJournal for the Philosophy of Siene, forthoming.Bridgman, P. (1927): The Logi of Modern Physis, MaMillan, New York.Brown, H. R. and Pooley, O. (2001): The origin of spae-time metri: Bell's'Lorentzian pedagogy' and its signi�ane in general relativity, in Physis meetsphilosophy at the Plank sale. Contemporary theories in quantum gravity, C.Calleander and N. Huggett (eds.), Cambridge University Press, Cambridge.Brown, H. R (2001): The origins of length ontration: I. The FitzGerald-Lorentzdeformation, Amerian Journal of Physis 69, 1044.Brown, H. R. (2003): Mihelson, FitzGerald and Lorentz: the origins of relativityrevisited, http://philsi-arhive.pitt.edu/arhive/00000987.Brown, H. R. (2005): Physial Relativity. Spae-time struture from a dynamialperspetive, Clarendon Press, Oxford.Brush, S. G. (1999): Why was Relativity Aepted?, Physis in Perspetive 1, pp.184�214.Dewan, E. and M. Beran (1959): Note on Stress E�ets due to RelativistiContration, Amerian Journal of Physis 27, 517.Dewan, E. (1963): Stress E�ets due to Lorentz Contration, Amerian Journal ofPhysis 31, 383.Einstein, A (1905): Zur Elektrodynamik bewegter Körper, Annalen der Physik 17,p. 891.Einstein, A. (1920): Relativity: The Speial and General Theory, H. Holt andCompany, New York.Einstein, A. (1961): Relativity, the speial and the general theory: a popularexposition, Crown Publishers, New York.Einstein, A. (1969): Autobiographial Notes, in Albert Einstein: Philosopher-Sientist, Vol. 1., P. A. Shilpp (ed.), Open Court, Illionis.Einstein, A. (1982): Ideas and Opinions, Crown Publishers, New York.Einstein, A. (1983): Sidelights on relativity, Dover, New York.Evett, A. A. and R. K. Wangsness (1960): Note on the Separation of RelativistiMoving Rokets, Amerian Journal of Physis 28, 566.



Comments 88Evett, A. A. (1972): A Relativisti Roket Disussion Problem, Amerian Journalof Physis 40, 1170.Feyerabend, P. K. (1970): Consolation for the Speialist, in Critiism and theGrowth of Knowledge, I. Lakatos and A. Musgrave (eds.), Cambridge UniversityPress, Cambridge, pp. 197�230.Feynman, R. P., Leighton, R. B. and Sands, M. (1963): The Feynman letures onphysis, Addison-Wesley Pub. Co., Reading, Mass.Field, J. H. (2004): On the Real and Apparent Positions of Moving Objetsin Speial Relativity: The Rokets-and-String and Pole-and-Barn ParadoxesRevisited and a New Paradox, preprint http://arxiv.org/abs/physis/0403094.Friedman, M. (1983): Foundations of Spae-Time Theories � Relativisti Physisand Philosophy of Siene, Prineton University Press, Prineton.Galilei, G. (1953): Dialogue onerning the two hief world systems, Ptolemai &Copernian, University of California Press, Berkeley.Grünbaum, A. (1974): Philosophial Problems of Spae and Time, Boston Studiesin the Philosophy of Siene, Vol. XII. (R. S. Cohen and M. W. Wartofsky,eds.) D. Reidel, Dordreht.Jánossy, L. (1971): Theory of relativity based on physial reality, Akadémiai Kiadó,Budapest.Janssen, M. (2002): Reonsidering a Sienti� Revolution: The Case of Einsteinversus Lorentz, Physis in Perspetive 4, pp. 421�446Kosteleký, V. A. and S. Samuel (1989): Spontaneous breaking of Lorentz symmetryin string theory, Physial Review D39, 683.Kuhn, T. S. (1970): The Struture of Sienti� Revolution, University of ChiagoPress, Chiago.Lorentz, H. A. (1904): Eletromagneti phenomena in a system moving with anyveloity less than that of light, Pro. R. Aad. Amsterdam 6, p. 809.Malament, D. (1977): Causal Theories of Time and the Conventionality ofSimultaneity, Noûs 11, p. 293.Nikoli, H. (1999): Relativisti ontration of an aelerated rod, Am. J. Phys. 67,p. 1007.Reihenbah, H. (1956): The Diretion of Time, University of California Press,Berkeley.Reihenbah, H. (1958): The philosophy of spae and time, Dover Publiations,New York.Reignier, J. (2000): The birth of speial relativity. �One more essay on the subjet�,arXiv:physis/0008229.



Comments 89Salmon, W. C. (1977): The Philosophial Signi�ane of the One-Way Speed ofLight, Noûs 11, p. 253.Szabó, L. E. (2004): On the meaning of Lorentz ovariane, Foundations of PhysisLetters 17, p. 479.Tonnelat, M. A. (1971): Histoire du prinipe de relativité, Flammarion, Paris.Zahar, E. (1973): Why did Einstein's Programme Supersede Lorentz's?, BritishJournal for the Philosophy of Siene, 24 pp. 95�123, 223�262.


