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2Hogyan is kell érteni a relativitás elvét a klasszikusés a relativisztikus �zikában?1 . It is a widely a

epted view that spe
ial relativity, beyond its 
laim aboutspa
e and time, is a theory providing a powerful method for the physi
s ofobje
ts moving at 
onstant velo
ities. The basi
 idea is the following: Considera physi
al obje
t at rest in an arbitrary inertial frame K. Assume we know therelevant physi
al equations and know the solution of the equations des
ribingthe physi
al properties of the obje
t in question when it is at rest. All thesethings are expressed in the terms of the spa
e and time 
oordinates x1, x2, x3, tand some other quantities de�ned in K on the basis of x1, x2, x3, t. We nowinquire as to the same physi
al properties of the same obje
t when it is, asa whole, moving at a given 
onstant velo
ity relative to K. In other words,the issue is how these physi
al properties are modi�ed when the obje
t is inmotion. The standard method for solving this problem is based on the relativityprin
iple/Lorentz 
ovarian
e. It follows from the 
ovarian
e of the laws of naturerelative to Lorentz transformations that the same equations hold for the primedvariables x′1, x′2, x′3, t′, . . . de�ned in the 
o-moving inertial frame K ′. Moreover,sin
e the moving obje
t is at rest in the 
o-moving referen
e frame K ′, it followsfrom the relativity prin
iple that the same rest-solution holds for the primedvariables. Finally, we obtain the solution des
ribing the system moving asa whole at 
onstant velo
ity by expressing the primed variables through theoriginal x1, x2, x3, t, . . . of K, applying the Lorentz transformation.This is the way we usually solve problems su
h as the ele
tromagneti
 �eldof a moving point 
harge, the Lorentz deformation of a rigid body, the loss ofphase su�ered by a moving 
lo
k, the dilatation of the mean life of a 
osmi
 ray
µ-meson, et
.I would like to show that this method, in general, is not 
orre
t; the systemdes
ribed by the solution so obtained is not ne
essarily identi
al with the originalsystem set in 
olle
tive motion. The reason is, as will be shown, that Lorentz
ovarian
e in itself does not guarantee that the physi
al laws in question satisfythe relativity prin
iple in general. The prin
iple of relativity a
tually only holdsfor the equilibrium quantities 
hara
terising the equilibrium state of dissipativesystems.



3The relativity prin
iple2 . The �rst formulation of the relativity prin
iple appeared in the followingpassage of Galilei's Dialogue:... the butter�ies and �ies will 
ontinue their �ights indi�erentlytoward every side, nor will it ever happen that they are 
on
entratedtoward the stern, as if tired out from keeping up with the 
ourseof the ship, from whi
h they will have been separated during longintervals by keeping themselves in the air. And if smoke is made byburning some in
ense, it will be seen going up in the form of a little
loud, remaining still and moving no more toward one side than theother. The 
ause of all these 
orresponden
es of e�e
ts is the fa
tthat the ship's motion is 
ommon to all the things 
ontained in it,and to the air also. (Galilei 1953, p. 187)In Einstein's formulation it is the following:If, relative toK,K ′ is a uniformly moving 
o-ordinate system devoidof rotation, then natural phenomena run their 
ourse with respe
tto K ′ a

ording to exa
tly the same general laws as with respe
t to
K. (Einstein 1920, p. 16)Finally, in a typi
al text book formulation, relativity prin
iple is the followingassertion:All the laws of physi
s take the same form in any inertial frame.Let us try to unpa
k what this prin
iple a
tually asserts. First of all it must be
lear that the same law of physi
s must take the same form in all inertial frames.What are the same laws of physi
s in di�erent inertial frames? Of 
ourse, thelaws of physi
s 
an be identi�ed by means of the physi
al phenomena theydes
ribe. If so, then one 
an think that the same physi
al phenomenon mustbe des
ribed by the same solution of the same equations in all frames. Thisis however obviously not the 
ase. For example, the motion of the plasma ofthe same solar �are is des
ribed di�erently by two observers in two di�erentinertial frames. Thus, the opposite must be true: di�erent physi
al phenomenaare des
ribed by the same solutions of the same equations in di�erent inertialframes. So, our �rst task will be to 
larify what are those di�erent physi
alphenomena the des
ription of whi
h must have the same form in all inertialframe.3 . The se
ond problem is how the phrase �same form� should be understood.For, in terms of di�erent variables, one and the same physi
al law in oneand the same inertial frame of referen
e 
an be expressed in di�erent forms.Therefore we have to add to the prin
iple that the physi
al laws must beexpressed in terms of the same physi
al quantities. This immediately raisesthe next question of how the physi
al quantities de�ned in di�erent inertial



4frames are identi�ed. Obviously, we identify those physi
al quantities that haveidenti
al empiri
al de�nitions. It is however far from obvious how these identi
alempiri
al de�nitions are a
tually understood.The empiri
al/operational de�nitions require etalon measuring equipments.But how do the observers in di�erent referen
e frames share these etalonmeasuring equipments? Do they all base their de�nitions on the same etalonmeasuring equipments? They must do something like that, otherwise any
omparison between their observations would be meaningless. But, is prin
ipleof relativity really understood in this way? Is it true that the laws of physi
sin K and K ′, whi
h ought to take the same form, are expressed in terms ofphysi
al quantities de�ned/measured with one and the same standard measuringequipments? Not exa
tly! �The 
ause of all these 
orresponden
es of e�e
tsis the fa
t that the ship's motion is 
ommon to all the things [itali
s mine℄
ontained in it��Galilei writes in the above quoted passage. Or, 
onsider howEinstein applies the prin
iple:Let there be given a stationary rigid rod; and let its length be
l as measured by a measuring-rod whi
h is also stationary. Wenow imagine the axis of the rod lying along the axis of x of thestationary system of 
o-ordinates, and that a uniform motion ofparallel translation with velo
ity v along the axis of x in the dire
tionof in
reasing x is then imparted to the rod. We now inquire as to thelength of the moving rod, and imagine its length to be as
ertainedby the following two operations:(a) The observer moves together with the given measuring-rod andthe rod to be measured, and measures the length of the roddire
tly by superposing the measuring-rod, in just the sameway as if all three were at rest [itali
s mine℄.(b) ...In a

ordan
e with the prin
iple of relativity the length to bedis
overed by the operation (a)�we will 
all it �the length of therod in the moving system��must be equal to the length l of thestationary rod. (Einstein 1905)That is to say, if the standard measuring equipment de�ning a physi
al quantity

XK is, for example, at rest in K and, therefore, moving in K ′, then the observerinK ′ does not de�ne the 
orrespondingXK′ as the physi
al quantity obtainableby means of the original standard equipment�being at rest in K and moving in
K ′�but rather as the one obtainable by means of the same standard equipmentin another state of motion, namely when it is at rest in K ′ and moving in K.4 . Let us return to the �rst problem posed at the end of Point 2. Now we
an spe
ify those di�erent physi
al phenomena the des
ription of whi
h musthave the same form in all inertial frame. For, what we told about the measuringequipments, also holds for the physi
al systems to be measured. That is to say,



5the prin
iple says that the des
ription of the behaviour of a system when it is
o-moving with inertial frame K takes the same form as the des
ription of thesame system when it is 
o-moving with inertial frame K ′.5 . Putting all these details together, now we are ready to give a more a

urateformulation of the relativity prin
iple:Relativity Prin
iple The laws of physi
s des
ribing the behaviour of asystem 
o-moving as a whole with inertial frame K, expressed in terms of theresults of measurements obtainable by means of measuring-rods, 
lo
ks, et
.,
o-moving with K takes the same form as the laws of physi
s des
ribing thesimilar behaviour of the same system when it is 
o-moving with inertial frame
K ′, expressed in terms of the measurements with the same equipments whenthey are 
o-moving with K ′.Whether or not the relativity prin
iple holds is, it must be 
lear, a 
ontingentfa
t of nature. If the laws of physi
s known in any one inertial frame of referen
e,say K, a

ount for all physi
al phenomena then these laws unambiguouslypredetermine whether the prin
iple holds or not. The reason is that these lawsalso des
ribe the behaviour of moving (relative toK) physi
al systems in
ludingboth the measuring equipments 
o-moving with another inertial frame K ′ andthe system to be measured 
o-moving with K ′.Nevertheless, there are still vague points here. But before entering in thedis
ussion of these further problems, let us re
all how the relativity prin
ipleimplies Galilean/Lorentz 
ovarian
e.



6Galilean and Lorentz 
ovarian
e6 . Consider two inertial frames of referen
e K and K ′. Assume that K ′ ismoving at 
onstant velo
ity v relative toK along the axis of x. Assume that lawsof physi
s are known and empiri
ally 
on�rmed in inertial frame K, in
ludingthe laws des
ribing the behaviour of physi
al obje
ts in motion relative to K.Denote x(A), y(A), z(A), t(A) the spa
e and time tags of an event A, obtainableby means of measuring-rods and 
lo
ks at rest relative to K, and denote
x′(A), y′(A), z′(A), t′(A) the similar data of the same event, obtainable by meansof measuring-rods and 
lo
ks 
o-moving with K ′. In the approximation of
lassi
al physi
s (v ≪ c), the relationship between x′(A), y′(A), z′(A), t′(A) and
x(A), y(A), z(A), t(A) 
an be des
ribed by the Galilean transformation:

t′(A) = t(A) (1)
x′(A) = x(A) − v t(A) (2)
y′(A) = y(A) (3)
z′(A) = z(A) (4)Due to the relativisti
 deformations of measuring-rods and 
lo
ks, the exa
trelationship is des
ribed by the Lorentz transformation:
t′(A) =

t(A) − v x(A)
c2√

1 − v2

c2

(5)
x′(A) =

x(A) − v t(A)√
1 − v2

c2

(6)
y′(A) = y(A) (7)
z′(A) = z(A) (8)Sin
e physi
al quantities are de�ned by the same operational pro
edure inall inertial frames, the transformation rules of the spa
e and time 
oordinates(usually) predetermine the transformations rules of the other physi
al variables.So, depending on the 
ontext, we will mean by Galilean/Lorentz transformationnot only the transformation of the spa
e and time tags, but also the
orresponding transformation of the other variables in question.Following Einstein's 1905 paper, the Lorentz transformation rules are usuallyderived from the relativity prin
iple�the general validity of whi
h we are goingto 
hallenge in this essay. As we will see, this derivation is not in 
ontradi
tionwith our �nal 
on
lusions. Nevertheless, it is worth while to mention thatLorentz transformation 
an also be derived independently of the prin
iple ofrelativity, dire
tly from the fa
ts that a 
lo
k slows down by fa
tor √

1 − v2/c2when it is gently a

elerated from K to K ′ and a measuring-rod su�ers a
ontra
tion by fa
tor √
1 − v2/c2 when it is gently a

elerated from K to K ′(see Point 37).



77 . In 
lassi
al physi
s, the spa
e and time tags obtained by means ofmeasuring-rods and 
lo
ks 
o-moving with di�erent inertial referen
e frames
an be 
onne
ted through the Galilean transformation. A

ording to spe
ialrelativity, the spa
e and time tags obtained by means of measuring-rods and
lo
ks 
o-moving with di�erent inertial referen
e frames are 
onne
ted throughthe Lorentz transformation. Consequently, the laws of physi
s must preservetheir forms with respe
t of the Galilean/Lorentz transformation. Thus, it mustbe emphasised, the Galilean/Lorentz 
ovarian
e is a 
onsequen
e not only ofthe fa
t that the laws of physi
s satisfy the relativity prin
iple but also of theother physi
al fa
t that the spa
e and time tags in di�erent inertial frames are
onne
ted through the Galilean/Lorentz transformation.8 . Let us now try to unpa
k the verbal formulations of the relativity prin
iplein a more mathemati
al way. Let E be a set of di�erential equations des
ribingthe behaviour of the system in question. Let us denote by ψ a typi
al set of(usually initial) 
onditions determining a unique solution of E . Let us denotethis solution by [ψ]. Denote E ′ and ψ′ the equations and 
onditions obtainedfrom E and ψ by substituting every xi with x′i, and t with t′, et
. Denote
Gv (E) , Gv (ψ) and Λv (E) ,Λv (ψ) the set of equations and 
onditions expressedin the primed variables applying the Galilean and the Lorentz transformations,respe
tively (in
luding, of 
ourse, the Galilean/Lorentz transformations of allother variables di�erent from the spa
e and time 
oordinates). Finally, in orderto give a stri
t mathemati
al formulation of relativity prin
iple, we have to �xtwo further 
on
epts, the meaning of whi
h are vague: Let a solution [ψ0] isstipulated to des
ribe the behaviour of the system when it is, as a whole, atrest relative to K. Denote ψv the set of 
onditions and [ψv] the 
orrespondingsolution of E that are stipulated to des
ribe the similar behaviour of the systemas [ψ0] but, in addition, when the system was previously set, as a whole, into a
olle
tive translation at velo
ity v.Now, what relativity prin
iple states is equivalent to the following:

Gv (E) = E ′ (9)
Gv (ψv) = ψ′

0 (10)in the 
ase of 
lassi
al me
hani
s, and
Λv (E) = E ′ (11)

Λv (ψv) = ψ′
0 (12)in the 
ase of spe
ial relativity.9 . Although, in 
onjun
tion with the Galilean/Lorentz transformation rules,relativity prin
iple implies Galilean/Lorentz 
ovarian
e, the relativity prin
iple,as we 
an see, is not equivalent to the Galilean 
ovarian
e (9) in itself or theLorentz 
ovarian
e (11) in itself. It is equivalent to the satisfa
tion of (9) in
onjun
tion with 
ondition (10) in 
lassi
al physi
s, or (11) in 
onjun
tion with(12) in relativisti
 physi
s.



810 . Note, that E , ψ0, and ψv as well as the transformations Gv and Λvare given by 
ontingent fa
ts of nature. It is therefore a 
ontingent fa
t ofnature whether a 
ertain law of physi
s is Galilean or Lorentz 
ovariant, and,independently, whether it satis�es the prin
iple of relativity. The relativityprin
iple and its 
onsequen
e the prin
iple of Lorentz 
ovarian
e are 
ertainlynormative prin
iples in 
ontemporary physi
s, providing a heuristi
 tool for
onstru
ting new theories. We must emphasise however that these normativeprin
iples, as any other fundamental law of physi
s, are based on empiri
al fa
ts;they are based on the observation that the behaviour of any moving physi
alobje
t satis�es the prin
iple of relativity. I will show, however, that the laws ofrelativisti
 physi
s, in general, do not satisfy this 
ondition.11 . Before we begin analysing our examples, it must be noted that the majorsour
e of 
onfusion is that there still exists some vagueness in the relativityprin
iple (Point 5). Namely, the vagueness of the 
on
epts like �a system 
o-moving as a whole with an inertial frame� and �the similar behaviour of thesame system when it is 
o-moving with a given inertial frame�. In other words,the vagueness of the de�nitions of 
onditions ψ0 and ψv. In prin
iple any [ψ0]
an be 
onsidered as a �solution des
ribing the system's behaviour when it is, asa whole, at rest relative to K�. Given any one �xed ψ0, it is far from obvious,however, what is the 
orresponding ψv. When 
an we say that [ψv] des
ribes thesimilar behaviour of the same system when it was previously set into a 
olle
tivesmotion at velo
ity v? As we will see, there is an unambiguous answer to thisquestion in the Galileo 
ovariant 
lassi
al physi
s. But ψv is vaguely de�ned inrelativity theory. Note that Einstein himself uses this 
on
ept in a vague way,for example in the passage quoted in Point 3. (What exa
tly does �a uniformmotion of parallel translation with velo
ity v ... imparted to the rod� mean?)The following examples will illustrate that the vague nature of this 
on
ept
ompli
ates matters. In all examples we will 
onsider a set of intera
tingparti
les. We assume that the relevant equations des
ribing the system areGalilean/Lorentz 
ovariant, that is (9) and (11) are satis�ed respe
tively. Asit follows from the 
ovarian
e of the 
orresponding equations, G−1
v (ψ′

0) and,respe
tively, Λ−1
v (ψ′

0) are 
onditions determining new solutions of E . Thequestion is whether these new solutions [
G−1

v (ψ′
0)

] and [
Λ−1

v (ψ′
0)

] are identi
alwith [ψv]�the one determined by ψv. If so then the relativity prin
iple issatis�ed.



9The relativity prin
iple in 
lassi
al me
hani
s12 . Let us start with an example illustrating how the relativity prin
ipleworks in 
lassi
al me
hani
s. Consider a system 
onsisting of two point masses
onne
ted with a spring (Fig. 1). The equations of motion in K,
m
d2x1 (t)

dt2
= k (x2 (t) − x1 (t) − L) (13)

m
d2x2 (t)

dt2
= −k (x2 (t) − x1 (t) − L) (14)are indeed 
ovariant with respe
t to the Galilean transformation, that is,expressing (13)�(14) in terms of variables x′, t′ they have exa
tly the same formas before:

m
d2x′1 (t′)

dt′2
= k (x′2 (t′) − x′1 (t′) − L) (15)

m
d2x′2 (t′)

dt′2
= −k (x′2 (t′) − x′1 (t′) − L) (16)Consider the solution of the (13)�(14) belonging to an arbitrary initial
ondition ψ0:

x1(t = 0) = x10

x2(t = 0) = x20
dx1

dt

∣∣
t=0

= v10
dx2

dt

∣∣
t=0

= v20

(17)The 
orresponding �primed� initial 
ondition ψ′
0 is

x′1(t
′ = 0) = x10

x′2(t
′ = 0) = x20

dx′

1

dt′

∣∣∣
t′=0

= v10
dx′

2

dt′

∣∣∣
t′=0

= v20

(18)Applying the inverse Galilean transformation we obtain a set of 
onditions
G−1

v (ψ′
0) determining a new solution of the original equations:

x1(t = 0) = x10

x2(t = 0) = x20
dx1

dt

∣∣
t=0

= v10 + v
dx2

dt

∣∣
t=0

= v20 + v

(19)
x2

0 x

x1

k, L
m m

Figure 1. Two point masses are 
onne
ted with a spring of equilibrium length Land of spring 
onstant k



10One 
an re
ognise that this is nothing but ψv. It is the set of the originalinitial 
onditions in superposition with a uniform translation at velo
ity v.That is to say, the 
orresponding solution des
ribes the behaviour of the samesystem when it was (at t = 0) set into a 
olle
tive translation at velo
ity v, insuperposition with the original initial 
onditions.13 . In 
lassi
al me
hani
s, as we have seen from this example, the equationsof motion not only satisfy the Galilean 
ovarian
e, but also satisfy the 
ondition(10). The prin
iple of relativity holds for all details of the dynami
s of thesystem. There is no ex
eption to this rule. In other words, if the world weregoverned by 
lassi
al me
hani
s, relativity prin
iple would be a universally validprin
iple. With respe
t to later questions, it is worth noting that the Galileanprin
iple of relativity therefore also holds for the equilibrium 
hara
teristi
s ofthe system, if the system has dissipations. Imagine for example that the springhas dissipations during its distortion. Then the system has a stable equilibriumstate in whi
h the equilibrium distan
e between the parti
les is L. When weinitiate the system in 
olle
tive motion 
orresponding to (19), the system relaxesto another equilibrium state in whi
h the distan
e between the parti
les is thesame L.



11Violation of relativity prin
iple in relativisti
physi
s14 . Let us turn now to the relativisti
 examples. It is widely held that thenew solution determined by Λ−1
v (ψ′

0), in analogy to the solution determined by
G−1

v (ψ′
0) in 
lassi
al me
hani
s, des
ribes a system identi
al with the originalone, but 
o-moving with the frame K ′, and that the behaviour of the movingsystem, expressed in terms of the results of measurements obtainable by meansof measuring-rods and 
lo
ks 
o-moving with K ′ is, due to Lorentz 
ovarian
e,the same as the behaviour of the original system, expressed in terms of themeasurements with the equipments at rest in K�in a

ordan
e with theprin
iple of relativity. However, the situation is in fa
t far more 
omplex, as Iwill now show.15 . Imagine a system 
onsisting of intera
ting parti
les (for example,relativisti
 parti
les 
oupled to ele
tromagneti
 �eld). Consider the solutionof the Lorentz 
ovariant equations in question that belongs to the followinggeneral initial 
onditions:

ri(t = 0) = Ri (20)
dri(t)

dt

∣∣∣∣
t=0

= wi (21)(Sometimes the initial 
onditions for the parti
les unambiguously determine theinitial 
onditions for the whole intera
ting system. Anyhow, we are omittingthe initial 
onditions for other variables whi
h are not interesting now.) Itfollows from the Lorentz 
ovarian
e that there exists a solution of the �primed�equations, whi
h satis�es the same 
onditions,
r
′
i(t

′ = 0) = Ri (22)
dr′i(t

′)

dt′

∣∣∣∣
t′=0

= wi (23)Eliminating the primes by means of the Lorentz transformation we obtain
t⋆i =

v
c2Rxi√
1 − v2

c2

(24)
r

new
i (t = t⋆i ) =




Rxiq
1− v2

c2

Ryi

Rzi


 (25)and

drnew
i (t)

dt

∣∣∣∣
t⋆

i

=




wxi+v

1+
wxiv

c2

wyi

wzi


 (26)



12It is di�
ult to tell what the solution deriving from su
h a nondes
ript �initial�
ondition is like, but it is not likely to des
ribe the original system in 
olle
tivemotion at velo
ity v. The reason for this is not di�
ult to understand. Let meexplain it by means of a well known old example (Dewan and Beran 1959, Evettand Wangsness 1960, Dewan 1963, Evett 1972, Bell 1987, Nikoli
 1999, Field2004).16 . In stead of two ro
kets 
onne
ted with a thread�as the original examplesays�
onsider the system 
onsisting of two parti
les 
onne
ted with a spring(Point 12). Let us �rst ignore the spring. Assume that the two parti
les areat rest relative to K, one at the origin, the other at the point d, where d = L,the equilibrium length of the spring when it is at rest. It follows from (24)�(26) that the Lorentz boosted system 
orresponds to two parti
les moving at
onstant velo
ity v, su
h that their motions satisfy the following 
onditions:
t⋆1 = 0

t⋆2 =
v
c2 d√
1 − v2

c2

rnew
1 (0) = 0

rnew
2




v
c2 d√
1 − v2

c2


 =

d√
1 − v2

c2

(27)However, the 
orresponding new solution of the equations of motion does not�know� about how the system was set into motion and/or how the state ofthe system 
orresponding to the above 
onditions 
omes about. Consider thefollowing possible s
enarios:Example 1The two parti
les are at rest; the distan
e between them is d (see Fig. 2).Then, parti
le 1 starts its motion at 
onstant velo
ity v at t = 0 from thepoint of 
oordinate 0 (the last two dimensions are omitted); parti
le 2 startits motion at velo
ity v from the point of 
oordinate d with a delay at time
t′′. Meanwhile parti
le 1 moves 
loser to parti
le 2 and the distan
e betweenthem is d′′ = d

√
1 − v2/c2, in a

ordan
e with the Lorentz 
ontra
tion. Now,one 
an say that the two parti
les are in 
olle
tive motion at velo
ity v relativeto the original system K�or, equivalently, they are 
olle
tively at rest relativeto K ′�for times t > t⋆2 = vd/

(
c2

√
1 − v2/c2

). In this parti
ular 
ase theyhave a
tually been moving in this way sin
e t′′. Before that time, however, theparti
les moved relative to ea
h other, in other words, the system underwentdeformation.
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t’’

t=0

t

d’’

d

d’

t

z

particle 1 particle 2

*
2

the original system

the Lorentz boosted systemFigure 2. Both parti
les are at rest. Then parti
le 1 starts its motion at
t = 0. The motion of parti
le 2 is su
h that it goes through the point (t⋆2, d

′),where d′ = d/
√

1 − v2/c2, 
onsequently it started from the point of 
oordinate
d at t′′ = d

(
v/

(
c2

√
1 − v2/c2

)
−

(
1 −

√
1 − v2/c2

)
/

(
v
√

1 − v2/c2
)). Thedistan
e between the parti
les at t′′ is d′′ = d

√
1 − v2/c2, in a

ordan
e withthe Lorentz 
ontra
tion.Example 2Both parti
les started at t = 0, but parti
le 2 was previously moved to the pointof 
oordinate d√1 − v2/c2 and starts from there. (Fig. 3)Example 3Both parti
les started at t = 0 from their original pla
es. The distan
e betweenthem remains d (Fig. 4). They are in 
olle
tive motion at velo
ity v, althoughthis motion is not des
ribed by the Lorentz boost.Example 4If, however, they are 
onne
ted with the spring (Fig. 5), then the spring (whenmoving at velo
ity v) �rst �nds itself in a non-equilibrium state of length d, thenit relaxes to its equilibrium state (when moving at velo
ity v) and�assumingthat the equilibrium properties of the spring satisfy the relativity prin
iple,whi
h we will argue for later on�its length (the distan
e of the parti
les) wouldrelax to d√1 − v2/c2, a

ording to the Lorentz boost.17 . We have seen from these examples that the relationship between theLorentz boost�the motion determined by the 
onditions Λ−1

v (ψ′
0)�and thesystems being in 
olle
tive motion�determined by ψv�is not so trivial. InExamples 1 and 2�although, at least for large t, the system is identi
al with theone obtained through the Lorentz boost�it would be entirely 
ounter intuitive
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t’’
t=0

t

t

z

particle 1 particle 2

*
2

d’’

d

d’

the Lorentz boosted system

the original system

Figure 3. Both parti
les start at t = 0. Parti
le 2 is previously moved to thepoint of 
oordinate d′′ = d
√

1 − v2/c2.

t’’

t=0

t

t

z

particle 1 particle 2

*
2

d’’

d’

the Lorentz boosted system

the original system

d

d

Figure 4. Both parti
les start at t = 0 from the original pla
es. The distan
ebetween the parti
les does not 
hange.
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state
the spring in non−equilibrium

t’’

t=0

t

t

z

particle 1 particle 2

*
2

d’

d

the spring in equilibrium state

the original system

the Lorentz boosted system

d’’

Figure 5. The parti
les are 
onne
ted with a spring (and, say, the mass ofparti
le 1 is mu
h larger)to say that we simply set the system in 
olle
tive motion at velo
ity v, be
ausewe �rst distorted it: in Example 1 the parti
les were set into motion at di�erentmoments of time; in Example 2, before we set them in motion, one of theparti
les was relo
ated relative to the other. In 
ontrast, in Examples 3 and 4we are entitled to say that the system was set into 
olle
tive motion at velo
ity v.But, in Example 3 the system in 
olle
tive motion is di�erent from the Lorentzboosted system (for all t), while in Example 4 the moving system is indeedidenti
al with the Lorentz boosted one, at least for large t, after the relaxationpro
ess.Thus, as Bell rightly pointed out:Lorentz invarian
e alone shows that for any state of a system at restthere is a 
orresponding `primed' state of that system in motion.But it does not tell us that if the system is set anyhow in motion, itwill a
tually go into the 'primed' of the original state, rather thaninto the `prime' of some other state of the original system. (Bell1987, p. 75)18 . However, neither Bell's paper nor the pre
eding dis
ussion of the �tworo
kets problem� provide proper explanation of this fa
t. For instan
e, after theabove passage Bell 
ontinues:In fa
t, it will generally do the latter. A system set brutallyin motion may be bruised, or broken, or heated or burned. Forthe simple 
lassi
al atom similar things 
ould have happened ifthe nu
leus, instead of being moved smoothly, had been jerked.The ele
tron 
ould be left behind 
ompletely. Moreover, a givena

eleration is or is not su�
iently gentle depending on the orbit inquestion. An ele
tron in a small, high frequen
y, tightly bound orbit,
an follow 
losely a nu
leus that an ele
tron in a more remote orbit



16� or in another atom � would not follow at all. Thus we 
an onlyassume the Fitzgerald 
ontra
tion, et
., for a 
oherent dynami
alsystem whose 
on�guration is determined essentially by internalfor
es and only little perturbed by gentle external for
es a

eleratingthe system as a whole. (Ibid., p. 75)The possible �damage� of the system due to �brutal� a

eleration is a 
ompletelydi�erent issue (to whi
h we will return in Point 26) whi
h obs
ures a moreessential problem. As the above examples show,1 gentle a

eleration in itselfdoes not guarantee that the Lorentz boosted solution des
ribes the originalsystem gently a

elerated from K to K ′.19 . Before I pro
eed to formulate my thesis about this question, let me giveone more example.Example 5Consider a rod at rest in K. The length of the rod is l. At a given moment oftime t0 we take a re
ord about the positions and velo
ities of all parti
les of therod:
ri(t = t0) = Ri (28)
dri(t)

dt

∣∣∣∣
t=t0

= wi (29)Then, forget this system, and imagine another one whi
h is initiated at moment
t = t0 with the initial 
ondition (28)�(29). No doubt, the new system will beidenti
al with a rod of length l, that 
ontinues to be at rest in K.Now, imagine that the new system is initiated at t = t0 with the initial
ondition

ri(t = t0) = Ri (30)
dri(t)

dt

∣∣∣∣
t=t0

= wi + v (31)instead of (28)�(29). No doubt, in a very short interval of time (t0, t0 + ∆t) thissystem is a rod of length l, moving at velo
ity v; the motion of ea
h parti
le isa superposition of its original motion, a

ording to (28)�(29), and the 
olle
tivetranslation at velo
ity v. In other words, it is a rod 
o-moving with the referen
eframe K ′. Still, its length is l, 
ontrary to the prin
iple of relativity, a

ordingto whi
h the rod should be of length l√1 − v2/c2�as a 
onsequen
e of l′ = l.
1In our examples we omitted the a

eleration period�symbolised by a bla
k point on the�gures�for the sake of simpli
ity.
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Region II

Region III

ct

c(t−t )0

t=0

Region I

t=t 0

Figure 6. S
heme of regions I, II and IIIThe restri
ted relativity prin
iple as a prin
iple ofthermodynami
s20 . The resolution of this �
ontradi
tion� is that the system initiated in state(30)�(31) at time t0 �nds itself in a non-equilibrium state and then, due to
ertain dissipations, it relaxes to the new equilibrium state. What su
h a newequilibrium state is like, depends on the details of the dissipation/relaxationpro
ess. It is, in fa
t, a thermodynami
al question. The 
on
ept of �gentlea

eleration� not only means that the system does not go irreversibly far apartfrom its equilibrium state, but, more essentially, it in
orporates the assumptionthat there is su
h a dissipation/relaxation phenomenon.Without entering into the quantum me
hani
s of solid state systems, a goodway to pi
ture it is imagine that the system is radiating during the relaxationperiod. This pro
ess 
an be followed in details by looking at one single point
harge a

elerated from K to K ′ (see Jánossy 1971, pp. 208-210). Suppose theparti
le is at rest for t < 0, the a

eleration starts at t = 0 and the parti
lemoves with 
onstant velo
ity v for t ≥ t0. Using the retarded potentials, we
an 
al
ulate the �eld of the moving parti
le at some time t > t0. We �ndthree zones in the �eld (see Fig. 6). In Region I, surrounding the parti
le, we�nd the �Lorentz-transformed Coulomb �eld� of the point 
harge moving at
onstant velo
ity (see (71)�(76) in Point 44). This is the solution we usually�nd in textbooks. In Region II, surrounding Region I, we �nd a radiation �eldtravelling outwards whi
h was emitted by the parti
le in the period 0 < t < t0of a

eleration. Finally, outside Region II, the �eld is produ
ed by the parti
leat times t < 0. The �eld in Region III is therefore the Coulomb �eld of the
harge at rest (Point 44 eqs. (65)�(70)). Thus, the prin
iple of relativity neverholds exa
tly. Although, the region where �the prin
iple holds� (Region I) isblowing up at the speed of light. In this way the whole 
on�guration relaxes toa solution whi
h is identi
al with the one derived from the prin
iple of relativity.



1821 . Thus, we must draw the 
on
lusion that, in spite of the Lorentz 
ovarian
eof the equations, whether or not the solution determined by the 
ondition
Λ−1

v (ψ′
0) is identi
al with the solution belonging to the 
ondition ψv, in otherwords, whether or not the relativity prin
iple holds, depends on the details ofthe dissipation/relaxation pro
ess in question, given that 1) there is dissipationin the system at all and, 2) the physi
al quantities in question, to whi
hthe relativity prin
iple applies, are equilibrium quantities 
hara
terising theequilibrium properties of the system. For instan
e, in Example 5, the relativityprin
iple does not hold for all dynami
al details of all parti
les of the rod.The reason is that many of these details are sensitive to the initial 
onditions.The prin
iple holds only for some ma
ros
opi
 equilibrium properties of thesystem, like the length of the rod. It is a typi
al feature of a dissipativesystem that it unlearns the initial 
onditions; some of the properties of thesystem in equilibrium state, after the relaxation, are independent from the initial
onditions. The limiting (t → ∞) ele
tromagneti
 �eld of the moving 
hargeand the equilibrium length of a solid rod are good examples. These equilibriumproperties are 
ompletely determined by the equations themselves independentlyof the initial 
onditions. If so, the Lorentz 
ovarian
e of the equations in itselfguarantees the satisfa
tion of the prin
iple of relativity with respe
t to theseproperties : Let X be the value of su
h a physi
al quantity�
hara
terising theequilibrium state of the system in question, fully determined by the equationsindependently of the initial 
onditions�as
ertained by the measuring devi
esat rest in K. Let X ′ be the value of the same quantity of the same systemwhen it is in equilibrium and at rest relative to the moving referen
e frame K ′,as
ertained by the measuring devi
es 
o-moving with K ′. If the equations areLorentz 
ovariant, thenX = X ′. We must re
ognise that whenever in relativisti
physi
s we derive 
orre
t results by applying the prin
iple of relativity, we applyit for su
h parti
ular equilibrium quantities. But the relativity prin
iple, ingeneral, does not hold for the whole dynami
s of the systems in relativity theory,in 
ontrast to 
lassi
al me
hani
s.22 . When 
laiming that relativity prin
iple, in general, does not hold for thewhole dynami
s of the system, a lot depends on what we mean by the system setinto uniform motion. One has to admit that this 
on
ept is still vague. As wepointed out, it was not 
learly de�ned in Einstein's formulation of the prin
ipleeither. By leaving this 
on
ept vague, Einstein ta
itly assumes that these detailsare irrelevant. However, they 
an be irrelevant only if the system has dissipationsand the prin
iple is meant to be valid only for some equilibrium properties withrespe
t to whi
h the system unlearns the initial 
onditions. So the best thingwe 
an do is to keep the 
lassi
al de�nition of ψv: Consider a system of parti
lesthe motion of whi
h satis�es the following �initial� 
onditions:2

ri(t = t0) = Ri0
dr1

dt

∣∣
t=t0

= Vi0
(32)2A 
ondition like (32) does not ne
essarily mean either that t0 = 0 nor that the solution inquestion des
ribes the motion only for t ≥ t0, it just �xes a parti
ular solution by pres
ribingthe state of the parti
le at a given moment of time.



19The system is set in 
olle
tive motion at velo
ity v at the moment of time t0 ifits motion satis�es
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + v
(33)I have basi
ally two arguments for su
h a 
hoi
e:(a) The �rst is a methodologi
al one. The usual Einsteinian derivationof Lorentz transformation, simultaneity in K ′, et
., starts with thede
laration of the relativity prin
iple. In order to formulate the prin
iple,we need the 
on
ept of a physi
al system in uniform motion relative to

K. This 
on
ept, therefore, must logi
ally pre
ede relativity theory. (Seealso Point ??)(b) The se
ond support 
omes from what Bell 
alls �Lorentzian pedagogy�.Its spe
ial merit is to drive home the lesson that the lawsof physi
s in any one referen
e frame a

ount for all physi
alphenomena, in
luding the observations of moving observers.And it is often simpler to work in a single frame, rather than tohurry after ea
h moving obje
ts in turn. (Bell 1987, p. 77.)In referen
e frame K, the 
on
ept of setting a system of state (32) in
olle
tive motion at velo
ity v in turn means nothing but setting it instate (33).23 . Thus, we have seen that in 
lassi
al me
hani
s the prin
iple of relativity is,indeed, a universal prin
iple. It holds, without any restri
tion, for all dynami
aldetails of all possible systems des
ribed by 
lassi
al me
hani
s. In 
ontrast, inrelativisti
 physi
s this is not the 
ase:1. The prin
iple of relativity is not a universal prin
iple. It does nothold for the whole range of validity of the Lorentz 
ovariant laws ofrelativisti
 physi
s, but only for the equilibrium quantities 
hara
terisingthe equilibrium states of dissipative systems. Sin
e dissipation, relaxationand equilibrium are thermodynami
al 
on
eptions par ex
ellen
e, thespe
ial relativisti
 prin
iple of relativity is a
tually a thermodynami
alprin
iple, rather than a general prin
iple satis�ed by all dynami
al laws ofphysi
s des
ribing all physi
al pro
esses in details. One has to re
ognisethat the spe
ial relativisti
 prin
iple of relativity is experimentally
on�rmed only in su
h restri
ted sense.2. The satisfa
tion of the prin
iple of relativity in su
h restri
ted sense isindeed guaranteed by the Lorentz 
ovarian
e of those physi
al equationsthat determine, independently of the initial 
onditions, the equilibriumquantities for whi
h the prin
iple of relativity holds. In general,however, Lorentz 
ovarian
e of the laws of physi
s does not guaranteethe satisfa
tion of the relativity prin
iple.



203. It is an experimentally 
on�rmed fa
t of nature that some laws of physi
sare ab ovo Lorentz 
ovariant. However, sin
e relativity prin
iple is not auniversal prin
iple, it does not entitle us to infer that Lorentz 
ovarian
eis a fundamental symmetry of physi
s.4. The fa
t that the spa
e and time tags obtained by means of measuring-rods and 
lo
ks 
o-moving with di�erent inertial referen
e frames 
an be
onne
ted through the Lorentz transformation is 
ompatible with ourgeneral observation that the prin
iple of relativity only holds for su
hequilibrium quantities as the length of a solid rod or the 
hara
teristi
periods of a 
lo
k-like system.The fa
t that relativity prin
iple is not a universal prin
iple throws new lightupon the dis
ussion of how far the Einsteinian spe
ial relativity 
an be regardedas a prin
iple theory relative to the other (
onstru
tive) approa
hes (
f. Einstein1969, p. 57; Bell 1992; Brown and Pooley 2001; Brown 2001; 2003). It 
an alsobe interesting from the point of view of other re�e
tions on possible violationsof Lorentz 
ovarian
e (see, for example, Kostele
ký and Samuel 1989).It must be emphasised that the physi
al explanation of this more 
omplexpi
ture is rooted in the physi
al deformations of moving measuring-rods andmoving 
lo
ks by whi
h the spa
e and time tags are de�ned in moving referen
eframes. In Einstein's words:A Priori it is quite 
lear that we must be able to learn somethingabout the physi
al behaviour of measuring-rods and 
lo
ks from theequations of transformation, for the magnitudes z, y, x, t are nothingmore nor less than the results of measurements obtainable by meansof measuring-rods and 
lo
ks. (Einstein 1920, p. 35)Sin
e therefore Lorentz transformation itself is not merely a mathemati
al
on
ept without 
ontingent physi
al 
ontent, we must not forget the realphysi
al 
ontent of Lorentz 
ovarian
e and relativity prin
iple.Comments24 . It is sometimes thought that the Lorentz transformations, and therelativity prin
iple, say nothing about what happens when a physi
al systemthat is at rest in referen
e frame K is a

elerated in su
h a way that it be
omesat rest in another referen
e frameK ′. They are only about the relations betweensystems that already were at rest in K and K ′, respe
tively; and that are in thesame 
onditions as judged from their respe
tive rest frames.In this view, however, beyond the vagueness of the 
on
ept of �a systembeing at rest in a given referen
e frame� whi
h has been our main 
on
ernso far, there also appears a methodologi
al nonsense. How 
an our physi
altheories, in
luding the Lorentz transformation rules and the relativity prin
iple,be empiri
ally 
on�rmed s
ienti�
 theories, if we have no empiri
al knowledge



21about the systems' behaviours when they are a

elerated from one referen
eframe into the other? How 
an we identify systems of the same kind, �living� indi�erent referen
e frames K and K ′, without having experien
e about a system,say, in K a

elerated in su
h a way that it be
omes a system moving togetherwith the other referen
e frame K ′? How 
an we as
ertain they identi
al states?How 
an we transfer the standard measuring equipments from one frame to theother, if we have no empiri
al information about their behaviours when theyare moving? Or, if it is taken that we have independent standard equipments inevery referen
e frames, existing there from eternity, how 
an we identify thesedi�erent standard measuring equipments and how 
an we identify the di�erentphysi
al quantities de�ned in terms of these independent etalons? How 
anour physi
al world view be 
onsistent if a �system already moving at 
onstantvelo
ity v relative to K� has nothing to do with the �same system having been(gently) a

elerated to velo
ity v relative to K� and if the latter has nothing todo with the �same system being at rest in the frame K ′ moving at velo
ity vrelative to K��whatever these phrases mean.On the 
ontrary, as we pointed out in Point 5, the empiri
ally 
on�rmedlaws of physi
s in any one referen
e frame K must des
ribe�and, a
tually, dodes
ribe�the behaviour of all physi
al systems performing arbitrary motions,in
luding a

eleration relative to K. Applying these laws, we 
an determinethe results of measurements obtainable by means of measuring equipments 
o-moving with K ′ on various systems in
luding those whi
h are 
o-moving with
K ′. Whether or not these results, in 
omparison with the similar results ofmeasurements obtainable by means of measuring equipments at rest relative to
K, satisfy the Lorentz transformation rules and/or the relativity prin
iple is a
ontingent fa
t of nature ins
ribed in the physi
al laws in question in K. If so,then the Lorentz transformation rules and/or the relativity prin
iple des
ribenothing but the physi
al behaviours of the (measuring and measured) systemsin question performing various motions relative to K.25 . Another sour
e of 
onfusion is the widespread view that a

eleratedsystems, espe
ially a

elerated observers, are always problemati
 within the
ontext of the prin
iple of spe
ial relativity; by de�nition, su
h things fall outsideof the s
ope of the relativity prin
iple. It must be 
lear, however, that onlya

elerated referen
e frames fall outside the s
ope of the relativity prin
iple�inthe sense that the prin
iple asserts that the 
orresponding physi
al laws takethe same form in all inertial frames�but not a

elerated physi
al obje
ts.Moreover, note that an a

elerated referen
e frame falls outside of the s
opeof the relativity prin
iple only as the subje
t of the prin
iple, but not as itsobje
t. For, in any inertial referen
e frame K the spe
ial relativisti
 laws ofphysi
s must a

ount for the behaviour of all physi
al obje
ts, in
luding botha

elerated measuring equipments and the other physi
al obje
ts (of arbitrarymotion) to be measured. Therefore the Lorentz 
ovariant spe
ial relativisti
laws must a

ount for how the things look like even in an arbitrary a

eleratedframe K. For example, if the des
ription is 
orre
t, it must re�e
t the fa
t thatrelativity prin
iple does not hold for the referen
e frames of relative a

eleration.



22Moreover, relativity prin
iple also holds�in the usual restri
ted sense�for thesedes
riptions. For imagine another inertial frameK ′ moving at velo
ity v relativeto K. The laws of physi
s in K ′ also a

ount for what an observer observesin K. The relativity prin
iple relates two su
h des
riptions in the followingsense: Let the des
ribed phenomenon be <how the things look like in K>. Letthingsv symboli
ally denote the same things when they are in 
olle
tive motionat velo
ity v relative to K, and similarly let Kv be a frame whi
h performs thesame a

elerating motion as G in superposition with a translation at velo
ity vrelative toK. (Of 
ourse, these all are vague 
on
epts, as usual.) Now, a

ordingto the relativity prin
iple the <how the thingsv look like in Kv> expressed inthe terms of the results of measurements obtained by means of measuring-rods,
lo
ks, et
. 
o-moving with K ′ takes the same form as the <how the things looklike in K>, expressed in terms of the measurements with the devi
es at rest in
K.26 . Another reason why a

elerated systems are eyed with suspi
ion is thatbrutal a

eleration may damage the physi
al obje
t in question. As I pointed outin Point 18, this problem is di�erent from what has been our main 
on
ern thatthe relativity prin
iple has only limited validity in relativisti
 physi
s, simplybe
ause the prin
iple 
an fail even if the system is gently a

elerated. Let usnow examine this di�eren
e in more details.Re
all �rst what the relativity prin
iple says in 
lassi
al physi
s. It assertsthat equations (9)�(10) hold for initial 
onditions like (32)�(33):

ψ0 =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0
(34)

ψv =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + v
(35)That is, Gv (ψv) = ψ′

0, no matter how brutally the system is set in state
ψv. The point is that the prin
iple is about the 
omparison of the system'sbehaviour initiated from the sate (34) with the system's behaviour initiatedfrom state (35). The only di�eren
e between the two states is that the latter
ontains a 
olle
tive motion of all parti
les at velo
ity v. In other words, if(35) des
ribes the sate of the system right after it was brutally a

elerated to
o-moving with K ′, then (34) des
ribes the sate of the system right after it wasbrutally a

elerated to 
o-moving with K. The prin
iple has nothing to do withthe di�eren
e between the states before and after the brutal a

eleration.Let me illustrate this with an example. Imagine a system of intera
tingparti
les in state

ψ− =

{
ri(t = t−) = Ri−

dr1

dt

∣∣
t=t−

= Vi−at time t−. Then at time t0 − ∆t the system is exploded, and right after the



23explosion its state is
ψ0 =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0Now, imagine that the system is exploded in a slightly di�erent way, su
hthat a very strong but homogeneous gravitational �eld is turned on during theexplosion, so all parti
les obtain an additional velo
ity v = a · ∆t. Thereforethe system's state at t0 will be
ψv =

{
ri(t = t0) = Ri0

dr1

dt

∣∣
t=t0

= Vi0 + vAs a result, the system of state ψ− is set in 
olle
tive motion at velo
ity vrelative to K in the most brutal way. Of 
ourse, the prin
iple tells nothingabout the di�eren
es either between the states ψ0 and ψ− or between ψv and
ψ−. But, in spite of the brutality of the state preparation, in 
lassi
al physi
s,the relativity prin
iple always holds: Gv (ψv) = ψ′

0.Now, as we have seen, the same is not true in relativisti
 physi
s. Namely,even if the laws of physi
s satisfy 
ondition (11), Λv (ψv) 6= ψ′
0 in general�nomatter how brutal or gentle was the 
hange from ψ− to ψ0/ψv.



24Does Spe
ial Relativity Theory Tell Us AnythingNew About Spa
e and Time?Prolog27 . Consider the following de�nitions of ele
trodynami
al quantities:
r

FQ

X = F

Q

Figure 7. X is de�ned as the for
e felt by the unit test 
harge
X (r) Lo
ate a test 
harge Q at point r and measure the for
e F felt by the
harge. X (r) = F

Q
(Fig 7).

Y (r) Lo
ate two 
onta
ting metal plates of area A at point r. Separate themand measure the in�uen
e 
harge Q on one of the plates. Y (r) = Q
A
.The dire
tion of Y(r) is determined by the normal ve
tor of the plates,when the 
harge separation is maximal (Fig 8).

r

+-

Q

YA

Y = Q
AFigure 8. Y is de�ned by means of the in�uen
e 
harge divided by the surfa
eIt is a well known empiri
al fa
t that these quantities are not independent ofea
h other. For the sake of simpli
ity, assume the simplest material equation

Y = εX (36)



25where ε, 
alled diele
tri
 
onstant, is a s
alar �eld 
hara
terising the medium.Traditionally, in phenomenologi
al ele
trodynami
s, physi
al quantity Xis 
alled `ele
tri
 �eld strength' and denoted by E, and Y is 
alled `ele
tri
displa
ement' and denoted by D. Due to the material equation (36) one 
aneliminate one of the �eld variables.28 . Imagine a text book (I shall refer to it as the �old� one), whi
h only uses
E. The equations of ele
trostati
s are written as follows:div εE = ρ (37)rot E = 0 (38)For example, the book 
ontains the following exer
ise and solution:Exer
ise Consider the stati
 ele
tri
 �eld around a point 
harge qlo
ated at the border of two materials of diele
tri
 
onstant ε1 and

ε2. Is the ele
tri
 �eld strength spheri
ally symmetri
, or not?Solution (see Fig 9)
E1 =

1

2π (ε1 + ε2)

q

r3
r (39)

E2 =
1

2π (ε1 + ε2)

q

r3
r (40)Consequently,(S1) The ele
tri
 �eld strength is spheri
ally symmetri
.29 . Now, imagine a new ele
trodynami
s text book whi
h is non-traditionalin the following sense: it uses only �eld variable Y (traditionally 
alled `ele
tri
displa
ement' and denoted by D), but it systemati
ally 
alls Y `ele
tri
 �eldstrength' and denotes it by E. A

ordingly, the equations of ele
trostati
s arewritten as follows: div E = ρ (41)rot E

ε
= 0 (42)This new book also 
ontains the above exer
ise, but with the following solution:Solution (see Fig 10)

E1 =
ε1

2π (ε1 + ε2)

q

r3
r (43)

E2 =
ε2

2π (ε1 + ε2)

q

r3
r (44)Consequently,



26(S2) The ele
tri
 �eld strength is not spheri
ally symmetri
.
ε2

ε1

q

Figure 9. The `ele
tri
 �eld strength' of the stati
 ele
tri
 �eld around a point
harge q lo
ated at the border of two materials of diele
tri
 
onstants ε1 and ε2
ε2

ε1

q

Figure 10. The `ele
tri
 �eld strength' of the stati
 ele
tri
 �eld around a point
harge q lo
ated at the border of two materials of diele
tri
 
onstants ε1 and ε2Now, does senten
e (S2) of the new book 
ontradi
t to senten
e (S1) of theold book? Is it true that the theory des
ribed in the new book is a new theoryof ele
tromagnetism? Of 
ourse, not. Seemingly the two senten
es 
ontradi
t toea
h other, on the level of the words. However, in order to 
larify the meaning ofsenten
e (S1) and (S2), one has to go ba
k to the �rst pages of the 
orrespondingbook and 
larify the de�nition of the physi
al quantity 
alled `ele
tri
 �eldstrength'. And it will be 
lear that the term `ele
tri
 �eld strength' standsfor two di�erent physi
al quantities in the two books. Moreover, both textbooks provide 
omplete des
riptions of ele
tromagneti
 phenomena. Therefore,although the theory in the old book does not use the �eld variable Y, it is
apable to a

ount for the physi
al phenomena by whi
h physi
al quantity Yis empiri
ally de�ned. It is 
apable to determine the in�uen
e 
harge on theseparated plates (by 
al
ulating εEA). In other words, it is 
apable to determinethe value of Y, that is, the value of what the new book 
alls `ele
tri
 �eldstrength'. And vi
e versa, on the basis of the theory des
ribed in the new bookone 
an 
al
ulate the for
e felt by a unit test 
harge (by 
al
ulating E

ε
), that is,one 
an predi
t the value of X, what the old book 
alls `ele
tri
 �eld strength'.And both, the theory in the old book and the theory in the new book have thesame predi
tions for both, X and Y. That is to say, although they use di�erent



27terminology, the two text books 
ontain the same ele
trodynami
s, they providethe same des
ription of physi
al reality.



28What will be 
hallenged30 . It is widely believed that the prin
ipal di�eren
e between Einstein'sspe
ial relativity and its 
ontemporary rival Lorentz theory was that whilethe Lorentz theory3 was also 
apable of �explaining away� the null result ofthe Mi
helson�Morley experiment and other experimental �ndings by means ofthe distortions of moving measuring-rods and moving 
lo
ks, spe
ial relativityrevealed more fundamental new fa
ts about the geometry of spa
e-time behindthese phenomena. A

ording to this widespread view, spe
ial relativity theoryhas radi
ally 
hanged our 
on
eptions about spa
e and time by 
laiming thatspa
e-time is not like an E3 ×E1 spa
e, as was believed in 
lassi
al physi
s, butit is a four dimensional Minkowski spa
e M4. One 
an express this revolutionary
hange by the following logi
al s
hema: Earlier we believed in G1 (M), whereMstands for spa
e-time and G1 denotes some predi
ate (like E3 × E1). Then wedis
overed that ¬G1 (M) but G2 (M), where G2 denotes a predi
ate di�erentfrom G1 (something like M4).Contrary to this 
ommon view, our �rst thesis will be the following:Thesis 1. In 
omparison with the pre-relativisti
 Galileo-invariant 
on
eptions,spe
ial relativity tells us nothing new about the geometry of spa
e-time. Itsimply 
alls something else �spa
e-time�, and this something else has di�erentproperties. All statements of spe
ial relativity about those features of reality that
orrespond to the original meaning of the terms �spa
e� and �time� are identi
alwith the 
orresponding traditional pre-relativisti
 statements.Thus the only new fa
tor in the spe
ial relativisti
 a

ount of spa
e-time is thede
ision to designate something else �spa
e-time�. In other words: Earlier webelieved in G1 (M). Then we dis
overed for some M̃ 6= M that ¬G1

(
M̃

) but
G2

(
M̃

). Consequently, it still holds that G1 (M).31 . So the real novelty in spe
ial relativity is some G2

(
M̃

). As we willsee, this is nothing but the des
ription of the physi
al behaviour of movingmeasuring-rods and 
lo
ks. It will be also argued, however, that G2

(
M̃

) doesnot 
ontradi
t to what Lorentz theory 
laims. More exa
tly, as our se
ond thesisasserts, both theories 
laim that G1 (M)&G2

(
M̃

):Thesis 2. Spe
ial relativity and Lorentz theory are 
ompletely identi
al inboth senses, as theories about spa
e-time and as theories about the behaviour of3I use the term �Lorentz theory� as 
lassi�
ation to refer to the similar approa
hes ofLorentz, FitzGerald, and Poin
aré, that save the 
lassi
al Galilei 
ovariant 
on
eptions ofspa
e and time by explaining the null result of the Mi
helson�Morley experiment and othersimilar experimental �ndings through the physi
al distortions of moving obje
ts (�rst of all ofmoving measuring-rods and 
lo
ks), no matter whether these physi
al distortions are simplyhypothesised in the theory, or pres
ribed by some �prin
iple� like Lorentz's prin
iple, or theyare 
onstru
tively derived from the behaviour of the mole
ular for
es. From the point of viewof my re
ent 
on
erns what is important is the logi
al possibility of su
h an alternative theory.Although, Lorentz's 1904 paper is very 
lose to be a good histori
 example.



29moving physi
al obje
ts.On the meaning of the question �What is spa
e-time like?�32 . A theory about spa
e-time des
ribes a 
ertain group of obje
tive featuresof physi
al reality, whi
h we 
all (the stru
ture of) spa
e-time. A

ording to
lassi
al physi
s, the geometry of spa
e-time E3 × E1, where E3 is a three-dimensional Eu
lidean spa
e for spa
e, and E1 is a one-dimensional Eu
lideanspa
e for time, with two independent invariant metri
s 
orresponding to thespa
e and time intervals. In 
ontrast, spe
ial relativity 
laims that the geometryof spa
e-time�understood as the same obje
tive features of physi
al reality�isdi�erent: it is a Minkowski geometry.Physi
s des
ribes obje
tive features of reality by means of physi
al quantities.Our s
rutiny will therefore start by 
larifying how 
lassi
al physi
s and relativitytheory de�ne the spa
e and time tags assigned to an arbitrary event. It will beseen that these empiri
al de�nitions are di�erent.The empiri
al de�nition of a physi
al quantity requires an etalon measuringequipment and a pre
ise des
ription of the operation how the quantity to bede�ned is measured. For example, assume we 
hoose, as the etalon measuring-rod, the meter sti
k that is lying in the International Bureau of Weights andMeasures (BIPM) in Paris. Also assume�this is another 
onvention�that�time� is de�ned as a physi
al quantity measured by the standard 
lo
k alsositting in the BIPM. When I use the word �
onvention� here, I mean thesemanti
al freedom we have in the use of the un
ommitted signs �distan
e�and �time��a freedom what Grünbaum (1974, p. 27) 
alls �trivial semanti
al
onventionalism�.33 . Now we are going to des
ribe the empiri
al de�nitions of the spa
e andtime tags of an arbitrary event A, relative to the referen
e frame K in whi
h thethe etalons are at rest, and to another referen
e fame K ′ whi
h is moving (at
onstant velo
ity v) relative to K. For the sake of simpli
ity 
onsider only onespa
e dimension and assume that the origin of both K and K ′ is at the BIPMat the initial moment of time.(D1) Time tag in K a

ording to 
lassi
al physi
sTake a syn
hronised 
opy of the standard 
lo
k at rest in the BIPM,and slowly4 move it to the lo
us of event A. The time tag t̂K (A) isthe reading of the transfered 
lo
k when A o

urs.54�Slowly� means that we move the 
lo
k from one pla
e to the other over a long periodof time, a

ording to the reading of the 
lo
k itself. The reason is to avoid the loss of phasea

umulated by the 
lo
k during its journey.5With this de�nition we a
tually use the standard �ε =
1

2
-syn
hronisation�. I do not wantto enter now into the question of the 
onventionality of simultaneity, whi
h is a hotly debatedproblem, in itself. (See Point 67.)



30(D2) Spa
e tag in K a

ording to 
lassi
al physi
sThe spa
e tag x̂K(A) of event A is is the distan
e from the origin of
K of the lo
us of A along the x-axis6 measured by superposing thestandard measuring-rod, being always at rest relative to K.(D3) Time tag in K a

ording to spe
ial relativityTake a syn
hronised 
opy of the standard 
lo
k at rest in the BIPM,and slowly move it to the lo
us of event A. The time tag t̃K (A) isthe reading of the transfered 
lo
k when A o

urs.(D4) Spa
e tag in K a

ording to spe
ial relativityThe spa
e tag x̃K(A) of event A is the distan
e from the origin of
K of the lo
us of A along the x-axis measured by superposing thestandard measuring-rod, being always at rest relative to K.(D5) Time tag of an event in K ′ a

ording to 
lassi
al physi
sThe time tag of event A relative to the frame K ′ is

t̂K
′

(A) := t̂K(A) (45)(D6) Spa
e tag of an event in K ′ a

ording to 
lassi
al physi
sThe spa
e tag of event A relative to the frame K ′ is
x̂K′

(A) := x̂K(A) − vt̂K(A) (46)where v = v̂K(K ′) is the velo
ity of K ′ relative to K in the sense ofde�nition (D9).(D7) Time tag in K ′ a

ording to spe
ial relativityTake a syn
hronised 
opy of the standard 
lo
k at rest in the BIPM,gently a

elerate it from K to K ′ and set it to show 0 when theorigins of K and K ′ 
oin
ide. Then slowly (relative to K ′) move itto the lo
us of event A. The time tag t̃K′

(A) is the reading of thetransfered 
lo
k when A o

urs.(D8) Spa
e tag in K ′ a

ording to spe
ial relativityThe spa
e tag x̃K′

(A) of event A is the distan
e from the origin of
K ′ of the lo
us of A along the x-axis measured by superposing thestandard measuring-rod, being always at rest relative to K ′, in justthe same way as if all were at rest.6The straight line is de�ned by a light beam.



31(D9) Velo
ities in the di�erent 
asesVelo
ity is a quantity derived from the above de�ned spa
e and timetags:
v̂K =

∆x̂K

∆t̂K

ṽK =
∆x̃K

∆t̃K

v̂K′

=
∆x̂K′

∆t̂K′

ṽK′

=
∆x̃K′

∆t̃K′34 . With these empiri
al de�nitions, in every inertial frame we de�ne fourdi�erent quantities for ea
h event, su
h that:
x̂K(A) ≡ x̃K(A) (47)
t̂K(A) ≡ t̃K(A) (48)
x̂K′

(A) 6≡ x̃K′

(A) (49)
t̂K

′

(A) 6≡ t̃K
′

(A) (50)where ≡ denotes the identi
al empiri
al de�nition.In spite of the di�erent empiri
al de�nitions, it 
ould be a 
ontingent fa
t ofnature that x̂K′

(A) = x̃K′

(A) and/or t̂K′

(A) = t̃K
′

(A) for every event A. Letme illustrate this with an example. The inertial mass mi and gravitationalmass mg are two quantities having di�erent experimental de�nitions. But,it is a 
ontingent fa
t of nature (experimentally proved by Eötvös around1900) that, for any obje
t, the two masses are equal, mi = mg. A littlere�e
tion reveals, however, that this is not the 
ase here. It follows fromspe
ial relativity that x̃K(A), t̃K(A) are related with x̃K′

(A), t̃K
′

(A) throughthe Lorentz transformation, while x̂K(A), t̂K(A) are related with x̂K′

(A), t̂K
′

(A)through the 
orresponding Galilean transformation, therefore, taking intoa

ount identities (47)�(48), x̂K′

(A) 6= x̃K′

(A) and t̂K′

(A) 6= t̃K
′

(A), if v 6= 0.Thus, our �rst partial 
on
lusion is that di�erent physi
al quantities are
alled �spa
e� tag, and similarly, di�erent physi
al quantities are 
alled �time�tag in spe
ial relativity and in 
lassi
al physi
s.7 In order to avoid further
onfusion, from now on ŝpa
e and t̂ime tags will mean the physi
al quantitiesde�ned in (D1), (D2), (D5), and (D6)�a

ording to the usage of the termsin 
lassi
al physi
s�, and �spa
e� and �time� in the sense of the relativisti
de�nitions (D3), (D4), (D7) and (D8) will be 
alled s̃pa
e and t̃ime.Spe
ial relativity theory makes di�erent assertions about somethings whi
hare di�erent from ŝpa
e and t̂ime. In our symboli
 notation, 
lassi
al physi
s7This was �rst re
ognised by Bridgeman (1927, p. 12), although he did not investigate thefurther 
onsequen
es of this fa
t.
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laims G1

(
M̂

) about M̂ and relativity theory 
laims G2

(
M̃

) about someother features of reality M̃ . The question is what spe
ial relativity and 
lassi
alphysi
s say when they are making assertions about the same things.Spe
ial relativity does not tell us anything newabout spa
e and time35 . Classi
al physi
s 
alls �spa
e� and �time� what we denoted by ŝpa
e andt̂ime. So relativity theory would tell us something new if it a

ounted forphysi
al quantities x̂ and t̂ di�erently. If there were any event A and any inertialframe of referen
e K⋆ in whi
h the ŝpa
e or t̂ime tag assigned to the event byspe
ial relativity, [
x̂K⋆

(A)
]
relativity

, [
t̂K

⋆

(A)
]
relativity

, were di�erent from thesimilar tags assigned by 
lassi
al physi
s, [x̂K⋆

(A)
]
classical

, [
t̂K

⋆

(A)
]
classical

. If,for example, there were any two events ̂simultaneous in relativity theory whi
hwere not ̂simultaneous a

ording to 
lassi
al physi
s, or vi
e versa�to tou
h ona sore point. But a little re�e
tion shows that this is not the 
ase. Taking intoa

ount empiri
al identities (47)�(48), one 
an 
al
ulate the relativity theoreti
predi
tion for the out
omes of the measurements des
ribed in (D1), (D2), (D5),and (D6), that is, the relativity theoreti
 predi
tion for x̂K′

(A):
[
x̂K′

(A)
]

relativity
= x̃K(A) − ṽK(K ′)t̃K(A) (51)the value of whi
h is equal to

x̂K(A) − v̂K(K ′)t̂K(A) =
[
x̂K′

(A)
]

classical
(52)Similarly,

[
t̂K

′

(A)
]

relativity
= t̃K(A) = t̂K(A) =

[
t̂K

′

(A)
]

classical
(53)This 
ompletes the proof of Thesis 1.Lorentz theory and spe
ial relativity are
ompletely identi
al theories36 . Sin
e Lorentz theory adopts the 
lassi
al 
on
eptions of ŝpa
e and t̂ime,it does not di�er from spe
ial relativity in its assertions about ŝpa
e and t̂ime.What about the other 
laim�G2

(
M̃

)�about s̃pa
e and t̃ime? In order toprove what Thesis 2 asserts, that is to say the 
omplete identity of Lorentztheory and of spe
ial relativity, we also have to show that the two theories have



33identi
al assertions about x̃ and t̃, that is,
[
x̃K′

(A)
]

relativity
=

[
x̃K′

(A)
]

LT[
t̃K

′

(A)
]

relativity
=

[
t̃K

′

(A)
]

LTA

ording to relativity theory, the s̃pa
e and t̃ime tags in K ′ and in K arerelated through the Lorentz transformations. From (47)�(48) we have
[
t̃K

′

(A)
]

relativity
=

t̂K(A) − v x̂K(A)
c2√

1 − v2

c2

(54)
[
x̃K′

(A)
]

relativity
=

x̂K(A) − v t̂K(A)√
1 − v2

c2

(55)37 . On the other hand, taking the assumptions of Lorentz theory that thestandard 
lo
k slows down by fa
tor √
1 − v2

c2 and that a rigid rod su�ers a
ontra
tion by fa
tor √
1 − v2

c2 when they are gently a

elerated from K to
K ′, one 
an dire
tly 
al
ulate the s̃pa
e tag x̃K′

(A) and the t̃ime tag t̃K′

(A),following the des
riptions of operations in (D7) and (D8).First, let us 
al
ulate the reading of the 
lo
k slowly transported in K ′ fromthe origin to the lo
us of an event A. The 
lo
k is moving with a varyingvelo
ity8
v̂K

C (t̂K) = v + ŵK(t̂K)where ŵK(t̂K) is the velo
ity of the 
lo
k relative to K ′, that is, ŵK(0) = 0when it starts at x̂K
C (0) = 0 (as we assumed, t̂K = 0 and the transported 
lo
kshows 0 when the origins of K and K ′ 
oin
ide) and ŵK(t̂K1 ) = 0 when the 
lo
karrives at the pla
e of A. The reading of the 
lo
k at the time t̂K1 will be

T =

∫ t̂K

1

0

√

1 −

(
v + ŵK(t̂)

)2

c2
dt̂ (56)Sin
e ŵK is small we may develop in powers of ŵK , and we �nd from (56) whennegle
ting terms of se
ond and higher order

T =
t̂K1 −

„
t̂K

1
v+

R t̂
K
1

0
ŵK(t̂) dt̂

«
v

c2√
1 − v2

c2

=
t̂K(A) − x̂K(A)v

c2√
1 − v2

c2

(57)8For the sake of simpli
ity we 
ontinue to restri
t our 
al
ulation to one spa
e dimension.For the general 
al
ulation of the phase shift su�ered by moving 
lo
ks, see Jánossy 1971, pp.142�147.



34(where, without loss of generality, we take t̂K1 = t̂K(A)). Thus, a

ording to thede�nition of t̃, we have
[
t̃K

′

(A)
]

LT
=
t̂K(A) − v x̂K(A)

c2√
1 − v2

c2

(58)whi
h is equal to [
t̃K

′

(A)
]

relativity
in (54).Now, taking into a

ount that the length of the 
o-moving meter sti
k isonly √

1 − v2

c2 , the distan
e of event A from the origin of K is the following:
x̂K(A) = t̂K(A)v + x̃K′

(A)

√
1 −

v2

c2
(59)and thus

[
x̃K′

(A)
]

LT
=
x̂K(A) − v t̂K(A)√

1 − v2

c2

=
[
x̃K′

(A)
]

relativityThis 
ompletes the proof. The two theories make 
ompletely identi
al assertionsnot only about the ŝpa
e and t̂ime tags x̂, t̂ but also about the s̃pa
e and t̃imetags x̃, t̃.38 . Consequently, there is full agreement between the Lorentz theory andspe
ial relativity theory in the following statements:(a) Ṽelo
ity�whi
h is 
alled �velo
ity� by relativity theory�is not an additivequantity,
ṽK′

(K ′′′) =
ṽK′

(K ′′) + ṽK′′

(K ′′′)

1 + evK′ (K′′)evK′′ (K′′′)
c2while ̂velo
ity�that is, what we traditionally 
all �velo
ity��is an additivequantity,

v̂K′

(K ′′′) = v̂K′

(K ′′) + v̂K′′

(K ′′′)where K ′,K ′′,K ′′′ are arbitrary three frames. For example,
v̂K′

(light signal) = v̂K′

(K ′′) + v̂K′′

(light signal)(b) The (
x̃1, x̃2, x̃3, t̃

)-map of the world 
an be 
onveniently des
ribed througha Minkowski geometry, su
h that the t̃-simultaneity 
an be des
ribedthrough the orthogonality with respe
t to the 4-metri
 of the Minkowskispa
e, et
.(
) The (
x̂1, x̂2, x̂3, t̂

)-map of the world, 
an be 
onveniently des
ribedthrough a traditional �spa
e-time geometry� like E3 × E1.



35(d) The ̂velo
ity of light is not the same in all inertial frames of referen
e.(e) The ˜velo
ity of light is the same in all inertial frames of referen
e.(f) T̂ime and ̂distan
e are invariant, the referen
e frame independent
on
epts, t̃ime and ˜distan
e are not.(g) t̂-simultaneity is an invariant, frame-independent 
on
ept, while t̃-simultaneity is not.(h) For arbitrary K ′ and K ′′, x̂K′

(A), t̂K
′

(A) 
an be expressed by
x̂K′′

(A), t̂K
′′

(A) through a suitable Galilean transformation(i) For arbitrary K ′ and K ′′, x̃K′

(A), t̃K
′

(A) 
an be expressed by
x̃K′′

(A), t̃K
′′

(A) through a suitable Lorentz transformation....Moreover, in all 
ases when it holds, they will agree in the relativity prin
iple:(j) The behaviour of similar systems 
o-moving as a whole with di�erentinertial frames, expressed in terms of the results of measurementsobtainable by means of 
o-moving measuring-rods and 
lo
ks (that is, interms of quantities x̃ and t̃) is the same in every inertial frame of referen
e.Combining this with (i),(k) The laws of physi
s, expressed in terms of x̃ and t̃, must be given by meansof Lorentz 
ovariant equations.Finally, they agree that(l) All fa
ts about x̃ and t̃ (and, 
onsequently, all fa
ts about x̂ and t̂) 
anbe derived ba
kward from (e) and (j).To sum up symboli
ally, Lorentz theory and and spe
ial relativity theoryhave identi
al assertions about both M̂ and M̃ : they unanimously 
laim that
G1

(
M̂

)
&G2

(
M̃

).39 . Finally, note that in an arbitrary inertial frame K ′ for every event Athe tags x̂K′

1 (A), x̂K′

2 (A), x̂K′

3 (A), t̂K′

(A) 
an be expressed in terms of x̃K′

1 (A),
x̃K′

2 (A), x̃K′

3 (A), t̃K′

(A) and vi
e versa. Consequently, we 
an express the lawsof physi
s�as is done in spe
ial relativity�equally well in terms of the variables
x̃1, x̃2, x̃3, t̃ instead of the ŝpa
e and t̂ime tags x̂1, x̂2, x̂3, t̂. On the other hand,we should emphasise that the one-to-one 
orresponden
e between x̃1, x̃2, x̃3, t̃and x̂1, x̂2, x̂3, t̂ also entails that the laws of physi
s (so 
alled �relativisti
� lawsin
luded) 
an be equally well expressed in terms of the (traditional) ŝpa
e andt̂ime tags x̂1, x̂2, x̂3, t̂ instead of the variables x̃1, x̃2, x̃3, t̃. In brief, physi
s 
ouldmanage equally well with the 
lassi
al Galileo-invariant 
on
eptions of ŝpa
eand t̂ime.



36Comments40 . In a stri
t logi
al sense we have �shed the argumentation for our twotheses in Point 30. We proved that spe
ial relativity and Lorentz theory are
ompletely identi
al theories. Nevertheless, the following 
omments may aid thereader in arriving at his own appraisal.Are relativisti
 deformations real physi
al 
hanges?41 . Many believe that it is an essential di�eren
e between the two theories thatrelativisti
 deformations like the Lorentz�FitzGerald 
ontra
tion and the timedilatation are real physi
al 
hanges in Lorentz theory, but there are no similarphysi
al e�e
ts in spe
ial relativity. Let us examine two typi
al argumentations.A

ording to the �rst argument the �Lorentz 
ontra
tion/dilatation� of a rod
annot be an obje
tive physi
al deformation in relativity theory, be
ause it isa frame-dependent fa
t whether �the rod is shrinking or expanding�. Considera rod a

elerated from the sate of rest in referen
e frame K ′ to the state ofrest in referen
e frame K ′′. A

ording to relativity theory, �the rod shrinksin frame K ′ and, at the same time, expands in frame K ′′�. But this is a
ontradi
tion, the argument says, if the deformation was a real physi
al 
hange.(In 
ontrast, the argument says, Lorentz's theory 
laims that �the length of arod� is a frame-independent 
on
ept. Consequently, in Lorentz's theory, �the
ontra
tion/dilatation of a rod� 
an indeed be an obje
tive physi
al 
hange.)However, we have already 
lari�ed, that the terms �distan
e� and �time�have di�erent meanings in relativity theory and Lorentz's theory. Due to thedi�eren
e between l̂ength and l̃ength, we must also di�erentiate ̂dilatation from
˜dilatation, ̂
ontra
tion from ˜
ontra
tion, and so on. For example, 
onsider thereferen
e frame of the etalons K and another frame K ′ moving relative to K.The following statements are true about the �length� of a rod a

elerated fromthe sate of rest in referen
e frame K (state1) to the state of rest in referen
eframe K ′ (state2):

l̂K (state1) > l̂K (state2) ̂
ontra
tion in K (60)
l̂K

′

(state1) > l̂K
′

(state2) ̂
ontra
tion in K ′ (61)
l̃K (state1) > l̃K (state2) ˜
ontra
tion in K (62)
l̃K

′

(state1) < l̃K
′

(state2) ˜dilatation in K ′ (63)And there is no di�eren
e between relativity theory and Lorentz's theory: all ofthe four statements (60)�(63) are true in both theories. If, in Lorentz's theory,fa
ts (60)�(61) provide enough reason to say that there is a real physi
al 
hange,then the same fa
ts provide enough reason to say the same thing in relativitytheory. And vi
e versa, if (62)�(63) 
ontradi
ted to the existen
e of real physi
al
hange of the rod in relativity theory, then the same holds for Lorentz's theory.
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Figure 11. One and the same obje
tive physi
al pro
ess is tra
ed in the in
reaseof kineti
 energy of the spa
eship relative to frame K ′, while it is tra
ed in thede
rease of kineti
 energy relative to frame K ′′42 . It should be mentioned, however, that there is no 
ontradi
tion between(62)�(63) and the existen
e of real physi
al 
hange of the rod. Relativitytheory and Lorentz's theory unanimously 
laim that l̃ength is a relative physi
alquantity. It is entirely possible that one and the same obje
tive physi
al 
hangeis tra
ed in the in
rease of the value of a relative quantity relative to onereferen
e frame, while it is tra
ed in the de
rease of the same quantity relativeto another referen
e frame (Fig 11). (What is more, both, the value relative toone frame and the value relative to the other frame, re�e
t obje
tive features ofthe obje
tive physi
al pro
ess in question.)43 . A

ording to the other wide-spread argument the relativisti
 deformations
annot be real physi
al e�e
ts sin
e they 
an be observed by an observer also ifthe obje
t is at rest but the observer is in motion at 
onstant velo
ity. And these�relativisti
 deformations� 
annot be explained as real physi
al deformations ofthe obje
t at rest�the argument says.There is, however, a triple misunderstanding behind su
h an argument:
• Of 
ourse, no real distortion is su�ered by an obje
t whi
h is 
ontinuouslyat rest relative to a referen
e frame K ′, and, 
onsequently, whi
h is
ontinuously in motion at a 
onstant velo
ity relative to another frame
K ′′. None of the observers 
an observe su
h a distortion. For example,

l̃K
′

( distortion freerod at t̃1 )
= l̃K

′

( distortion freerod at t̃2 )

l̃K
′′

( distortion freerod at t̃1 )
= l̃K

′′

( distortion freerod at t̃2 )

• It is surely true for any t̃ that
l̃K

′

( distortionfree rod at t̃ )
6= l̃K

′′

( distortionfree rod at t̃ ) (64)



38This fa
t, however, does not express a ˜
ontra
tion of the rod�neither areal nor an apparent ˜
ontra
tion.
• On the other hand, inequality (64) is a 
onsequen
e of the real physi
aldistortions su�ered by the measuring equipments�with whi
h the s̃pa
eand t̃ime tags are empiri
ally de�ned�when they are transfered from theBIPM to the other referen
e frame in question.944 . Finally, let me give an example for a well known physi
al phenomenonwhi
h is of exa
tly the same kind as the relativisti
 deformations, butnobody would question whether it is a real physi
al 
hange. Consider theele
tromagneti
 �eld of a point 
harge q. One 
an easily solve the Maxwellequations when the parti
le is at rest in a given K ′). The result is the familiarspheri
ally symmetri
 Coulomb �eld (Fig. 12):

ẼK′

1

∣∣∣ at rest
inK ′

=
qx̃K′

1((
x̃K′

1

)2
+

(
x̃K′

2

)2
+

(
x̃K′

3

)2
) 3

2

(65)
ẼK′

2

∣∣∣ at rest
inK ′

=
qx̃K′

2((
x̃K′

1

)2
+

(
x̃K′

2

)2
+

(
x̃K′

3

)2
) 3

2

(66)
ẼK′

3

∣∣∣ at rest
inK ′

=
qx̃K′

3((
x̃K′

1

)2
+

(
x̃K′

2

)2
+

(
x̃K′

3

)2
) 3

2

(67)
B̃K′

1

∣∣∣ at rest
inK ′

= 0 (68)
B̃K′

2

∣∣∣ at rest
inK ′

= 0 (69)
B̃

′K′

3

∣∣∣ at rest
inK ′

= 0 (70)How does this �eld 
hange if we set the 
harge in motion at 
onstant ˜velo
ity
ṽ along the x̃3 axis? Maxwell's equations 
an also answer this question. Firstwe solve the Maxwell equations for arbitrary time-depending sour
es. Then,from the retarded potentials su
h obtained, we derive the Lienart-Wie
hertpotentials, from whi
h we 
an determine the �eld. (See, for example, Feynman,Leighton and Sands 1963, Vol. 2.) Here is the result:

ẼK′

1

∣∣∣ moving
inK ′

=
qx̃K′

1

(
1 − ev2

c2

)− 1

2

((
x̃K′

1

)2
+

(
x̃K′

2

)2
+B2

) 3

2

(71)9For further details of what a moving observer 
an observe by means of his or her distortedmeasuring equipments, see Bell 1983, pp. 75�76.
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Figure 12. The ele
tri
 �eld of a point 
harge
ẼK

2

∣∣∣ moving
inK ′

=
qx̃K

2

(
1 − ev2

c2

)− 1

2

((
x̃K′

1

)2
+

(
x̃K′

2

)2
+B2

) 3

2

(72)
ẼK′

3

∣∣∣ moving
inK ′

=
qB

((
x̃K′

1

)2
+

(
x̃K′

2

)2
+B2

) 3

2

(73)
B̃K′

1

∣∣∣ moving
inK ′

= −
ṽ

c
ẼK′

2 (74)
B̃K′

2

∣∣∣ moving
inK ′

=
ṽ

c
ẼK

1 (75)
B̃

′K′

3

∣∣∣ moving
inK ′

= 0 (76)where
B =

x̃K′

3 − X̃K′

3

(
t̃
)

√
1 − ev2

c2and X̃K′

3

(
t̃
) is the ˜position of the 
harge at t̃ime t̃.So, the ele
tromagneti
 �eld of the 
harge 
hanged : earlier it was like (65)�(70), then it 
hanged for the one des
ribed by (71)�(76). There appeared amagneti
 �eld (turning the magneti
 needle, for example) and the ele
tri
 �eld�attened in the dire
tion of motion (Fig. 12). No physi
ist would say that thisis not a real physi
al 
hange in the ele
tromagneti
 �eld of the 
harge, only



40be
ause we 
an express the new ele
tromagneti
 �eld of the moving 
harge interms of the variables relative to the 
o-moving referen
e frame K ′′,
ẼK′′

1

∣∣∣ moving
inK ′

=
qx̃K′′

1((
x̃K′′

1

)2
+

(
x̃K′′

2

)2
+

(
x̃K′′

3

)2
) 3

2

(77)
ẼK′′

2

∣∣∣ moving
inK ′

=
qx̃K′′

2((
x̃K′′

1

)2
+

(
x̃K′′

2

)2
+

(
x̃K′′

3

)2
) 3

2

(78)
ẼK′′

3

∣∣∣ moving
inK ′

=
qx̃K′′

3((
x̃K′′

1

)2
+

(
x̃K′′

2

)2
+

(
x̃K′′

3

)2
) 3

2

(79)
B̃K′′

1

∣∣∣ moving
inK ′

= 0 (80)
B̃K′′

2

∣∣∣ moving
inK ′

= 0 (81)
B̃K′′

3

∣∣∣ moving
inK ′

= 0 (82)and it has the same form as the old ele
tromagneti
 �eld, when the 
harge wasat rest in K ′, expressed in the terms of the variables relative to K ′.45 . Thus, relativisti
 deformations are real physi
al deformations also inspe
ial relativity theory. One has to emphasise this fa
t be
ause it is animportant part of the physi
al 
ontent of relativity theory. It must be 
lear,however, that this 
on
lusion is independent of our main 
on
ern. Whatis important is the following: Lorentz's theory and spe
ial relativity haveidenti
al assertions about l̂ength and l̃ength, ̂duration and ˜duration, ̂shrinkingand ˜shrinking, et
. Consequently, whether or not these fa
ts provide enoughreason to say that the deformations are real physi
al 
hanges, the 
on
lusion is
ommon to both theories.The intuition behind the de�nitions46 . Before entering into the dis
ussion of the intuitions behind de�nitions(D1)�(D9), I would like to emphasise that, from the point of view of ourmain 
on
ern, it is not important how the di�erent de�nitions are justi�edand whether these justi�
ations are 
orre
t or not. What is important is themere fa
t of the terminologi
al 
onfusion that the �spa
e� and �time� tags meandi�erent physi
al quantities in 
lassi
al physi
s and relativity theory.The basi
 di�eren
e between the intuitions behind the 
lassi
al andrelativisti
 de�nitions is the following. As we have seen, both Lorentz theoryand spe
ial relativity �know� about the distortions of measuring-rods and 
lo
ks



41when they are transfered from the BIPM to the moving (relative to the BIPM)referen
e frame K ′. In the relativisti
 de�nitions, (D7) and (D8), we ignorethis fa
t and de�ne the spa
e and time tags as they are measured by means ofthe distorted equipments. In 
ontrast, as it follows from the whole tradition of
lassi
al physi
s, in de�nitions (D5)�(D6) we take into a

ount the distortionsof the measuring equipments. That is why the spa
e and time tags in K ′ arede�ned through the original spa
e and time data, measured by the originaldistortion free measuring-rod and 
lo
k, whi
h are at rest relative to the BIPM.47 . In order to see this �
ompensatory view� of the 
lassi
al de�nition in amore expli
it form, it worth while to mention possible alternative de�nitionsinstead of (D5) and (D6). We know that the standard 
lo
k slows down byfa
tor √
1 − v2

c2 and that a rigid rod su�ers a 
ontra
tion by fa
tor √
1 − v2

c2when they are gently a

elerated from K to K ′. Therefore, a

ording to the
ompensatory view, if we measure a distan
e and the result is X , then the �realdistan
e� is X√
1 − v2

c2 . Similarly, taking into a

ount the phase shift su�eredby a moving 
lo
k, we know from (57) that if the reading of the 
lo
k is T thenthe �real time� is
T +X v

c2√
1 − v2

c2A

ordingly, the alternative de�nitions are the following:(D6') Spa
e tag of an event in K ′ a

ording to 
lassi
al physi
sLet X be the �distan
e� from the origin of K ′ of the lo
us of Aalong the x-axis measured by superposing the standard measuring-rod, being always at rest relative to K ′, in just the same way as ifall were at rest. The spa
e tag x̌K′

(A) of event A is
x̌K′

(A) := X

√
1 −

v2

c2
(83)(D5') Time tag of an event in K ′ a

ording to 
lassi
al physi
sTake a syn
hronised 
opy of the standard 
lo
k at rest in the BIPM,gently a

elerate it from K to K ′ and set it to show 0 when theorigins of K and K ′ 
oin
ide. Then slowly (relative to K ′) move itto the lo
us of event A. Let T be the reading of the transfered 
lo
kwhen A o

urs. The time tag t̃K′

(A) is
ťK

′

(A) :=
T +X v

c2√
1 − v2

c2

(84)



42Sin
e X and T are nothing but x̃K′

(A) and t̃K
′

(A), it follows from (58) and(59) that
x̌K′

(A) = x̂K′

(A)

ťK
′

(A) = t̂K
′

(A)On the null result of the Mi
helson�Morley experiment48 . Consider the following passage from Einstein:A ray of light requires a perfe
tly de�nite time T to pass from onemirror to the other and ba
k again, if the whole system be at restwith respe
t to the aether. It is found by 
al
ulation, however,that a slightly di�erent time T 1 is required for this pro
ess, ifthe body, together with the mirrors, be moving relatively to theaether. And yet another point: it is shown by 
al
ulation thatfor a given velo
ity v with referen
e to the aether, this time T 1is di�erent when the body is moving perpendi
ularly to the planesof the mirrors from that resulting when the motion is parallel tothese planes. Although the estimated di�eren
e between these twotimes is ex
eedingly small, Mi
helson and Morley performed anexperiment involving interferen
e in whi
h this di�eren
e shouldhave been 
learly dete
table. But the experiment gave a negativeresult � a fa
t very perplexing to physi
ists. (Einstein 1920, p. 49)The �
al
ulation� that Einstein refers to is based on the Galilean �kinemati
s�,that is, on the invarian
e of �time� and �simultaneity�, on the invarian
eof �distan
e�, on the 
lassi
al addition rule of �velo
ities�, et
. That is tosay, �distan
e�, �time�, and �velo
ity� in the above passage mean the 
lassi
al
̂distan
e, t̂ime, and ̂velo
ity de�ned in (D1), (D2), (D5), and (D6). The negativeresult was �very perplexing to physi
ists� be
ause their expe
tations were basedon traditional 
on
epts of ŝpa
e and t̂ime, and they 
ould not imagine otherthat if the ŝpeed of light is c relative to one inertial frame then the ŝpeed of thesame light signal 
annot be the same c relative to another referen
e frame.49 . On the other hand, Einstein 
ontinues this passage in the following way:Lorentz and FitzGerald res
ued the theory from this di�
ulty byassuming that the motion of the body relative to the aether produ
esa 
ontra
tion of the body in the dire
tion of motion, the amount of
ontra
tion being just su�
ient to 
ompensate for the di�eren
e intime mentioned above. Comparison with the dis
ussion in Se
tion11 shows that also from the standpoint of the theory of relativitythis solution of the di�
ulty was the right one. But on the basis ofthe theory of relativity the method of interpretation is in
omparablymore satisfa
tory. A

ording to this theory there is no su
h thing asa �spe
ially favoured� (unique) 
o-ordinate system to o

asion the



43introdu
tion of the aether-idea, and hen
e there 
an be no aether-drift, nor any experiment with whi
h to demonstrate it. Here the
ontra
tion of moving bodies follows from the two fundamentalprin
iples of the theory, without the introdu
tion of parti
ularhypotheses; and as the prime fa
tor involved in this 
ontra
tionwe �nd, not the motion in itself, to whi
h we 
annot atta
h anymeaning, but the motion with respe
t to the body of referen
e 
hosenin the parti
ular 
ase in point. Thus for a 
o-ordinate system movingwith the earth the mirror system of Mi
helson and Morley is notshortened, but it is shortened for a 
o-ordinate system whi
h is atrest relatively to the sun. (Einstein 1920, p. 49)What �res
ued� means here is that�within the framework of the 
lassi
al ŝpa
e-t̂ime theory and Galilean ̂kinemati
s�Lorentz and FitzGerald proved that ifthe assumed deformations of moving bodies exist then the expe
ted result ofthe Mi
helson�Morley experiment is the null e�e
t. On the other hand, wehave already 
lari�ed, what Einstein also 
on�rms in the above quoted passage,that these deformations also derive from the two basi
 postulates of spe
ialrelativity. Putting all these fa
ts together (see S
hema 1), we must say that thenull result of the Mi
helson�Morley experiment simultaneously 
on�rms both,the 
lassi
al rules of Galilean ̂kinemati
s for x̂ and t̂, and the violation of theserules (Lorentzian ˜kinemati
s) for the s̃pa
e and t̃ime tags x̃, t̃. It 
on�rms the
lassi
al addition rule of ̂velo
ities, on the one hand, and, on the other hand, italso 
on�rms that ˜velo
ity of light is the same in all frames of referen
e.This a
tually holds for all other experimental 
on�rmations of spe
ialrelativity. That is why the only di�eren
e Einstein 
an mention in the quotedpassage is that spe
ial relativity does not refers to the aether. (As a histori
alfa
t, this di�eren
e is true. Although, as we will see in Points 55�56 and59�61, the 
on
ept of aether 
an be entirely removed from the re
ent logi
alre
onstru
tion of the Lorentz theory.)50 . Finally, it is no surprise that the deformations 
an be �derived� from theLorentz ˜kinemati
s. The physi
al information about the deformations su�eredby obje
ts a

elerated from one state of motion to another, say from the stateof rest relative to K ′ to the state of rest relative to K ′′, is inbuilt into therelationship between the tags x̃K′

(A), t̃K
′

(A) and x̃K′′

(A), t̃K
′′

(A). For theserelations are determined by the physi
al behaviour of measuring rods and 
lo
ksduring the a

eleration and relaxation pro
ess, as Einstein warns us (see thequotation in Point 23).The 
onventionalist approa
h51 . A

ording to the 
onventionalist thesis,10 Lorentz's theory and Einstein'sspe
ial relativity are two alternative s
ienti�
 theories whi
h are equivalent on10Friedman 1983, p. 293; Einstein 1983, p. 35. (see Point ??)
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[deformations]
&



Galilean ̂kinemati
sfor x̂, t̂ (the ŝpeedof light is NOTthe same in allinertial frame) 


︸ ︷︷ ︸





⇒




the result of theMi
helson-Morleyexperiment mustbe the null e�e
t 


m

︷ ︸︸ ︷


Lorentz ˜kinemati
sfor x̃, t̃ (the s̃peedof light IS the samein all inertial frame) 


⇓
[deformations]





⇒




the result of theMi
helson-Morleyexperiment mustbe the null e�e
t 
S
hema 1: The null result of the Mi
helson�Morley experiment simultaneously
on�rms both, the 
lassi
al rules of Galilean ̂kinemati
s for x̂ and t̂, and theviolation of these rules (Lorentzian ˜kinemati
s) for the s̃pa
e and t̃ime tags x̃, t̃.



45empiri
al level. Due to the empiri
al underdetermina
y, the 
hoi
e betweenthese alternative theories is based on external aspe
ts.11 Following Poin
aré'ssimilar argument about the relationship between geometry, physi
s, and theempiri
al fa
ts, the 
onventionalist thesis asserts the following relationshipbetween Lorentz theory and spe
ial relativity:




lassi
alspa
e-time
E3 × E1


 +




physi
al
ontent ofLorentztheory 
 =

[ empiri
alfa
ts ]




relativisti
spa
e-time
M4


 +




spe
ialrelativisti
physi
s 
 =

[ empiri
alfa
ts ]Continuing the symboli
 notations we used in the Introdu
tion, denote Zthose obje
tive features of physi
al reality that are des
ribed by the alternativephysi
al theories P1 and P2 in question. With these notations, the logi
al s
hemaof the 
onventionalist thesis 
an be des
ribed in the following way: We 
annotdistinguish by means of the available experiments whether G1 (M)&P1 (Z) istrue about the obje
tive features of physi
al reality M ∪ Z, or G2 (M)&P2 (Z)is true about the same obje
tive features M ∪ Z. S
hemati
ally,
[G1 (M)] + [P1 (Z)] =

[ empiri
alfa
ts ]

[G2 (M)] + [P2 (Z)] =

[ empiri
alfa
ts ]52 . However, it is 
lear from the previous se
tions that the terms �spa
e�and �time� have di�erent meanings in the two theories. Lorentz theory 
laims
G1

(
M̂

) about M̂ and relativity theory 
laims G2

(
M̃

) about some otherfeatures of reality M̃ . Of 
ourse, this terminologi
al 
onfusion also appears in thephysi
al assertions. Let us symbolise with Ẑ the obje
tive features of physi
alreality, su
h as the l̂ength of a rod, et
., des
ribed by physi
al theory P1. Andlet Z̃ denote some (partly) di�erent features of reality des
ribed by P2, su
h asthe l̃ength of a rod, et
. Now, as we have seen, both theories a
tually 
laim that
G1

(
M̂

)
&G2

(
M̃

). It is also 
lear that, for example, within Lorentz's theory,we 
an legitimately query the l̃ength of a rod. For Lorentz's theory has 
ompletedes
ription of the behaviour of a moving rigid rod, as well as the behaviour ofa moving 
lo
k and measuring-rod. Therefore, it is no problem in Lorentz'stheory to predi
t the result of a measurement of the �length� of the rod, if themeasurement is performed with a 
o-moving measuring equipments, a

ordingto empiri
al de�nition (D8). This predi
tion will be exa
tly the same as the11Cf. Zahar 1973; Grünbaum 1974; Friedman 1983; Brush 1999; Janssen 2002.



46predi
tion of spe
ial relativity. And vi
e versa, spe
ial relativity would have thesame predi
tion for the l̂ength of the rod as the predi
tion of the Lorentz theory.That is to say, the physi
al 
ontents of Lorentz's theory and spe
ial relativityalso are identi
al: both 
laim that P1

(
Ẑ

)
&P2

(
Z̃

). So we have the following:
[
G1

(
M̂

)
&G2

(
M̃

)]
+

[
P1

(
Ẑ

)
&P2

(
Z̃

)]
=

[ empiri
alfa
ts ]

[
G1

(
M̂

)
&G2

(
M̃

)]
+

[
P1

(
Ẑ

)
&P2

(
Z̃

)]
=

[ empiri
alfa
ts ]In other words, sin
e there are no two di�erent theories, there is no 
hoi
e,based neither on internal nor on external aspe
ts.Methodologi
al remarks53 . It worth while emphasising that my argument is based on the followingvery weak �operationalist� premise: physi
al terms, assigned to measurablephysi
al quantities, have di�erent meanings if they have di�erent empiri
alde�nitions. This premise is one of the fundamental pre-assumptions of Einstein's1905 paper and is widely a

epted among physi
ists. Without 
lear empiri
alde�nition of the measurable physi
al quantities a physi
al theory 
annotbe empiri
ally 
on�rmable or dis
on�rmable. In itself, this premise is notyet equivalent to operationalism or veri�
ationalism. It does not generallyimply that a statement is ne
essarily meaningless if it is neither analyti
 norempiri
ally veri�able. However, when the physi
ist assigns time and spa
e tagsto an event, relative to a referen
e frame, (s)he is already after all kinds ofmetaphysi
al 
onsiderations about �What is spa
e and what is time?� andmeans de�nite physi
al quantities with already settled empiri
al meanings.54 . In saying that the meanings of the words �spa
e� and �time� are di�erentin relativity theory and in 
lassi
al physi
s, it is ne
essary to be 
areful of apossible misunderstanding. I am talking about something entirely di�erent fromthe in
ommensurability thesis of the relativist philosophy of s
ien
e.12 How isit that relativity makes any assertion about 
lassi
al ŝpa
e and t̂ime, and vi
eversa, how 
an Lorentz's theory make assertions about quantities whi
h arenot even de�ned in the theory? As we have seen, ea
h of the two theories issu�
iently 
omplete a

ount of physi
al reality to make predi
tions about thosefeatures of reality that 
orrespond�a

ording to the empiri
al de�nitions�tothe variables used by the other theory, and we 
an 
ompare these predi
tions.For example, within Lorentz's theory, we 
an legitimately query the reading of a
lo
k slowly transported in K ′ from one pla
e to another. That exa
tly is whatwe 
al
ulated in se
tion ??. Similarly, in relativity theory, we 
an legitimatelyquery the s̃pa
e and t̃ime tags of an event in the referen
e frame of the etalonsand then apply formulas (46)�(45). This is a fair 
al
ulation, in spite of the fa
t12See Kuhn 1970, Chapter X; Feyerabend 1970.



47that the result so obtained is not expli
itly mentioned and named in the theory.This is what we a
tually did. And the 
on
lusion was that not only are the twotheories 
ommensurable, but they provide 
ompletely identi
al a

ounts of thesame physi
al reality.Privileged referen
e frame55 . Due to the popular/textbook literature on relativity theory, there is awidespread aversion to a privileged referen
e frame. However, like it or not,there is a privileged referen
e frame in both spe
ial relativity and 
lassi
alphysi
s. It is the frame of referen
e in whi
h the etalons are at rest. Thisprivileged referen
e frame, however, has nothing to do with the 
on
epts of�absolute rest� or the aether, and it is not privileged by nature, but it isprivileged by the trivial semanti
al 
onvention providing meanings for the terms�distan
e� and �time�, by the fa
t that of all possible measuring-rod-like and
lo
k-like obje
ts �oating in the universe, we have 
hosen the ones �oatingtogether with the International Bureau of Weights and Measures in Paris. InBridgman's words:It 
annot be too strongly emphasised that there is no getting awayfrom preferred operations and unique standpoint in physi
s; theunique physi
al operations in terms of whi
h interval has its meaninga�ord one example, and there are many others also. (Bridgman 1936,p. 83)56 . Many believe that one 
an avoid a referen
e to the etalons sitting in aprivileged referen
e frame by de�ning, for example, the unit of t̃ime for anarbitrary (moving) frame of referen
e K ′ through a 
esium 
lo
k, or the like,
o-moving with K ′. In this way, one needs not to refer to a standard 
lo
ka

elerated from the referen
e frame of the etalons into referen
e frame K ′.But further thought reveals that su
h a de�nition has several di�
ulties. Forif this operation is regarded as a 
onvenient way of measuring t̃ime, then westill have t̃ime in the theory, together with the privileged referen
e frame of theetalons. If, however, this operation is regarded as the empiri
al de�nition ofa physi
al quantity, then it must be 
lear that this quantity is not t̃ime but anew physi
al quantity, say ˜̃time. In order to establish any relationship between
˜̃time tags belonging to di�erent referen
e frames, it is a must to use an �etalon
esium 
lo
k� as well as to refer to its behaviour when a

elerated from oneinertial frame into the other.The physi
s of moving obje
ts57 . Although spe
ial relativity does not tell us anything new about spa
eand time, both spe
ial relativity and Lorentz theory enri
h our knowledge ofthe physi
al world with the physi
s of obje
ts moving at 
onstant velo
ities�in a

ordan
e with the title of Einstein's original 1905 paper. The essential



48physi
al 
ontent of their dis
overies is that physi
al obje
ts su�er distortionswhen they are a

elerated from one inertial frame to the other, and that thesedistortions satisfy some uniform laws.FitzGerald, Lorentz13 and Poin
aré derived these laws from the requirementthat the deformations must explain the null result of the Mi
helson�Morleyexperiment. They arrived to the 
on
lusion that the standard 
lo
k slowsdown by fa
tor √
1 − v2

c2 and that a rigid rod su�ers a 
ontra
tion by fa
tor√
1 − v2

c2 when they are gently a

elerated from K to K ′. As we have shownin Point 37, this 
laim is equivalent with the assertion that the s̃pa
e andt̃ime tags x̃K′′

(A), t̃K
′′

(A) measured by the 
o-moving distorted equipments
an be expressed from the similar tags x̃K′

(A), t̃K
′

(A) by a suitable Lorentztransformation.The general laws of deformations apply to both the measuring-equipmentand the obje
t to be measured. Therefore, it is no surprise that the �length�of a moving, 
onsequently distorted, rod measured by 
o-moving, 
onsequentlydistorted, measuring-rod and 
lo
k, that is the l̃ength of the rod, is the sameas the l̃ength of the 
orresponding stationary rod measured with stationarymeasuring-rod and 
lo
k. The ˜duration of a slowed down pro
ess in a movingobje
t measured with a 
o-moving, 
onsequently slowed down, 
lo
k will be thesame as the ˜duration of the same pro
ess in a similar obje
t at rest, measuredwith the original distortion free 
lo
k at rest. These and similar observationslead Lorentz and Poin
aré to 
on
lude with the general validity of the relativityprin
iple.14 In his 1905 paper Einstein showed how to derive the same rules fromthe assumption that relativity prin
iple generally holds and (or 
onsequently)the ˜velo
ity of a light signal is the same in all inertial referen
e frames. Thesehistori
 di�eren
es are, however, not important from the point of view of ourmain 
on
ern. What is important is that in both ways one 
an derive exa
tlythe same laws of deformations, exa
tly the same rules for x̂ and t̂, and exa
tlythe same rules for x̃ and t̃.58 . The relativity prin
iple together with the Lorentz transformation of s̃pa
eand t̃ime provide the general des
ription of the behaviour of moving physi
alsystems. Using similar notations we introdu
ed in Point 8, let E ′ be a set ofdi�erential equations des
ribing the behaviour of the system in question in anarbitrary referen
e frame K ′. Let ψ′
0 denote a set of (initial) 
onditions, su
hthat the solution determined by ψ′

0 des
ribes the behaviour of the system whenit is, as a whole, at rest relative to K ′. Let ψ′
ev be a set of 
onditions whi
h
orresponds to the solution des
ribing the same system in uniform motion atvelo
ity ṽ relative to K ′. To be more exa
t, ψ′
ev 
orresponds to a solution of

E ′ that des
ribes the same behaviour of the system as ψ′
0 but in superposition13FitzGerald and Lorentz also made an attempt to understand how these deformationsa
tually 
ome about from the mole
ular for
es. (See Bell 1992; Brown and Pooley 2001;Brown 2001; 2003.)14Whether or not relativity prin
iple generally holds in relativisti
 physi
s is a more 
omplexquestion. See Szabó 2004.



49with a 
olle
tive translation at velo
ity ṽ. Denote E ′′ and ψ′′
0 the equations and
onditions obtained from E ′ and ψ′

0 by substituting every x̃K′ with x̃K′′ and t̃K′with t̃K′′ . Denote Λev (E ′) ,Λev (ψ′
ev) the set of equations and 
onditions expressedin terms of the double-primed variables, applying the Lorentz transformations.Now, what the relativity prin
iple (statement (j) in Se
tion ??) states is thatthe laws of physi
s des
ribing the behaviour of moving obje
ts are su
h thatthey satisfy the following relationships:
Λev (E ′) = E ′′ (85)
Λev (ψ′

ev) = ψ′′
0 (86)To make more expli
it how this prin
iple provides a useful method in thedes
ription of the deformations of physi
al systems when they are a

eleratedfrom one inertial frame K ′ into some other K ′′, 
onsider the following situation:Assume we know the relevant physi
al equations and know the solution of theequations des
ribing the physi
al properties of the obje
t in question when it isat rest in K ′: E ′, ψ′

0. We now inquire as to the same des
ription of the obje
twhen it is moving at a given 
onstant ˜velo
ity relative toK ′. If (85)�(86) is true,then we 
an solve the problem in the following way. Simply take E ′′, ψ′′
0�byputting one more prime on ea
h variable�and express ψ′

ev from (86) by meansof the inverse Lorentz transformation: ψ′
ev = Λ−1

ev (ψ′′
0 ). Now, a

ording to thestandard views, the solution belonging to 
ondition ψ′
ev des
ribes the same obje
twhen it is moving at a given 
onstant ˜velo
ity relative to K ′. This is the waywe usually solve problems su
h as the ele
tromagneti
 �eld of a moving point
harge, the Lorentz 
ontra
tion of a rigid body, the loss of phase su�ered by amoving 
lo
k, the dilatation of the mean life of a 
osmi
 ray µ-meson, et
. (Aswe have seen in Points 10�11, the situation is, in fa
t, mu
h more 
omplex.Whether or not the solution thus obtained is 
orre
t depends on the details ofthe relaxation pro
ess after the a

eleration of the system.)The aether59 . Many of those, like Einstein himself (see Point 49), who admit the�empiri
al equivalen
e� of Lorentz's theory and spe
ial relativity argue thatthe latter is �in
omparably more satisfa
tory� be
ause it has no referen
e tothe aether. As it is obvious from the previous se
tions, we did not make anyreferen
e to the aether in the logi
al re
onstru
tion of Lorentz's theory. It ishowever a histori
 fa
t that Lorentz did. In this se
tion, I want to 
larify thatthe 
on
ept of aether is merely a verbal de
oration in Lorentz theory, whi
h 
anbe interesting for the historians, but negligible from the point of view of re
entlogi
al re
onstru
tions.60 . One 
an �nd various verbal formulations of the relativity prin
iple andLorentz-
ovarian
e. In order to 
ompare these formulations, let us introdu
ethe following notations:
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A (K ′,K ′′) := The laws of physi
s in inertial frame K ′ are su
h that thelaws des
ribing a physi
al system 
o-moving with frame K ′′ areobtainable by solving the problem for the similar physi
al systemat rest relative to K ′ and perform the following substitutions:

x̃K′

1 7→ α1 = x̃K′

1

x̃K′

2 7→ α2 = x̃K′

2

x̃K′

3 7→ α3 =
x̃K′

3 − ṽt̃K
′

√
1 − ev2

c2

(87)
t̃K

′

7→ τ =
t̃K

′

− ev
c2 x̃

K′

3√
1 − ev2

c2

B (K ′,K ′′) := The laws of physi
s in K ′ are su
h that the mathemati
allyintrodu
ed variables α1, α2, α3, τ in (87) are equal to
x̃K′′

1 , x̃K′′

2 , x̃K′′

3 , t̃K
′′ , that is, the �spa
e� and �time� tags obtainedby means of measurements in K ′′, performed with the samemeasuring-rods and 
lo
ks we used in K ′ after that theywere transfered from K ′ into K ′′, ignoring the fa
t that theequipments undergo deformations during the transmission.

C (K ′,K ′′) := The laws of physi
s in K ′ are su
h that the laws of physi
sempiri
ally as
ertained by an observer in K ′′, des
ribing thebehaviour of physi
al obje
ts 
o-moving with K ′′, expressed invariables x̃K′′

1 , x̃K′′

2 , x̃K′′

3 , t̃K
′′ , have the same forms as the similarempiri
ally as
ertained laws of physi
s in in K ′, des
ribingthe similar physi
al obje
ts 
o-moving with K ′, expressed invariables x̃K′

1 , x̃K′

2 , x̃K′

3 , t̃K
′ , if the observer in K ′′ performs thesame measurement operations as the observer in K ′ with thesame measuring equipments transfered from K ′ to K ′′, ignoringthe fa
t that the equipments undergo deformations during thetransmission.It is obvious that

A (K ′,K ′′) &B (K ′,K ′′) ⇒ C (K ′,K ′′)So, let us restri
t our 
onsiderations on the more fundamental
A (K ′,K ′′) &B (K ′,K ′′)Taking this statement, the usual Einsteinian formulation of the relativityprin
iple is the following:




Einstein'sRelativityPrin
iple 
 = (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]



51Many believe that this version of relativity prin
iple is essentially di�erentfrom the similar prin
iple of Lorentz, sin
e Lorentz's prin
iple makes expli
itreferen
e to the motion relative to the aether. Using the above introdu
ednotations, it says the following:
[ Lorentz'sPrin
iple ]

= (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]It must be 
learly seen, however, that Lorentz's aether hypothesis is logi
allyindependent from the a
tual physi
al 
ontent of his theory. In fa
t, as alittle re�e
tion reveals, Lorentz's prin
iple and Einstein's relativity prin
ipleare logi
ally equivalent to ea
h other. It is trivially true that



Einstein'sRelativityPrin
iple 
 = (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]

=

[ Lorentz'sPrin
iple ]It follows from the meaning of A (K ′,K ′′) and B (K ′,K ′′) that
(∃K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]Consequently,
[ Lorentz'sPrin
iple ]

= (∀K ′′) [A (aether,K ′′) &B (aether,K ′′)]

⇒ (∃K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

⇒ (∀K ′) (∀K ′′) [A (K ′,K ′′) &B (K ′,K ′′)]

=




Einstein'sRelativityPrin
iple 
Thus, it is Lorentz's prin
iple itself�the verbal formulation of whi
h refersto the aether�that renders any 
laim about the aether a logi
ally separatedhypothesis outside of the s
ope of the fa
tual 
ontent of both Lorentz theoryand spe
ial relativity. The role of the aether 
ould be played by anything else.As both theories 
laim, it follows from the empiri
ally 
on�rmed laws of physi
sthat physi
al systems undergo deformations when they are transferred from oneinertial frame K ′ to another frame K ′′. One 
ould say, these deformations are
aused by the transmission of the system from K ′ to K ′′. You 
ould say theyare 
aused by the �wind of aether�. By the same token you 
ould say, however,that they are 
aused by �the wind of anything�, sin
e if the physi
al systemis transfered from K ′ to K ′′ then its state of motion 
hanges relative to anarbitrary third frame of referen
e.



5261 . On the other hand, it must be mentioned that spe
ial relativity doesnot ex
lude the existen
e of the aether.15 Neither does the Mi
helson�Morleyexperiment. If spe
ial relativity/Lorentz theory is true then there mustbe no indi
ation of the motion of the interferometer relative to the aether.Consequently, the fa
t that we do not observe indi
ation of this motion is nota 
hallenge for the aether theorist. Thus, the hypothesis about the existen
e ofaether is logi
ally independent of both Lorentz theory and spe
ial relativity.Symmetry prin
iple and heuristi
 value62 . Finally, it worth while mentioning that Lorentz's theory and spe
ialrelativity, as 
ompletely identi
al theories, o�er the same symmetry prin
iplesand heuristi
 power. As we have seen, both theories 
laim that quantities
x̃K′

, t̃K
′ in an arbitrary K ′ and the similar quantities x̃K′′

, t̃K
′′ in anotherarbitrary K ′′ are related through a suitable Lorentz transformation. This fa
tin 
onjun
tion with the relativity prin
iple (within the s
ope of validity of theprin
iple) implies that laws of physi
s are to be des
ribed by Lorentz 
ovariantequations, if they are expressed in terms of variables x̃ and t̃, that is, in termsof the results of measurements obtainable by means of the 
orresponding 
o-moving equipments�whi
h are distorted relative to the etalons. There is nodi�eren
e between the two theories that this s̃pa
e-t̃ime symmetry provides avaluable heuristi
 aid in the sear
h for new laws of nature.63 . With these 
omments I have 
ompleted the argumentation for my basi

laim that spe
ial relativity and Lorentz theory are 
ompletely identi
al in bothsenses, as theories about spa
e-time and as theories about the behaviour ofmoving physi
al obje
ts. Consequently, in 
omparison with the 
lassi
al Galileo-invariant 
on
eptions, spe
ial relativity theory does not tell us anything newabout spa
e and time. As we have seen, the longstanding belief that it does isthe result of a simple but subversive terminologi
al 
onfusion.

15Not to mention that already in 1920 Einstein himself argues for the existen
e of somekind of aether. (See Reignier 2000)
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e and Time



5464 . De�nitions (D1)�(D8) in Point 33, faithfully re�e
ting how �spa
e� and�time� tags are understood in 
lassi
al physi
s and relativity theory, answeredthe purpose of demonstrating that Einstein's spe
ial relativity has exa
tly thesame 
laims about spa
e and time as 
lassi
al physi
s and Lorentz's theory.However, neither the 
lassi
al nor the relativisti
 de�nitions are trouble free.They are based on several pre-assumptions about 
ontingent fa
ts of naturewhi
h 
annot be known or even formulated prior to the de�nitions of spa
e andtime tags.Let us fo
us on what is 
ommon to both the 
lassi
al and relativisti
approa
hes, de�nitions (D1)�(D4). The �rst di�
ulty is 
aused by the usage ofmeasuring rod for the de�nition of distan
e. The problem I mean is di�erentfrom the one proposed by Rei
henba
h (1958), namely that the length of therod may be altered by some universal for
es when the rod is transported fromone pla
e to the another. This is no problem from logi
al/operational pointof view, as long as this method provides an unambiguous de�nition of spa
etags. In a

ordan
e with Rei
henba
h's �nal 
on
lusion, I believe that theNewtonian 
on
ept of �absolute length� (see Point 67) of the rod, independentof operational de�nition of �distan
e�, is meaningless or at least is outside ofthe s
ope of physi
s. If spa
e tags are de�ned a

ording to (D2) then thelength of the measuring rod is�by de�nition�
onstant, no matter what is ourmetaphysi
al pre-assumption about the length of the rod ansi
h. There are,however, real 
ir
ularities here that appear at the very operational level. Theoperations des
ribed in (D2) and (D4) rest on the 
on
ept of a measuring rodat rest relative to a given referen
e frame. However, we en
ounter the followingdi�
ulties:(a) We have seen in Point 19 that the 
on
ept of a rod �at rest� relative to areferen
e frame is problemati
 in itself.(b) One might think that this is no problem if the measuring rod is always inequilibrium state when we are measuring with it. It must be 
lear howeverthat the equilibrium state of the rod 
annot be as
ertained prior to thede�nition of its length, that is, prior to the de�nition of distan
e.(
) The 
on
ept of rest relative to a referen
e frame is problemati
 not onlyfor the measuring rod, as a whole, but even for one single parti
le of therod. The reason is that we are missing a prior de�nition of velo
ity relativeto a given referen
e frame.(d) Throughout de�nitions (D1)�(D9) we non
halantly used the term�referen
e frame�. Of 
ourse, it is no problem to give the usual meaningto this term after having de�ned spa
e and time tags of events; when wealready have the 
on
epts of simultaneity, the distan
e of simultaneousevents, dimensions, straight lines, et
. But the term �referen
e frame�has no meaning prior to the spa
e and time tags. We en
ounter thiswrong 
ir
ularity in de�nitions (D2) and (D4): we ought to superpose themeasuring-rod along a straight line, su
h that the rod is always at restrelative to the referen
e frame.
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w(t)

w

tFigure 13. Velo
ity may vary su
h that the 
lo
k's journey takes very long time,nevertheless the integral in (88) is less than t(e) We also used the term �inertial� frame of referen
e. This is another termthat has no meaning without a previous de�nition of spa
e and time tags.65 . Another sour
e of 
ir
ularities is the �slow transportation� of the standard
lo
k in de�nitions (D1) and (D3). The reason why the transportation must beslow is that the 
lo
k may a

umulate a loss of phase during its journey. From(56) we 
an express this phase shift:
∆T = t−

∫ t

0

√
1 −

w(τ)2

c2
dτ (88)where w(t) is the 
lo
k's velo
ity during its journey. Of 
ourse, ∆T → 0 if

w(t) tends to zero in some uniform sense, for instan
e if max |w(t)| → 0. Onemight think that this 
ondition 
an be provided without any vi
ious 
ir
ularityby moving the standard 
lo
k from its original pla
e to the lo
us of the eventin question over a very long period of time, a

ording to the reading of the
lo
k itself. This is however not the 
ase. If fun
tion w(t) is something like asshown in Fig. 13 then the 
lo
k's journey takes very long time, neverthelessthe loss of phase in (88) does not vanish. Yet one might also think thatthis does not 
ause a vi
ious 
ir
ularity in the operational de�nition of timetags, be
ause we 
an in
lude the loss of phase into the de�nition, just like inthe relativisti
 de�nition (D6).16 However, this operation 
ould not providean unambiguous de�nition of time tags. The reason is that the phase shift(
onsequently, the reading) of the 
lo
k depends on the 
on
rete shape offun
tion w(t). To keep w(t) 
ontrolled�either in order to avoid ambiguity, orin order to provide the 
ondition max |w(t)| → 0�we must be able to as
ertainthe 
lo
k's instantaneous velo
ity relative to referen
e frame K, throughout16In de�nition (D6), the time tag is simply de�ned by the reading of the 
lo
k, disregardingthe loss of phase a

umulated during its journey. This phase shift�
al
ulated in Point 37�is,for example, the origin of the di�eren
e between t̂-simultaneity and et-simultaneity.



56its journey. And this leads to the same vi
ious 
ir
ularities we mentioned inPoint 64 (
) and (d).66 . The upshot of these 
onsiderations is that, in order to avoid the
ir
ularities mentioned above and to minimise the 
onventional elements inthe empiri
al foundation of our physi
al theory of spa
e and time, we mustavoid using standard measuring rod in the de�nition of distan
e and using slowtransportation of the standard 
lo
k in the de�nition of time tags. We mustalso abstain from relying on the 
on
ept of referen
e frame and inertial motion.Instead, we will use one standard 
lo
k and light signals. A light signalshould not be understood as a �light ray� or a �light beam�, that is, we shouldnot assume�in advan
e�that the light signal propagates along a �straight line�.



Empiri
al De�nition of Spa
e and Time Tags 57Empiri
al De�nition of Spa
e and Time Tags67 . First we 
hose an etalon 
lo
k. That is to say, we 
hose a system (asequen
e of phenomena) �oating somewhere in the universe. Let the etalon
lo
k be the 
lo
k in the Paris International Bureau of Weights and Measures.We do not assume that this is a 
lo
k measuring �proper time�. We do notassume that it is �running uniformly�. Neither we assume that it is �at rest�relative to anything, nor that it is of �inertial motion�. None of these 
on
eptsis de�ned yet.
standard clock

t2

1
2 (t1 + t2)

B

C

t1A

D

Figure 14. Operational de�nition of time tagsConsider the experimental arrangement in Fig. 14. The standard 
lo
k emitsa radio signal at 
lo
k-reading t1 (event A). The signal is re
eived by anotherequipment whi
h, immediately, emits another signal (event B). This �re�e
ted�signal is dete
ted by the standard 
lo
k at t2 (event C).De�nition (A1) The absolute time tag of event B is the following:
τ (B) := t1 +

1

2
(t2 − t1) (89)The de�nition is about event B 
onsisting in the �re�e
tion� of the radio signalemitted by the standard 
lo
k. That is to say, we assigned an absolute timetag to a de�nite physi
al phenomenon whi
h we 
alled �event�. It is far fromobvious, however, what must be regarded as an event in general�prior to the
on
epts of time and distan
e�, and how one 
an extend the de�nition forthe physi
al events of other kinds. (See Brown 2005, pp. 11-14.) We do notdwell on this problem here. The reader 
an easily imagine various operationalsolutions of how to use the B-type �re�e
tion� events for marking other physi
alevents/phenomena. So we will assume that de�nition (A1) is extended for allphysi
al events.
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B

C
τ (C)

A
τ (A)

γ(τ )standard clock

Figure 15. Clo
k-like time sequen
e68 . At this point, one might think that we are ready to de�ne the distan
ebetween simultaneous events in the usual way. Surely, we 
an de�ne the distan
ebetween the simultaneous eventsD and B as 1
2 (t2 − t1) c, where the value of c istaken as a 
onvention. However, as a little re�e
tion reveals, in this way we 
ande�ne only the distan
e from the standard 
lo
k. But there is no way to extendthis de�nition for arbitrary pair of simultaneous events. In order to de�ne thedistan
e between arbitrary simultaneous evens we need further preparations.Denote Sτ the set of simultaneous events with time tag τ .De�nition (A2) A one-parameter family of events γ(τ) is 
alled time sequen
eif γ(τ) ∈ Sτ for all τ .One has to re
ognise that a time sequen
e is a 
lo
k-like pro
ess. For everyevent, one 
an de�ne a time-like tag in the same way as (A1): Event A (Fig. 15)is marked with the emission of a radio signal at time τ(A). The signal is re�e
tedat event B. Event C is the dete
tion of the re�e
ted signal at time τ(C). Wede�ne the following time-like tag for event B:

τγ(B) := τ(A) +
1

2
(τ(C) − τ(A))It is an empiri
al fa
t that τγ(B) 6= τ(B) in general. It is another empiri
alobservation however that for some parti
ular 
ases τγ(B) = τ(B).De�nition (A3) A time sequen
e γ(τ) is a syn
hronised 
opy of the standard
lo
k if for every event B τγ(B) = τ(B).Whether or not there exist syn
hronised 
opies of the standard 
lo
k is anempiri
al question. Observations 
on�rm the following statement:Empiri
al fa
t (E1) For any event A there exists a unique syn
hronised 
opyof the standard 
lo
k γ(τ) su
h that

A = γ (τ(A))
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V

τ (V )

U

γ(τ )standard clock

Sτ

B

dτ(A
,B)

τ

A

τ (U)

Figure 16. The distan
e between two simultaneous events69 . Now we are ready to de�ne the distan
e between simultaneous events.De�nition (A4) The absolute distan
e between two simultaneous evens A,B ∈
Sτ is operationally de�ned in the following way. Take a syn
hronised 
opy of thestandard 
lo
k γ su
h that A = γ(τ). (See Fig. 16) Let U = γ (τ(U)) is an eventmarked with the emission of a radio signal at absolute time τ(U), su
h that thesignal is re
eived and re�e
ted at event B. The dete
tion of the re�e
ted signalmarks event V = γ (τ(V )) of time tag τ(V ). The absolute distan
e is

dτ (A,B) :=
1

2
(τ(V ) − τ(U)) c (90)where c = 300 000 000m

s
by 
onvention.70 . Although they seem to be evident, the following fa
ts 
annot be known apriori :Empiri
al fa
t (E2) For all A,B,C ∈ Sτ

dτ (A,B) ≥ 0 (91)
dτ (A,A) = 0 (92)

dτ (A,B) + dτ (B,C) ≥ dτ (A,C) (93)The following propositions are however derivable from the de�nitions.
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Figure 17. Syn
hronised 
opies of the standard 
lo
k keep the distan
e betweenea
h otherLemma 1 Consider two syn
hronised 
opies of the standard 
lo
k γ1 and γ2(Fig. 17). For any moment of absolute time τ0
dτ0

(γ1(τ0), γ2(τ0)) = dτ0
(γ2(τ0), γ1(τ0)) (94)and

dτ0
(γ1(τ0), γ2(τ0)) = dτ0+T (γ1(τ0 + T ), γ2(τ0 + T )) (95)where

T =
dτ0

(γ1(τ0), γ2(τ0))

cProof Let γ1(τ0) be event A2. Consider the following events: a radiosignal is emitted at A1, then re�e
ted at B1, then it is re�e
ted again at A2 andre�e
ted again at B2, and so on. Let τ(E) = τ (B2) and τ(C) = τ (B1). Takinginto a

ount that both γ1 and γ2 are syn
hronised 
opies of the standard 
lo
k,we have the following equations:
τ (A2) =

τ (B2) + τ (B1)

2

τ (B2) =
τ (A3) + τ (A2)

2

τ (B1) =
τ (A2) + τ (A1)

2
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e and Time Tags 61From the above three equations we have
τ (A3) − τ (A2) = τ (A2) − τ (A1) (96)and
τ (B2) − τ (B1) = τ (A2) − τ (A1) (97)Therefore,

τ (E) − τ (C) = τ (A2) − τ (A1) = τ (B2) − τ (B1)Imagine now a radio signal emitted from C, re�e
ted at D and dete
ted at E.Taking into a

ount that
τ (E) + τ (C)

2
= τ (D) = τ0 =

τ (B2) + τ (B1)

2we have
dτ0

(γ1(τ0), γ2(τ0)) =
τ (E) − τ (C)

2
c

=
τ (B2) − τ (B1)

2
c

= dτ0
(γ2(τ0), γ1(τ0))Taking into a

ount this symmetry, (95) immediately follows from (96).

�In other words, as it follows from (94), for any A,B ∈ Sτ

dτ (A,B) = dτ (B,A) (98)One has to re
ognise that a fun
tion Sτ × Sτ → R with properties (91)�(93)and (98) is what the mathemati
ian 
alls metri
 on Sτ . Thus, we 
an stipulatethat (Sτ , dτ ) is a metri
 spa
e for every moment of absolute time τ .71 . Having metri
 de�ned on Sτ , we 
an de�ne the 
on
ept of a straight linein Sτ (Fig. 18).De�nition (A5) A subset σ ⊂ Sτ is 
alled (straight) line if satis�es thefollowing 
onditions:1. for any A,B,C ∈ σ dτ (A,C) + dτ (C,B) = dτ (A,B) or dτ (A,B) +
dτ (B,C) = dτ (A,C) or dτ (B,A) + dτ (A,C) = dτ (B,C).2. σ is maximal for property 1.Empiri
al fa
t (E3) For every A,B ∈ Sτ there exists a unique line 
ontaining

A and B.
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Sτ

dτ(C,B)
dτ(A,C)

B
X

dτ(A,B)
A

Figure 18. Line segment
Sτ

O

Z

X
Y

σ2

σ1

Figure 19. Orthogonal line segmentsDe�nition (A6) Let σ1 and σ2 two lines in Sτ su
h that σ1 ∩ σ2 = {O} (seeFig. 19). σ2 is orthogonal to σ1 if for every Z ∈ σ2 and for every X,Y ∈ σ1

dτ (X,O) = dτ (O, Y ) ⇔ dτ (X,Z) = dτ (Y, Z)Empiri
al fa
t (E4) If σ1 is orthogonal to σ2 then σ2 is orthogonal to σ1.Empiri
al fa
t (E5) For every O ∈ Sτ there exist three lines σ1,σ2 and σ3su
h that they are pairwise orthogonal and σ1 ∩ σ2 ∩ σ3 = {O}.Empiri
al fa
t (E6) Let O ∈ Sτ an arbitrary event and three lines σ1,σ2 and
σ3 su
h that they are pairwise orthogonal and σ1 ∩ σ2 ∩ σ3 = {O}. There is noline σ ⊂ Sτ orthogonal to ea
h of σ1,σ2 and σ3, su
h that σ1∩σ2∩σ3∩σ = {O}.We usually express this fa
t by saying that spa
e is three dimensional.Empiri
al fa
t (E7) Let A ∈ Sτ be an arbitrary event and σ1 ⊂ Sτ andarbitrary line. There always exists a line σ2 orthogonal to σ1.De�nition (A7) Using the notations in (E7), let σ1 ∩ σ2 = {O}. Distan
e of
dτ (A,O) is 
alled the distan
e of A from σ1.
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A

B

Y1

Z2

Z1

τ

E

G

F

O

D

X2

Y2

C

X1

SτFigure 20. Cartesian 
oordinates in SτDe�nition (A8) Let σ1 ⊂ Sτ be a line. A line σ2 is parallel to σ1 if for all
X ∈ σ2 the distan
e of X from σ1 is the same.Empiri
al fa
t (E8) Let σ1 ⊂ Sτ be a line and let C ∈ Sτ an arbitrary event.There exists exa
tly one line σ2 su
h that C ∈ σ2 and σ2 is parallel to σ1.De�nition (A9) Let A,B ∈ σ two events on line σ. Line segment betweenevents A,B ∈ Sτ is the following subset of σ:

σ(A,B) := {X ∈ σ| dτ (A,X) + dτ (X,B) = dτ (A,B)} (99)72 . Now, we have everything at hand to de�ne the usual Cartesian 
oordinatesin Sτ . First we need a 3-frame.De�nition (A10) A 3-frame in Sτ 
onsists of three pairwise orthogonal linesegments , σ (Y1, Y2), σ (Z1, Z2), su
h that
σ (X1, X2) ∩ σ (Y1, Y2) ∩ σ (Z1, Z2) = {O}where O is the origin of the frame (Fig. 20).The end points play marginal role, but we do not assume that these segmentshave �in�nite� length. The segments are supposed to be long enough for thepurposes of the empiri
al 
oordination of the physi
al events in question. Theorigin of the 3-frame is arbitrary, although it 
ould be a nature 
hoi
e to takethe �τ -event� of the standard 
lo
k as origin.In the following de�nition we give the operational de�nition of the threeabsolute spa
e tags of an event A ∈ Sτ .
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e and Time Tags 64De�nition (A11) Take a line segment σ(B,C) ∋ A parallel to σ (Z1, Z2). Takeanother line segment σ(A,D) orthogonal to σ (Z1, Z2) su
h that D ∈ σ (Z1, Z2).Let σ(O,E) be a line segment parallel to σ(A,D) su
h that E ∈ σ(B,C).Finally, take the line segments σ(E,F ) and σ(E,G) su
h that σ(E,F ) is parallelto σ (X1, X2) and F ∈ σ (Y1, Y2), and σ(E,G) is parallel to σ (Y1, Y2) and G ∈
σ (X1, X2). Now, the spa
e tags are de�ned as follows:

xτ (A) :=

{
dτ (G,O) if G ∈ σ (O,X2)

−dτ (G,O) if G ∈ σ (O,X1)

yτ (A) :=

{
dτ (F,O) if F ∈ σ (O, Y2)

−dτ (F,O) if F ∈ σ (O, Y1)

zτ (A) :=

{
dτ (D,O) if D ∈ σ (O,Z2)

−dτ (D,O) if D ∈ σ (O,Z1)73 . It must be emphasised that with the above de�nitions we only de�ned thespa
e tags in a given set of simultaneous events Sτ . Yet, we have no 
onne
tionwhatsoever between two Sτ and Sτ ′ if τ 6= τ ′. In prin
iple, there exist in�nitelymany possible bije
tions between the di�erent Sτ 's, but without any naturalphysi
al meaning. This is true, even if we pres
ribe that the bije
tion must bean isomorphism preserving distan
es.A

ording to some vague intuition, a time sequen
e γ(τ) satisfying that
xτ (γ(τ)) = 
onst. (100)
yτ (γ(τ)) = 
onst. (101)
zτ (γ(τ)) = 
onst. (102)
orresponds to a lo
alised physi
al obje
t being at rest. �At rest� � relative towhat? The a
tual behaviour des
ribed by these equations very mu
h depends onhow the di�erent 3-frames are 
hosen in the di�erent Sτ 's. One might think thatan obje
t is at rest if equations (100)�(102) hold in one and the same 3-framein all Sτ . But, what does it mean that �one and the same 3-frame in all Sτ �?When 
an we say that a line segment σ (X ′

1, X
′
2) in Sτ ′ is the same 3-frame axisas σ (X1, X2) in Sτ? When 
an we say that an event A′ is in the same pla
e in

Sτ ′ as event A in Sτ? In asking these questions, it is ne
essary to be 
areful of apossible misunderstanding. Although they are 
lose to ea
h other, the problemwe are addressing here is di�erent from the problem of persisten
e of physi
alobje
ts. What we would like to de�ne is the identity of two lo
uses of spa
e attwo di�erent times, and not the genidentity of the physi
al obje
ts o

upyingthem. One might think that some de�nition of genidentity of physi
al obje
tsmust be prior to our operational de�nition of spa
e and time tags, at least inthe 
ase of the standard 
lo
k. This is, however, not ne
essarily the 
ase. Thestandard 
lo
k is just an ordered (ordered by the 
lo
k readings) sequen
e ofphysi
al events, but without any further metaphysi
al assumption that these
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Figure 21. Proof of Lemma 2events belong to the same physi
al obje
t. (We de�nitely do not have su
h anassumption in the 
ase of a syn
hronised 
opy of the standard 
lo
k.)74 . In order to establish 
onne
tion between arbitrary two sets of simultaneousevents we need some preparations.Lemma 2 Let γ1 and γ2 be arbitrary two syn
hronised 
opies of the standard
lo
k. For any two moments of absolute time τ and τ ′
dτ (γ1 (τ) , γ2 (τ)) = dτ ′ (γ1 (τ ′) , γ2 (τ ′)) (103)Proof The proof will be based on (95). Let us assume that τ < τ ′. Denote

T the period in (95), that is
T =

dτ (γ1 (τ) , γ2 (τ))

cFirst we will prove that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′ (γ1 (τ ′) , γ2 (τ ′))Let n be the smallest integer su
h that τ ′ < τ + nT =: τ1 (Fig. 21). It followsfrom (95) that
dτ (γ1 (τ) , γ2 (τ)) = dτ1

(γ1 (τ1) , γ2 (τ1))
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e and Time Tags 66Let τ2 := τ1+τ
2 . Consider the syn
hronised 
opy of the standard 
lo
k Γ2 thatgoes through the middle point of line segment σ (γ1 (τ) , γ2 (τ)). Taking intoa

ount that τ2 = τ + m2

T
2 for some integer m2 (namely, m2 = n), and alsothat T

2 c = dτ (γ1(τ),γ2(τ))
2 , one 
an apply (95) for the syn
hronised 
opies of thestandard 
lo
k γ1 and Γ2. Therefore,

dτ2
(γ1 (τ2) ,Γ2 (τ2)) = dτ (γ1 (τ) ,Γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2The same argument 
an be repeated for γ2 and Γ2. Therefore,
dτ2

(Γ2 (τ2) , γ2 (τ2)) = dτ (Γ2 (τ) , γ2 (τ)) =
dτ (γ1 (τ) , γ2 (τ))

2It follows from (93) that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ2

(γ1 (τ2) , γ2 (τ2))Assume that τ ′ > τ2. Therefore, take τ3 := τ2+τ1

2 . Again, 
onsider thesyn
hronised 
opies of the standard 
lo
k Γ1
3, Γ2

3, Γ3
3 dividing line segment

σ (γ1 (τ) , γ2 (τ)) into 4 pie
es of equal length. Taking into a

ount that
τ3 = τ + m3

T
4 for some integer m3 and also that T

4 c = dτ (γ1(τ),γ2(τ))
4 , one
an apply (95) for the syn
hronised 
opies of the standard 
lo
k γ1 and Γ1

3.Therefore,
dτ3

(
γ1 (τ3) ,Γ

1
3 (τ3)

)
= dτ

(
γ1 (τ) ,Γ1

3 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Similarly,
dτ3

(
Γ1

3 (τ3) ,Γ
2
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ2

3 (τ3) ,Γ
3
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ3

3 (τ3) , γ2 (τ3)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Consequently, from (93),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ3

(γ1 (τ3) , γ2 (τ3))Assume τ ′ < τ3. Therefore, take τ4 := τ3+τ2

2 . Again, 
onsider thesyn
hronised 
opies of the standard 
lo
k Γ1
4,Γ

2
4,Γ

3
4, . . .Γ

7
4 dividing line segment

σ (γ1 (τ) , γ2 (τ)) into 8 pie
es of equal length. Taking into a

ount that
τ4 = τ + m4

T
8 for some integer m4 and also that T

8 c = dτ (γ1(τ),γ2(τ))
8 , one
an apply (95) for the syn
hronised 
opies of the standard 
lo
k γ1 and Γ1

4.Therefore,
dτ4

(
γ1 (τ4) ,Γ

1
4 (τ4)

)
= dτ

(
γ1 (τ) ,Γ1

4 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

8
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dτ4

(
Γ1

4 (τ4) ,Γ
2
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8

dτ4

(
Γ2

4 (τ4) ,Γ
3
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8...
dτ4

(
Γ7

4 (τ4) , γ2 (τ4)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Consequently, from (93),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ4

(γ1 (τ4) , γ2 (τ4))And so on and so forth,
dτ (γ1 (τ) , γ2 (τ)) ≥ dτi

(γ1 (τi) , γ2 (τi))On the other hand,
lim

i→∞
τi = τ ′therefore

dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′ (γ1 (τ ′) , γ2 (τ ′))Exa
tly in the same way one 
an prove that
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))One simply has to 
hange the roles of τ and τ ′. Denote T ′, this time, the period

T ′ =
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

cLet n′ be the smallest integer su
h that τ > τ ′ − n′T ′ =: τ ′1 Then, it followsfrom (95) that
dτ ′ (γ1 (τ ′) , γ2 (τ ′)) = dτ ′

1
(γ1 (τ ′1) , γ2 (τ ′1))Let τ ′2 :=

τ ′

1
+τ ′

2 . Consider the syn
hronised 
opy of the standard 
lo
k Γ′
2that goes through the middle point of line segment σ (γ1 (τ ′) , γ2 (τ ′)). Takinginto a

ount that τ ′2 = τ ′ − m′

2
T
2 for some integer m2, and also that T

2 c =
dτ′(γ1(τ ′),γ2(τ ′))

2 , one 
an apply (95) for the syn
hronised 
opies of the standard
lo
k γ1 and Γ′
2. Therefore,
dτ ′

2
(γ1 (τ ′2) ,Γ

′
2 (τ ′2)) = dτ ′ (γ1 (τ ′) ,Γ′

2 (τ ′))

=
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2
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dτ ′

2
(Γ′

2 (τ ′2) , γ2 (τ ′2)) =
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Therefore,
dτ ′

2
(γ1 (τ ′2) , γ2 (τ ′2)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))And so on and so forth,

dτ ′

i
(γ1 (τ ′i) , γ2 (τ ′i)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))At the same time,

lim
i→∞

τ ′i = τConsequently,
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′ (γ1 (τ ′) , γ2 (τ ′))

�75 . The following isomorphism 
an be regarded as a natural one.De�nition (A12)
Tτ ′

τ : Sτ → Sτ ′

A 7→ Tτ ′

τ (A) = γ(τ ′)where γ is a syn
hronised 
opy of the standard 
lo
k su
h that A = γ(τ). Letus 
all Tτ ′

τ the time shift between Sτ and Sτ ′ .It follows from (E1) and Lemma 2 that this de�nition is sound and Tτ ′

τ is abije
tion preserving distan
es.76 . Now we have everything at hand to de�ne the spa
e tags of events.De�nition (A13) Let A be an arbitrary event. The absolute spa
e tags of Aare de�ned as follows:
ξ1(A) := x0

(
T0

τ(A) (A)
)

ξ2(A) := y0

(
T0

τ(A) (A)
)

ξ3(A) := z0

(
T0

τ(A) (A)
)Thus we have de�ned four absolute spa
e-time tags for every event:

τ(A), ξ1(A), ξ2(A), ξ3(A).



Comments 69Comments77 . I 
all τ(A) �absolute time� not in the sense of what Newton 
alled�absolute, true and mathemati
al time�, that is independent of any empiri
alde�nition (see S
holium II in 
hapter �De�nitions� of the Prin
ipia.), but in thesense of what the 20th 
entury physi
s 
alls absolute time, that is �independentof the position and the 
ondition of motion of the system of 
o-ordinates�(Einstein 1920, p. 51). The spa
e-time tags τ(A), ξ1(A), ξ2(A), ξ3(A) areabsolute in the sense that they are not relative to a referen
e frame but priorto any referen
e frame (a
tually the 
on
ept of �referen
e frame� is still notde�ned).Our 
on
epts of absolute time and spa
e tags are, of 
ourse, �relative� tothe trivial semanti
al 
onvention by whi
h we de�ne the meaning of the terms.Namely, they are �relative� to the etalon 
lo
k-like pro
ess we have 
hosen in theuniverse. This kind of �relativism� is however 
ommon to all physi
al quantitieshaving empiri
al meaning. (Beyond the 
hoi
e of the etalon 
lo
k, the spa
etags ξ1(A), ξ2(A), ξ3(A) have some additional 
onventional element; they alsoare relative to the 
hosen 3-frame in S0. This additional 
onventionality is,however, of marginal importan
e; it is nothing more than what we would 
allin our usual language �the 
hoi
e of a 3-
oordinate basis in a given referen
eframe�.)78 . As it was already mentioned in Point 33 (Footnote 5), there has beena long dis
ussion in the literature about the 
onventionality of simultaneity.(See, for example, Rei
henba
h 1956; Bridgeman 1965; Grünbaum 1974; Salmon1977; Malament 1977; Friedman 1983; Ben-Yami 2006.) Without entering inthe details of the various arguments, the following fa
ts must be pointed outhere.As it is obvious from (89), we 
hose the standard �ε = 1
2 -syn
hronisation�.(Of 
ourse, it 
ould be a 
ontingent fa
t of nature that t2 = t1 in Fig. 14. Inthat 
ase the 
hoi
e of the value of ε would not matter.) This 
hoi
e was entirely
onventional; it was a part of the trivial semanti
al 
onvention de�ning the term�absolute time tag�. This 
hoi
e is prior to any 
laims about the one-way or evenround-trip speed of ele
tromagneti
 signals, be
ause there is no su
h a 
on
eptas �speed� prior to the de�nition of time and spa
e tags; it is, of 
ourse, prior to�the metri
 of Minkowski spa
e-time�, in parti
ular to the �light-
one stru
tureof the Minkowski spa
e-time�, be
ause we have no words to tell this stru
tureprior to the spa
e-time tags; and it is prior to the 
ausal order of physi
alevents, be
ause�even if we 
ould know this 
ausal order prior to temporality�we 
annot know in advan
e how 
ausal order is related with temporal order(whi
h we have de�ned here). It is a
tually prior to any dis
ourse about twolo
uses in spa
e, be
ause there is no �spa
e� prior to de�niton (A1) and there isno 
on
ept of a �persistent spa
e lo
us� prior to de�niton (A12).79 . A remark is in order on the empiri
al fa
ts (E1)�(E8) to whi
h we referin 
onstru
ting spa
e-time tags. In 
laiming these statements as empiri
alfa
ts I mean that they ought to be true a

ording to our ordinary physi
al



Comments 70theories. The ordinary physi
al theories are however based on the ordinary,problemati
, spa
e-time 
on
eptions, relaying on �referen
e frames realised byrigid bodies� and the like, without proper, non-
ir
ular, empiri
al de�nitons.Thus, espe
ially in the 
ontext of de�ning the two most fundamental physi
alquantities, distan
e and time, we must not regard our ordinary physi
al theoriesas empiri
ally meaningful and empiri
ally 
on�rmed 
laims about the world.Whether these statements are true or not is, therefore, an empiri
al question,and it is far from obvious whether they would be 
ompletely 
on�rmed if the
orresponding experiments were performed with higher pre
ision, similar to there
ent GPS measurements, espe
ially for larger distan
es. Strangely enough,a

ording to my knowledge, these very fundamental fa
ts have never been testedexperimentally; no textbook or monograph on spa
e-time physi
s refers to su
hexperimental results; a
tually, they do not even attempt to provide a 
lear,non-
ir
ular empiri
al de�nition of �time� and �distan
e�.So, the best we 
an do is to believe that our physi
al theories based on theusual sloppy formulation of spa
e-time 
on
epts are true (in some sense) andto 
onsider the predi
tions of these theories as empiri
al fa
ts. However, as thefollowing analysis reveals, it is far from obvious whether the predi
tions of thebelieved theories really imply (E1)�(E8).80 . Throughout the de�nition of spa
e-time tags, we avoided the term�inertial�, and be
ause of a good reason. First of all, if �inertial� is regardedas a kinemati
al notion based on the 
on
ept of straight line and 
onstan
y ofvelo
ity, then it 
annot be ante
edent to the 
on
ept of spa
e-time tags. If, onthe other hand, it is understood as a manner of existen
e of a physi
al obje
t inthe universe, when the obje
t is undergoing a free �oating, in other words, whenit is �free from for
es�, then the 
on
ept is even more problemati
. The reasonis that �for
e� is a 
on
ept de�ned through the deviation from the traje
toryof inertial motion (�rst 
ir
ularity), and neither the inertial traje
tory nor themeasure of deviation from it 
an be expressed without spatiotemporal 
on
epts,that is, they 
annot be ante
edent to the de�nition of spa
e-time tags (se
ond
ir
ularity). So there is no pre
ise, non-
ir
ular de�nition of inertial motion.81 . A

ording to our believed spe
ial relativisti
 physi
al theory, spa
e-timeis a 4-dimensional Minkowski spa
e and inertial traje
tory is a time-like straightline in the Minkowski spa
e. Sin
e we are prior to the empiri
al de�nitions of thebasi
 spatiotemporal quantities, we 
annot regard this 
laim as an empiri
ally
on�rmed physi
al theory. Nevertheless, let us assume for a moment that ourspe
ial relativisti
 theory is the true des
ription of the world �from God's pointof view�. It is straightforward to 
he
k that all the fa
ts (E1)�(E8) are true if1) the standard 
lo
k moves along an inertial world line in the Minkowski spa
e-time and 2) it reads the proper time, that is, it measures the length of its ownword line, a

ording to the Minkowski metri
. However, we human beings 
anknow neither whether the standard 
lo
k (
hosen by us) is of inertial motion inGod's Minkowskian spa
e-time nor whether it reads the proper time. What ifthese 
onditions fail? What does spe
ial relativisti
 kinemati
s say about (E1)�(E8) if the standard 
lo
k is a

elerated and/or it does not read the proper



Comments 71time?In order to answer this question, we have to follow up the operationalde�nitions (D1), (D2),. . . and 
al
ulate whether statements (E1), (E2),. . . aretrue or not if the standard 
lo
k moves along a given world line γ and the�time� it reads is, say, a given fun
tion of the Minkowskian 
oordinate time,
χ(t). Although the task is straightforward, the 
al
ulation is too 
omplex togive a general answer by analyti
 means. But the problem 
an be e�
ientlysolved by 
omputer. One �nds the following�perhaps surprising�results.For the sake of the 
ontrast, let me �rst mention that one obtains a verymisguiding result if, for the sake of simpli
ity, the 
al
ulation is made in a2-dimensional Minkowski spa
e-time: No matter if the standard 
lo
k movesalong a non-inertial world line γ, no matter if it reads a time χ(t) whi
h isan arbitrary monotoni
 fun
tion of the Minkowskian 
oordinate time, di�erentfrom the proper time along its world line, fa
ts (E1)�(E8) are always true.If this 2-dimensional result were the �nal truth one would 
on
lude that nospatiotemporal measurement 
an as
ertain whether the standard 
lo
k movesinertially or not; the very 
on
ept of �inertial� motion would remain a purely
onventional one; fa
ts (E1)�(E8) would always be true, independently of the�obje
tive� fa
t of how the standard 
lo
k moves in God's Minkowski spa
e-time.In 
ontrast, the real 4-dimensional 
al
ulation leads to the following results:(A) Fa
ts (E1)�(E8) are always true if the standard 
lo
k moves along aninertial world line, no matter if the 
lo
k reads a time χ(t) whi
h is an arbitrarymonotoni
 fun
tion of the Minkowskian 
oordinate time, di�erent from theproper time along its world line.(B) If the standard 
lo
k moves along a non-inertial world line γ, fa
ts (E1)�(E8) are never true, no matter if the 
lo
k reads the proper time or not.The whole thing hinges on (E1); there are no syn
hronised 
opies of the standard
lo
k if the standard 
lo
k moves non-inertially.82 . There are remarkable 
onsequen
es of the above results:1. Result (A) implies that no obje
tive meaning 
an be assigned to the
on
ept of �proper time�. �Time� is what the etalon 
lo
k reads, byde�nition.2. Contrary to the misguiding 2-dimensional result, (B) shows that the notionof �inertial motion� is not entirely 
onventional. In a

ord with ourintuition based on the believed physi
al theories, we 
an give an obje
tivemeaning to �inertial motion� by means of 
orre
t�neither logi
ally noroperationally 
ir
ular�experiments: the standard 
lo
k is of inertialmotion if statements (E1)�(E8) are true. Assuming that the standard
lo
k is inertial, one 
an extend the 
on
ept for an arbitrary time sequen
e

γ(τ) of events: γ(τ) 
orresponds to an inertial motion if the absolute spa
etags ξ1 (γ (τ)) , ξ2 (γ (τ)) , ξ3 (γ (τ)) are linear fun
tions of the absolute timetag τ .
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A

Y

X

St

♦X
A

Standard clock

∨A

Figure 22. The test of inertiality3. On the basis of our believed physi
al theories, one 
annot, however, predi
twhether (E1)�(E8) are true or false. It is still an open empiri
al question.4. Imagine that (E1)�(E8) are not satis�ed. It not only means that thestandard 
lo
k we have 
hosen is non-inertial but it also means that the
hosen 
lo
k is inappropriate for the de�nition of spa
e-time tags. Moreexa
tly, one has to stop at de�nition (D1). One 
an de�ne the time tagsbut 
annot de�ne the spatial notions, in parti
ular the distan
es betweensimultaneous evens.5. Consequently, it is meaningless to talk about �non-inertial referen
eframe�, �spa
e-time 
oordinates (tags) de�ned/measured by an a

eleratedobserver�, and the likes.83 . In the light of these 
onsequen
es, it is an intriguing question whetherthe standard 
lo
k 
ontemporary physi
al laboratories use for 
oordination ofphysi
al events satis�es 
onditions (E1)�(E8), in parti
ular (E1). It is quiteimplausible that it does�taking into a

ount the Earth's rotation, the Earth'smotion around the Sun, the Solar System's motion in our Galaxy, et
.Consider �rst what in fa
t has to be tested (Fig. 22). (E1) would requirethe existen
e of a unique syn
hronised 
opy of the standard 
lo
k through everyevent. Let therefore A be an arbitrary event with absolute time tag τ(A).



Comments 73Introdu
e the following notations:
∨A :=

{
X

∣∣∣∣
Radio signal from Ais re
eived at X. }

∧A :=

{
X

∣∣∣∣
Radio signal from Xis re
eived at A. }

♦B
A := ∨A ∩ ∧BConsider the following quantity:

N := max
t,A





min
X∈∨A∩St

max
Y ∈♦X

A

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t > τ(A)min
X∈∧

A
∩St

max
Y ∈♦

A

X

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t < τ(A)

N = 0 is a ne
essary 
ondition of inertiality of the standard 
lo
k. In this 
ase,for every event A there exists a unique syn
hronised 
opy of the standard 
lo
k.That is, for every time t > τ(A) there is a unique event X ∈ ∨A ∩ St su
h that
τ(Y ) = τ(A)+τ(X)

2 for all Y ∈ ♦X
A and for every time t < τ(A) there is a uniqueevent X ∈ ∧A ∩ St su
h that τ(Y ) = τ(A)+τ(X)

2 for all Y ∈ ♦A
X .84 . Let us outline how the experimental test 
ould be realised. Our standard
lo
k is transmitting, say in every few nanose
onds, a radio signal en
odingthe a
tual 
lo
k reading (Fig. 23). We need a huge number of little devi
es

e1, e2, . . . ei, . . . with the following fun
tions:1. They 
ontinuously re
eive the regular time signals from the standard 
lo
k.2. They 
an transmit radio signals 
ontaining the following information:a) an ID 
ode of the devi
e and information about the standard 
lo
kreading, so from the signal they send it always 
an be known whi
hdevi
e was the transmitter and what was the standard 
lo
k readingre
eived by the transmitter at the moment of the emission of the signal,b) information about the type of event on the o

asion of whi
h the signalwas transmitted.3. They 
an re
eive the signals transmitted by the others.We install these devi
es everywhere in a 
ertain region of the universe. Now,the following events will happen.1. Assume that e3 is programed su
h that it transmits a radio signal (event
A) when re
eives the time signal of t1 from the standard 
lo
k. Let us 
allit A-signal. The A-signal will arrive ba
k to the standard 
lo
k at time t2.2. The A-signal sweeps through the whole region and triggers the otherdevi
es to transmit a B-signal. For example, event Bi 
onsists in that eire
eives the A-signal from e3 and emits its own Bi-signal with the neededinformation. Bj is a similar event for ej , et
.
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Standard clock

e1 e2 e3
ei

A

ej

Bi

C2j

ek

t1

Cki = Ckj

t2

Bj

C1i

t1i

t′1i

St

St′

Figure 23. The sket
h of a realisti
 measurement to de
ide whether the standard
lo
k is inertial or not



Comments 753. The B-signals will be re
eived by some other devi
es. For example, C1iis the event when e1 re
eives the Bi-signal transmitted by ei and sendsout his own signal (C1i-signal) with the 
orresponding information. Thisinformation arrives ba
k to the standard 
lo
k at time t1i.In this way, a huge amount of data is re
orded, from whi
h we 
an as
ertainthe absolute time tags of all events in question. We 
an determine ♦Clm

A forevery Clm. For example, say, it turns out that Cki = Ckj and, therefore,
Bi, Bj ∈ ♦Cki

A , et
. One also 
an determine the sets of simultaneous events.Now, the standard 
lo
k is inertial only if in every St there is a unique Clm ∈ Stsu
h that for every event Bi ∈ ♦Clm

A

τ (Bi) =
τ (A) + τ (Clm)

2



Comments 76A matematikai elméletek � �zikai elméletekThe metaphysi
al basis of logi
 and mathemati
s(A physi
alist approa
h)�after su�
ient 
lari�
ation of the 
on
epts in question it will be possible to
ondu
t these dis
ussions with mathemati
al rigor and that the result then willbe that (under 
ertain assumptions whi
h 
an hardly be denied [in parti
ularthe assumption that there exists at all something like mathemati
al knowledge℄the platonisti
 view is the only one tenable� (Gödel: Some basi
 theoremson the foundations of mathemati
s and their impli
ations, 1951)Question:What if I am not a Platonist but I am a physi
alist?Physi
alism:Empiri
ism: Genuine information about the world must bea
quired by a posteriori means.
+Physi
alist a

ount of the mental: Experien
ing itself, asany other mental phenomena, in
luding the mental pro
essingthe experien
es, 
an be wholly explained in terms of physi
alproperties, states, and events in the physi
al world.Standard s
hools in philosophy of mathemati
s

Mathematical objects

have meanings

Physical realism

Mathematical objects

have NO meanings
Formalism

Platonism

Intuitionism
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Mathematical objects

have meanings

Physical realism

Mathematical objects

have NO meanings
Formalism

Platonism

Intuitionism

Mathemati
al obje
ts have no meaningsThesisMathemati
al �statements� are formulas of a formal language.They are not linguisti
 obje
ts, 
onsequently they 
arry no meaningsand Tarskian truths.The argumentwill be based on the Truth-Condition Theory of Meaning:A meaning for a senten
e is something that determines the 
onditionsunder whi
h the senten
e is true or false.(David Lewis: GeneralSemanti
s, 1972)In order to determine this �something� one has to follow up how the senten
e
an be 
on�rmed or refuted.Consider ele
trodynami
s. What will the physi
ist answer to the followingquestions: Why is F = kQ1Q2

r2 (Coulomb law) true?How do we know that F = kQ1Q2

r2 is true?How 
ould you 
onvin
e me that F = kQ1Q2

r2 is true?How do you mean that F = kQ1Q2

r2 is true?How 
an we verify that F = kQ1Q2

r2 is true?



Comments 78Answer:F = kQ1Q2

r2 is true in the sense that the for
e measured between small
harged parti
les is indeed equal to kQ1Q2

r2 . We 
an test/
on�rm this fa
t bymeans of laboratory experiments.Consider group theory:Aphabetvariables x, y, z, . . .individual 
onstant e (identity)fun
tion symbols i, p (inverse, produ
t)predi
ate symbol =pun
tuation (, ), ,logi
al symbols ∀,¬ →Axioms(G1) p(p(x, y), z) = p(x, p(y, z)) (asso
iative law)(G2) p(e, x) = x (left identity)(G3) p(i(x), x) = e (left inverse)What will the mathemati
ian answer to the following questions:Why is p(e, p(e, e)) = e is true?How do we know that p(e, p(e, e)) = e is true?How 
ould you 
onvin
e me that p(e, p(e, e)) = e is true?How do you mean hat p(e, p(e, e)) = e is true?How 
an we verify that p(e, p(e, e)) = e is true?Answer:The mathemati
ian never refers to the physi
al/platoni
/mental realm and the
orresponding epistemi
 fa
ulties! The mathemati
ian's �nal argument alwaysis that p(e, p(e, e)) = e is proved from the axioms of group theory:(1) p(e, x) = x (G2)(2) (∀x)(p(e, x) = x) Gen.(3) (∀x)(p(e, x) = x) → p(e, e) = e PC(4) p(e, e) = e (2), (3), MP(5) (∀x)(p(e, x) = x) → p(e, p(e, e)) = p(e, e) PC(6) p(e, p(e, e)) = p(e, e) (2), (5), MP(7) p(e, e) = e→ p(e, p(e, e)) = p(e, e) → p(e, p(e, e)) = e PC(=)(8) p(e, p(e, e)) = p(e, e) → p(e, p(e, e)) = e (4), (7), MP(9) p(e, p(e, e)) = e (6), (8), MP



Comments 79In Dummett's words:Like the empiri
ist view, the platonist one fails to do justi
e tothe role of proof in mathemati
s. For, presumably, the supra-sensible realm is as mu
h God's 
reature as is the sensible one; if so,
onditions in it must be as 
ontingent as in the latter. [...℄ [W℄e donot seek, in order to refute or 
on�rm a [mathemati
al℄ hypothesis,a means of re�ning our intuitive fa
ulties, as astronomers seek toimprove their instruments. Rather, if we suppose the hypothesistrue, we seek for a proof of it, and it remains a mere hypothesis,whose assertion would therefore be unwarranted, until we �nd one.(Dummett: What Is Mathemati
s About? (1994), p. 13.)Partial 
on
lusion:
p(e, p(e, e)) = e does not have meaning; it does not refer to anything and 
annotbe true or false in the ordinary semanti
al sense. It is a
tually not a linguisti
obje
t, it is just a bri
k in a formal system.The meaningful senten
es are like �{Group} ⊢ p(e, p(e, e)) = e� instead of�p(e, p(e, e)) = e�. The �Σ ⊢ X� senten
es do have meanings and 
an be true orfalse�in what sense, it will be 
lear later on.RemarkA typi
al misinterpretation of the formalist �Σ ⊢ X�:�If Σ (is true) then X (is true)�The essential di�eren
e between mathemati
al truth andsemanti
al truth in a s
ienti�
 theory des
ribing somethingin the worldA physi
al theory P is a formal system L + a semanti
s S pointing to theempiri
al world. Normally, L is a (�rst-order) system with

• some logi
al axioms and the derivation rules (usually the �rst-orderpredi
ate 
al
ulus with identity)
• the axioms of 
ertain mathemati
al theories
• some physi
al axioms.A senten
e A in physi
al theory P 
an be true in two di�erent senses:Truth1: A is a theorem of L, that is, ⊢L A (whi
h is a mathemati
al truthwithin the formal system L, a fa
t of the formal system L).Truth2: A

ording to the semanti
s S, A refers to an empiri
al fa
t (aboutthe physi
al system des
ribed by P ).



Comments 80Example:�The ele
tri
 �eld strength of a point 
harge is kQ
r2 � is a theoremof Maxwell's ele
trodynami
s. On the other hand, a

ording to the semanti
srelating the symbols of the Maxwell theory to the empiri
al terms, this senten
e
orresponds to an empiri
al fa
t (about the point 
harges).Truth1 and Truth2 are independent 
on
epts � one does notautomati
ally imply the otherAssume that

• Γ is a set of true2 senten
es in L
• and Γ ⊢L AIt does not automati
ally follow that A is true2. Whether A is true2 is againan empiri
al question:If so, then it is new empiri
ally obtained information about the world,
on�rming the validity of the whole physi
al theory P = L+ S.If not, then this information dis
on�rms the physi
al theory, as a whole .That is to say, one has to think about revising one of the
onstituents of P .The physi
alist ontology of formal systems[N℄o philosophy 
an possibly be sympatheti
 to a mathemati
ianwhi
h does not admit, in one manner or the other, the immutableand un
onditional validity of mathemati
al truth. Mathemati
altheorems are true or false; their truth or falsity is absolute andindependent of our knowledge of them. In some sense, mathemati
altruth is a part of obje
tive reality. (Hardy: Mathemati
al Proof,1929)Now we determine what this obje
tive reality a
tually is.Thesis:The obje
tive fa
t expressed by a mathemati
al proposition is a fa
tof a parti
ular part of the physi
al world: it is a fa
t of the formalsystem itself, that is, a fa
t about the physi
al system 
onsisting ofthe signs and the me
hani
al rules a

ording to whi
h the signs 
anbe 
ombined.
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Notebook

All mathematical truths are determined by the

physical facts within this part of the physical world Taking into a

ount that theonly means of obtaining reliableknowledge about this fa
t ismathemati
al proof, it must bea fa
t of the realm insideof the s
ope of formalderivations.Of 
ourse, from physi
alist point of view it does not matter whetherthe formal system is embodied in a 
omputer, in a human brain, inbrain+paper+hand+pen, et
.�p(e, p(e, e)) = e� This is not a linguisti
 obje
t!a
tually means that the usual formalist step�{Group} ⊢ p(e, p(e, e)) = e� This is a linguisti
 obje
t!whi
h is nothing but the physi
alist stepThe assertion that there exists aproof-pro
ess, the result of whi
h is
p(e, p(e, e)) = e

This is a usual s
ienti�
 assertion,just like 2H2 +O2 → 2H2OIn this way, a mathemati
al truth has 
ontingent fa
tual 
ontent, asany similar s
ienti�
 assertion. It is
• expressing obje
tive fa
t of the physi
al world
• syntheti

• a posteriori
• not ne
essary and not 
ertain
• true before anybody 
an prove it



Comments 82Abstra
tion is a move from the 
on
rete to the 
on
reteMany from the formalist s
hool admit that... in order to think of a formal system at all we must think of it asrepresented somehow.(Haskell Curry: Outlines of a Formalist Philosophy ofMathemati
s, 1951)But, Curry 
ontinues this passage as follows:... in order to think of a formal system at all we must thinkof it as represented somehow. But when we think of it asformal system we abstra
t from all properties pe
uliar tothe representation.(Haskell Curry: Outlines of a Formalist Philosophy ofMathemati
s, 1951)What does su
h an �abstra
tion� a
tually mean?What do we obtain if we abstra
t from some unimportant, pe
uliar propertiesof a physi
al system L1 (whi
h is a �representation of a formal system�) ? Weobtain a theory P = L2 + S about L1, that is, a formal system L2 with asemanti
s S relating the elements of L2 to the important empiri
al fa
ts of L1.That is, instead of an �abstra
t stru
ture� we obtain another �esh andblood formal system L2.By the same token, one 
annot obtain an �abstra
t stru
ture� asan �equivalen
e 
lass of isomorphi
 formal systems�. Su
h things as�isomorphism�, �equivalen
e�, �equivalen
e 
lass� are living in a formalsystem �represented somehow� , that is, in a �esh and blood formalsystem:
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M

This is no atta
k on s
ienti�
 realismWhen a physi
al theory 
laims thata physi
al obje
t has a 
ertain property adequately des
ribed by means of aformal system, then this re�e
ts a real feature of physi
al reality.This is not nominalismWhenmany di�erent physi
al obje
ts display a similarproperty that is des
ribable by means of the same (equivalent) elements of one
ommon formal system, this will be a true general feature of the group.But, this realist 
ommitment does not entitle us to 
laim that�abstra
t stru
tures� exist over and above the real formal systemsof physi
al existen
e.Epistemologi
al status of meta-mathemati
al theoriesWe follow Hilbert's 
areful distin
tion:mathemati
s � a system of meaningless signsmeta-mathemati
s � meaningful statements about mathemati
s+ physi
alism:formal system � a physi
al system Lmeta-mathemati
al theory � a physi
al theory (M,S)



Comments 84All the truths that a meta-mathemati
al theory 
an tell us about itsobje
t are of the type Truth2. This means that no feature of a formalsystem 
an be �proved� mathemati
ally: Genuine information abouta formal system must be a
quired by a posteriori means, that is, byobservation of the formal system and, as in physi
s in general, byindu
tive generalisation.
M

L
L is consistent

S

S
E

q

L

E = kq
r2

Consequently, all meta-mathemati
al �proofs� are questionable!
• When I say �questionable� I do not mean that I don't believe that, forexample, the senten
e 
al
ulus is 
onsistent. I only mean that I believein it just as I believe in the Coulomb law or in the 
onservationof energy, or any other physi
al laws, whi
h are a
quired by aposteriori means.
• To be sure, both truth1 and truth2 of a formula of M , like L is 
onsistentare known by a posteriori means. But,� ⊢ML is 
onsistent is known by observation of the formal system M� L is 
onsistent (is true2) is 
on�rmed by observations of the formalsystem L.ExampleConsider the following meta-mathemati
al statements:

PfM (x, y) x is the Gödel number of a sequen
e of formulas 
onstituting aproof of the formula of Gödel number y.
PfM (x, y, z) x is the Gödel number of a proof of the formula obtained from theformula of Gödel number y by substituting its only free variablewith number z.



Comments 85Representation:
{arithmeti
} ⊢ Pf(x, y, z) if PfM (x, y, z) is true2
{arithmeti
} ⊢ ¬Pf(x, y, z) if PfM (x, y, z) is false2 (104)Problem:(104) is not �formally proved�. It is known by a posteriori means!

L (arithmetic)

1
17

x

z
y

φ1

φ2
...

Ψy(z)

Ψy(.)

S
Pf (x, y, z)

PfM(x, y, z)

M





Hogyan lehet megragadni két formális rendszer közötti struktúláishasonlóságot?I.
L1 (arithmetic)

L2 (arithmetic)

?
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L1 (arithmetic)

L2 (arithmetic)

M (set theory, etc.)

S

isomorphism

L̃1

L̃2

III.
L1 (arithmetic)

L2 (arithmetic)

M (set theory, etc.)

S

isomorphism

L̃2

〈
A2, R2

1, R
2
2,, . . . R

2
2028

〉

L̃1〈
A1, R1

1, R
1
2,, . . . R

1
2028

〉
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