- Accardi, L. (1984): The probabilistic roots of the quantum
mechanical paradoxes, in: The Wave-Particle Dualism, S. Diner
et al. (eds.), D. Reidel, Dordrecht.
- Accardi, L. (1988): Foundations of quantum mechanics: a quantum
probabilistic approach, in: The Nature of Quantum Paradoxes,
G. Tarrozzi and A. Van Der Merwe (eds.), Kluwer Academic Publishers,
Dordrecht.
- Andréka, H., Németi, I. és Madarász, J. X. (1999): Logical
analysis of special relativity theory, in: Essays Dedicated
to Johan van Benthem on the Occasion of his 50th Birthday, Gerbrandy,
J., Marx, M., de Rijke, M. and Venema, Y. (eds.), Amsterdam University
Press, Vossiuspers.
- Arntzenius, F. (1997): Transition chances and causation, Pacific
Philosophical Quarterly 78, 149.
- Aspect, A., Grangier, P. és Roger, G. (1981): Experimental
Test of Realistic Local Theories via Bell's Theorem, Phys. Rev.
Lett. 47, 460.
- Ballentine, Leslie E. (1990): Quantum Mechanics, Prentice
Hall, Englewood Cliffs, New Jersey.
- Bana, G. és Durt, T. (1997): Proof of Kolmogorovian Censorship,
Found. Phys. 27, 1355.
- Butterfield, J. (1989): A space-time approach to the Bell inequality,
in: Philosophical Consequences of Quantum Theory, J. Cushing
and E. McMullin (eds.), University of Notre Dame Press, Notre Dame.
- Bell, J. S. (1967): On the Einstein-Podolsky-Rosen paradox,
Physics 1, 195. (Újraközölve: Bell 1987, 15. o.)
- Bell, J. S. (1982): On the impossible pilot wave, Foundations
of Physics 12, 989. (Újraközölve: Bell 1987, 166. o.)
- Bell, J. S. (1987): Speakable and unspeakable in quantum
mechanics, Cambridge University Press, Cambridge.
- Belnap, N. (1992): Branching space-time, Synthese
92, 385.
- Belnap, N. és Green, M., (1994): Indeterminism and The Thin
Red Line, in: Philosophical Perspectives 8: Philosophy
of Language & Logic, James E. Tomberlin (ed.), Ridgeview
Press, Ascadero CA.
- Belnap, N. és Szabó, L. E. (1996): Branching Space-time analysis
of the GHZ theorem, Foundations of Physics 26, 989.
- Beltrametti, E. G. and Maczynski, M. J. (1991): On a characterization
of classical and nonclassical probabilities, J. Math. Phys.,
32. 1280.
- Bene, Gy. (1997): Quantum reference systems: a new framework
for quantum mechanics, Physica A 242, 529.
- Bennett, J. (1988): Events and their Names, Hackett
Publishing Company, Indianapolis-Cambridge.
- Birkhoff, G. és von Neumann, J. (1936): The logic of quanttum
mechanics, Ann. Math. 37, 823.
- Bohm. D. (1952a): A Suggested Interpretation of the Quantum
Theory in Terms of 'Hidden' Variables, I. II., Phys. Rev. 85,
166-179, 180-193.
- Bohm. D. (1952b): Reply to Criticism of a Causal Re-interpretation
of the Quantum theory, Phys. Rev. 87, 389.
- Bohm, D. és Aharonov, Y. (1957): Discussion of Experimental
Proof for the Paradox of Einstein, Rosen, and Podolsky, Phys.
Rev. 108, 1070.
- Bohm, D. és Hiley, B. J. (1993): The Undivided Universe,
Routledge, London.
- Bouwmeester, D., Pan, J., Daniell, M., Weinfurter, H. and Zeilinger,
A. (1999) Observation of Three-Photon Greenberger-Horne-Zeilinger
Entanglement, Phys. Rev. Lett. 82, 1345.
- Brans, C. H. (1988): Bell's theorem does not eliminate fully
causal hidden variables, International J. of Theoretical Physics
27, 219.
- Bridgman, P. (1927): The Logic of Modern Physics, MacMillan,
New York.
- Campbell, K. (1976): Metaphysics: an introduction,
Encino, Dickenson.
- Cartwright, N. (1987): How to tell a common cause: Generalization
of the conjunctive fork criterion, in: Probability and Causality,
J. H. Fetzer (ed.), D. Reidel, Dordrecht.
- Chalmers, D. J. (1996): The Conscious Mind, Oxford University
Press, Oxford.
- Churchland, Patricia Smith (1998): Brainshy: Non-neural theories
of conscious experience, in: Toward a Science of Consciousness
II: The 1996 Tucson Discussions and Debates, S. Hameroff, A. Kaszniak,
A. Scott (eds.) MIT Press, Cambridge MA.
- Clauser, J. F. és Shimony, A. (1978): Bell's Theorem: Experimental
Test and Implications, Reports on Progress in Physics 41,
1881.
- Craig, W. L. (1988): Barrow and Tipler on the Anthropic Principle
vs. Divine Design, The British Journal for the Philosophy of
Science 38, 389.
- Cushing, J. T. (1994): Quantum Mechanics - Historical
Contingency and the Copenhagen Hegemony, The University of Chicago
Press, Chicago-London.
- Dawkins, R. (1995): Folyam az Édenkertbol, Kulturtrade
Kiadó, Budapest.
- Dummett, M. (2000): A metafizika logikai alapjai, Osiris,
Budapest.
- Earman, J. (1986): A Primer on Determinism, D. Reidel,
Dordrecht.
- Earman, J. és Salmon, W. (1992): The Confirmation of Scientific
Hypotheses, in: Introduction to Philosophy of Science, M. H.
Salmon, et al. (eds.), Prentice Hall, Englewood Cliffs, New
Jersey.
- Eddington, A. (1935): A természettudomány új útjai,
Franklin, Budapest.
- Einstein, A. (1949): Remarks concenrning the essays brought
together in this co-operative volume, Albert Einstein philosopher-scientist,
P. A. Schilpp (ed.), The library of the living philosophers, Vol.
7. Evanston, Illionis, 665-688. o. (Oroszul: A. Einstein, Szobranije
naucsnih trudov, Nauka, Moszkva 1967, 4. k., 294-315. o.)
- Einstein, A., Podolsky, B. és Rosen, N. (1935): Can Quantum
Mechanical Description of Physical Reality be Considered Complete?,
Phys. Rev. 47, 777. (Magyarul: A. Einstein, Válogatott
tanulmányok, Gondolat, Budapest 1971, 167. o.)
- Fáy Gy. és Torös R. (1978): Kvantumlogika, Gondolat,
Budapest
- Feyerabend, P. (1994): Milyen lesz a tudományfilozófia 2001-ben?,
in: A késoújkor józansága I. - Olvasókönyv a tudományos-technikai
világfelszámolás tudatosítása körébol, Tillmann J. A. (szerk.), Göncöl
Kiadó, Budapest.
- Feynman, R. P., Leighton, R. B. és Sands, M. (1970): Mai
fizika, Muszaki Könyvkiadó, Budapest.
- Fine, A. (1982): Some local models for correlation experiments,
Synthese 50, 279.
- Fine, A. (1986): The Shaky Game - Einstein, realism
and the Quantum Theory, The University of Chicago Press, Chicago.
- Fine, A. (1991): Inequalities for Nonideal Correlation Experiments,
Foundations of Physics 21, 365.
- Fine, A. (1993): Indeterminism and the Freedom of the Will,
in: Philosophical Problems of the Internal and External World
- Essays on the Philosophy of Adolf Grünbaum, J. Earman, A. I. Janis,
G. J. Massey, N. Rescher (eds.), University of Pittsburgh Press /
Universitätsverlag Konstanz, Pittsburgh.
- Friedman, M. (1983): Foundations of Space-Time Theories
- Relativistic Physics and Philosophy of Science, Princeton University
Press, Princeton.
- Fröhlich, H. (1968): Long range coherence and energy storage
in biological systems, Int. J. Quantum Chem. 2, 6419.
- Garg, A. és Mermin, N. D. (1987): Detector inefficiencies
in the Einstein-Podolsky-Rosen experiment, Phys. Rev. D
35, 3831.
- Gleason, A. M. (1957): Measures on the closed subspaces of
a Hilbert space, J. of Math. and Mech. 6, 885.
- Gorelik, G. J. (1987): Miért háromdimenziós a tér,
Gondolat, Budapest.
- Greenberger, D. M., Horne, M. A., Shimony, A. és Zeilinger,
A. (1990): Bell's theorem without inequalities, Am. J. Phys.
58, 1131.
- Grünbaum, A. (1972): Free Will and Laws of Human Behaviour,
in: New Readings in Philosophical Analysis, H. Feigl, W. Sellars,
K. Lehrer (eds.), Appleton-Century-Crofts.
- Grünbaum, A. (1974): Philosophical Problems of Space
and Time, Boston Studies in the Philosophy of Science, Vol. XII.
(R. S. Cohen and M. W. Wartofsky, eds.) D. Reidel, Dordrecht.
- Grünbaum, A. (1976a): Is falsifiability the touchstone of scientific
rationality? Karl Popper versus inductivism, in: Essays in Memory
of Imre Lakatos, R. S. Cohen et al. (eds.), D. Reidel, Dordrecht.
- Grünbaum, A. (1976b): Is the Method of Bold Conjectures and
Attempted Refutations Justifiably the Method of Science?, The
British Journal for the Philosohy of Science 27, 105.
- Gudder, S. (1988): Quantum probability, Academic Press,
Boston.
- Gyenis, B. és Rédei, M. (2002): When can statistical theories
be causally closed?, elokészületben.
- Hameroff, S. (1998): More Neural Than Thou, in: Toward
a Science of Consciousness II: The 1996 Tucson Discussions and Debates,
S. Hameroff, A. Kaszniak, A. Scott (eds.) MIT Press, Cambridge MA.
- Hawking, S. W. és Ellis, G. F. R. (1973): The Large
Scale Structure of Space-Time, Cambridge Univrsity Press, Cambridge.
- Hellman, G. (1980): Quantum Logic and Meaning, Philosophy
of Science Association (of America) 2, 493.
- Hempel, C. G. (1965): Studies in the Logic of Confirmation,
in: Aspects of Scientific Explanation, The Free Press, New
York. (Magyarul: Tanulmányok a konfirmáció logikájáról, ford. Kampis
Gy., in: Tudományfilozófia szöveggyujtemény, Forrai G. és Szegedi
P. (eds.), Áron Kiadó, Budapest 1999).
- Hofer-Szabó, G., Rédei, M., Szabó, L. E. (1999): On Reichenbach's
common cause principle and Reichenbach's notion of common cause, The
British Journal for the Philosophy of Science 50, 377.
- Hofer-Szabó, G., Rédei, M., Szabó, L. E. (2000): Reichenbach's
Common Cause Principle: Recent Results and Open Questions, Reports
on Philosophy 20, 85.
- Hofer-Szabó, G., Rédei, M., Szabó, L. E. (2002): Common-causes
are not common common-causes, Philosophy of Science, megjelenés
alatt.
- Holland, P. R. (1993): The Quantum Theory of Motion -
An Account of the de Broglie-Bohm Causal Interpretation of Quantum
Mechanics, Cambridge University Press.
- Hooker, C. A. (ed.) (1975): Logico-Algebraic Approach
to Quantum Mechanics Vol. I, D. Reidel, Dordrecht.
- Hooker, C. A. (ed.) (1979): Logico-Algebraic Approach
to Quantum Mechanics Vol. II, D. Reidel, Dordrecht.
- Honderich, T. (1993): How Free Are You? The Determinism
Problem, Oxford University Press, Oxford.
- Honderich, T. (2001): Determinism's Consequences - The Mistakes
of Compatibilism and Incompatibilism, and What Is To Be Done Now,
eloadás, International Interdisciplinary Workshop on Determinism,
Ringberg Castle, Rottach-Egern, Germany, June 4 - 8, 2001.
- Hraskó P. (1984): A Bell-egyenlotlenség, Fizikai Szemle
1984. évf. 7. szám. Újraközölve, in: Hraskó P., A könyvtár foglya,
Typotex, Budapest 2001, 195. o.
- Hume, D. (1748): An Enquiry Concerning Human Understanding
- Huoranszki F. (2001): Modern metafizika, Osiris Kiadó,
Budapest.
- Jauch, I. M. és Piron, C. (1963): Can Hidden Variables be Excluded
in Quantum Mechanics?, Helv. Phys. Acta. 36, 827.
- Jánossy, L. (1969): Relativitáselmélet és fizikai valóság,
Gondolat, Budapest.
- Jánossy, L. (1973): Relativitáselmélet a fizikai valóság
alapján, Akadémiai Kiadó, Budapest.
- Kochen, P. és Specker, E. (1967): The Problem of Hidden Variables
in Quantum Mechanics, Journal of Mathematics and Mechanics
17, 59. Újraközölve, in: Hooker (1975).
- Landau, L. D. és Lifsic, E. M. (1974): Elméleti fizika,
Tankönyvkiadó, Budapest.
- Larsson, J-Å. (1998): Necessary and sufficient detector-efficiency
conditions for the Greenberger-Horne-Zeilinger paradox, Phys.
Rev. A57, R3145.
- Larsson, J-Å. (1999a): Detector efficiency in the Greenberger-Horne-Zeilinger
paradox: Independent errors, Phys. Rev. A59, 4801.
- Larsson, J-Å. (1999b): Modeling the singlet state
with local variables, Phys. Lett. A256, 245.
- Larsson, J-Å. (1999c): Modeling the Singlet State with Local
Variables, Physics Letters A256, 245.
- Lánczos, K. (1976): A geometriai térfogalom fejlodése,
Gondolat, Budapest.
- Lewis, D. (1973): Counterfactuals, Basil Blackwell,
Oxford.
- Lewis, D. (1986): Causality, in: Philosophical Papers
II., Oxford University Press, Oxford.
- Libet, B., Wright, E. W. Jr, Feinstein, B. and Pearl, D. K.
(1979): Subjective referral of the timing for a conscious sensory
experience, Brain 102, 193.
- Lockwood, M. (1989): Mind, Brain & the Quantum - The
Compound 'I', Basil Blackwell, Oxford.
- Mackie, J. L. (1974): The Cement of the Universe, Clarendon
Press, Oxford.
- Madarász, J. X. (2002): Logic and relativity (in the
light on definability theory). PhD Dissertation, Eötvös University,
Budapest.
- Maudlin, T. (1994): Quantum Non-Locality and Relativity
- Metaphysical Intimations of Modern Physics, Aristotelian
Society Series, Vol. 13, Blackwell, Oxford.
- Maxwell, N. (1985): Are probabilism and special relativity
incompatible?, Philosophy of Science 52, 23.
- McTaggart, J. M. E. (1908): The Unreality of Time, Mind
17, 457.
- McTaggart, J. M. E. (1993): The Unreality of Time, in: The
Philosophy of Time (Oxford Readings in Philosophy), R. Le Poidevin,
M. MacBeath (eds.), Oxford University Press, Oxford. (Eredeti mu:
The Nature of Existence, 33. fejezet, Cambridge University
Press, Cambridge 1927.)
- Mellor, D. H. (1995): The Facts of causation, Routledge,
London
- Mellor, D. H. (1998): Real Time II., Routledge, London.
- Menzies, P. (1987): Probabilistic Causation and Causal Processes:
A Critique of Lewis, Philosophy of Science 56, 642.
- Misner, C. W. és Wheeler, J. A. (1957): Ann. Phys. (USA)
2, 525.
- Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973): Gravitation,
W. H. Freeman & Co., San Francisco.
- Neumann J. (1980): A kvantummechanika matematikai alapjai,
Akadémiai Kiadó, Budapest. (Az eredeti német kiadás 1932-ben jelent
meg.)
- Novobátzky, K. (1964): A relativitás elmélete, 3.
kiadás, Tankönyvkiadó, Budapest.
- Novobátzky, K. (1967): Bevezetés, in: A. Einstein, A
speciális és általános relativitás elmélete, 3. kiadás, Gondolat,
Budapest.
- Nozick, R. (1969): Newcomb's Problem and Two Principles of
Choice, in: Essays on Honor of Carl G. Hempel, N. Rescher et
al. (edt.), D. Reidel, Dordrecht.
- Parfit, D. (1987): Reasons and Persons, Oxford University
Press, Oxford.
- Park, J. L. és Margenau, H. (1968): Simultaneous Measurability
in Quantum Theory, Int. J. Theoretical Physics 1,
211.
- Park, J. L. és Margenau, H. (1971): The Logic of Noncommutability
of Quantum-Mechanical Operators-and Its Empirical Consequences, in:
Perspectives in Quantum Theory - Essays in Honor of Alfred
Landé, W. Yourgrau és A. van der Merwe (eds.), The MIT Press, Cambridge,
Massachusetts.
- Penrose, R. (1993): A császár új elméje - Számítógépek,
gondolkodás és a fizika törvényei, Akadémia Kiadó, Budapest.
- Penrose, R. (1994): Shadows of the Mind - A Search for
the Missing Science of Consciousness, Oxford University Press, Oxford.
- Penrose, R. (1997): The Large, the Small and the Human
Mind, Cambridge University Press, Cambridge.
- Pitowsky, I. (1989): Quantum Probability - Quantum Logic,
Lecture Notes in Physics 321, Springer, Berlin.
- Placek, T. (2000): Is Nature Deterministic?, Jagellonian
University Press, Krakow.
- Poicaré, H. (1952): Science and Hypothesis, Dover,
Ney York. (Az eredeti francia kiadás 1902-ben jelent meg.)
- Popper, K. (1960): The Propensity Interpretation of Probability,
The British J. of Phil. of Science 10, 25.
- Popper, K. R. (1963): Conjectures and Refutations: The
Growth of Scientific Knowledge, Routledge & Kegan Paul, London.
- Popper, K. R. (1988): The Open Universe - An Argument
for Indeterminism, Hutchinson, London.
- Prior, A. N. (1993): Change in Events and Change in Things,
in: The Philosophy of Time (Oxford Readings in Philosophy),
R. Le Poidevin, M. MacBeath (eds.), Oxford University Press, Oxford.
(Eredeti mu, in: Papers on Time and Tense, Clarendon Press,
Oxford.)
- Putnam, H. (1967): Time and physical geometry, The
Journal of Philosophy 64, 240.
- Putnam, H. (1979): Is logic empirical?, in: Hooker 1979.
- Pták, P. és Pulmannová, S. (1991): Othomodular Structures
as Quantum Logic, Kluwer Academic Publishers, Dordrecht.
- Redhead, M. (1987): Incompleteness, Nonlocality and Realism
- A Prolegomenon to the Philosophy of Quantum Mechanics, Clarendon
Press, Oxford.
- Redhead, M. (1995): From Physics to Metaphysics, Cambridge
University Press.
- Rédei, M. (1995): Introduction to quantum logic, Eötvös
University Press, Budapest
- Rédei, M. (1996): Why John von Neumann did not like the Hilbert
space formalism of quantum mechanics (and what he liked instead),
Studies in the History and Philosophy of Modern Physics 27,
493.
- Rédei, M. (1998): Quantum Logic in Algebraic Approach
(Fundamental Theories of Physics Vol. 91), Kluwer Academic Publishers,
Dordrecht.
- Rédei, M. (1999): 'Unsolved Problems of Mathematics' J. von
Neumann's address to the International Congress of Mathematicians,
Amsterdam, September 2-9, 1954, The Mathematical Intelligencer
21, 7.
- Rédei, M. (2001): John von Neumann's concept of quantum logic
and quantum probability, in: John von Neumann and the Foundations
of Quantum Physics, M. Rédei, M. Stoeltzner (szerk.), Kluwer Academic
Publishers, Dordrecht.
- Rédei, M. (2002): Reichenbach's Common Cause Principle and
quantum correlations, in: Modality, Probability and Bell's Theorems,
J. Butterfield and T. Placek (eds.) Kluwer Academic Publishers, Dordrecht.
- Rédei, M. and Summers, S. J. (2002): Local Primitive Causality
and the Common Cause Principle in quantum field theory, Foundations
of Physics 32, 335.
- Reichenbach, H. (1944): Philosophical foundations of
quantum mechanics, University of California Press, Los Angeles.
- Reichenbach, H. (1951): The Rise of Scientific Philosophy,
University of California Press, Los Angeles.
- Reichenbach, H. (1956): The Direction of Time, University
of California Press, Berkeley.
- Rietdijk, C. W. (1966): A rigorous proof of determinism derived
from the special theory of relativity, Philosophy of Science
33, 341.
- Rietdijk, C. W. (1976): Special relativity and determinism,
Philosophy of Science 43, 598.
- Russell, B. (1976): Miszticizmus és logika és egyéb
tanulmányok, Magyar Helikon, Budapest.
- Salmon, W. C. (1977): The Philosophical Significance of the
One-Way Speed of Light, Noûs 11, 253.
- Salmon, W.C. (1978): Why ask ``Why?''?, Proceedings and
Addresses of the American Philosophical Association 51,
683.
- Salmon, W. C. (1980): Probabilistic Causality, Pacific
Philosophical Quarterly 61, 50.
- Salmon, W. C. (1984): Scientific Explanation and the
Causal Structure of the World, Princeton University Press, Princeton.
- Searle, J. R. (2000): Consciousness, Free Action and the Brain,
Journal of Consciousness Studies 7, 3.
- Sharp, W. D. és Shank, N. (1985): Fine's prism models for quantum
correlation statistics, Philosophy of Science 52,
538.
- Shimony, A. (1984): Contextual hidden variable theories and
Bell's inequalities, The British Journal for the Philosophy
of Science 35, 25. (Újraközölve, in: Shimony 1993b).
- Shimony, A. (1993a): Search for a Naturalistic World
View, Volume I: Scientific method and epistemology, Cambridge University
Press, Cambridge.
- Shimony, A. (1993b): Search for a Naturalistic World
View, Volume II: Natural science and metaphysics, Cambridge University
Press, Cambridge.
- Skyrms, B. (1984): EPR: Lessons for metaphysics, Midwest
Studies in Philosophy 9, 245.
- Sober, E. (1988): The Principle of the Common Cause, in: Probability
and Causality, J. Fetzer (ed.), Reidel, Dordrecht.
- Spohn, W. (1991): On Reichenbach's Principle of the Common
Cause, in: Logic, Language and the Structure of Scientific Theories,
W. Salmon and G. Wolters (eds.), University of Pittsburgh Press, Pittsburh.
- Stapp, H. (1993): Mind, Matter, and Quantum Mechanics,
Springer-Verlag Telos, Berlin.
- Stein, H. (1991): On relativity theory and openness
of future, Philosophy of Science 58, 147.
- Strauss, M. (1937): Mathematics as logical syntax -- A method
to formalize the language of a physical theory, Erkenntnis
7, 147.
- Suppes, P. 1970]: A Probabilistic Theory of Causality,
North-Holland, Amsterdam.
- Suppes, P. (1990): Probabilistic causality in quantum mechanics,
Journal of Statistical Planning and Inference 25,
293.
- Suppes, P. és Zanotti, M. (1981): When are probabilistic explanations
possible?, Synthese 48, 191.
- Swinburne, R. (1968): Space and Time, Macmillan, London.
- Swinburne, R. (1990): Argument from the fine-tuning of the
universe, in: Physical cosmology and philosophy, J. Leslie
(Ed.), Collier Macmillan, New York.
- Swinburne, R. (1998): Van Isten?, Kossuth Kiadó, Budapest.
- Szabó, L. E. (1982): Geometrodynamics in Multidimensional
Unified Theory, Gen. Rel. Grav. 14, 77.
- Szabó, L. E. (1982): Geometrodynamics of Wormholes, Circolo
Matematico di Palermo II. No. 2., 267.
- Szabó, L. E. (1993): On the real meaning of Bell's theorem,
Foundations of Physics Letters 6, 191.
- Szabó, L. E. (1995): Is quantum mechanics compatible with a
deterministic universe? Two interpretations of quantum probabilities,
Foundations of Physics Letters 8, 421.
- Szabó, L. E. (1998): Quantum structures do not exist in reality,
International J. of Theoretical Physics 37, 449.
- Szabó, L. E. (2000a): On an attempt to resolve the EPR-Bell
paradox via Reichenbachian concept of common cause, International
J. of Theoretical Physics 39, 911.
- Szabó, L. E. (2000b): On Fine's resolution of the EPR-Bell
problem, Foundations of Physics 30, 1891.
- Szabó, L. E. (2001): Critical reflections on quantum probability
theory, in: John von Neumann and the Foundations of Quantum
Physics, M. Rédei, M. Stoeltzner (eds.), Kluwer Academic Publishers,
Dordrecht.
- Szabó, L. E. (2002): A matematika-filozófiai formalizmus találkozása
az elme-filozófiai fizikalizmussal, eloadás, X. MAKOG, Észlelés,
szimbólum, tudat: A magyar kognitív tudomány tíz éve, 2002.
január 28-30., Visegrád.
- Szabó, L. E. és Fine, A. (2002): A local hidden variable theory
for the GHZ experiment, Physics Letters A295, 229.
- Uffink, J. (1990): Measures of Uncertainty and the Uncertainty
Principle, PhD dissertation, University of Utrecht, Utrecht.
- Uffink, J. (1994): The Joint Measurement Problem, International
J. of Theoretical Physics 33, 199.
- Van Fraassen, B.C. (1977): The pragmatics of explanation, American
Philosophical Quarterly 14, 143.
- Van Frassen, B.C. (1982): Rational belief and the common cause
principle, in: What? Where? When? Why?, R. McLaughlin (ed.),
D. Reidel, Dordrecht.
- Van Fraassen, B.C. (1989): The Charybdis of Realism: Epistemological
Implications of Bell's Inequality, in: Philosophical Consequences
of Quantum Theory, J. Cushing and E. McMullin (eds.), University
of Notre Dame Press, Notre Dame.
- Van Fraassen, B.C. (1991): Quantum Mechanics - An Empiricist
View, Clarendon Press, Oxford.
- Wald, R. M. (1984): General Relativity, University
of Chicago Press, Chicago and London.
- Wang, H. (1995): Time in philosophy and physics:
from Kant and Einstein to Gödel, Synthese 102, 215.
- Wheeler, J. A. (1962): Geometrodynamics, Academic
Press, New York.
- Wigner, J. (1972): Szimmetriák és reflexiók - Válogatott
tanulmányok, Gondolat, Budapest.
- Yang, C. N. és Mills, R. L. (1954): Conservation of
Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96,
191.
- Weihs, G., Jennewin, T. Simon, C, Weinfurter, H. és Zeilinger,
A. (1998): Violation of Bell's Inequality under Strict Einstein Locality
Conditions, Phys. Rev. Lett. 81, 5039.
- Zeilinger, A., Horne, M. A., Weinfurter, H. és ¬ukowski,
M. (1997): Three-Particle Entanglements from Two Entangled Pairs,
Phys. Rev. Lett. 78, 3031.
Vissza